
Model Checking of Component Behavior
Specification: A Real Life Experience 1

Pavel Jezek, Jan Kofron, Frantisek Plasil

Charles University in Prague
Department of Software Engineering

Czech Republic
{jezek, kofron, plasil} @ nenya.ms.mff.cuni.cz

Academy of Sciences of the Czech Republic
Institute of Computer Science

Czech Republic
{kofron, plasil} @ cs.cas.cz

Abstract

This paper is based on a real-life experience with behavior specification of a non-
trivial component-based application. The experience is that model checking of such
a specification yields very long error traces (providing counterexamples) in the order
of magnitude of hundreds of states. Analyzing and interpreting such an error trace
to localize and debug the actual specification is a tedious work. We present two
techniques designed to address the problem: state space visualization and protocol
annotation and share the positive experience with applying them, in terms of making
the debugging process more efficient.

1 Introduction

1.1 Software Component Behavior and Model Checking

Model checking is one of the formal verification methods. Checking for impor-
tant properties of a system (e.g. absence of deadlocks, array element indices
within limits) assumes a model describing the system behavior is available.
The model defines a state space and the desired property is verified via its

1 This work was partially supported by the Czech Academy of Sciences project
1ET400300504, the Grant Agency of the Czech Republic project GACR 102/03/0672 and
France Telecom under the external research contract number 46127110.

Preprint submitted to Elsevier Preprint 31 October 2005

exhaustive traversal. In case of software model checking, a model can be ob-
tained either from a system specification such as ADL (e.g. Wright [15], FSP
[5], behavior protocols [1]) or via the source code analysis (the Bandera [10],
SLAM [7] projects and Java PathFinder [11]).

Model checking faces two key inherent problems — state space explosion
and error trace complexity and interpretation. An error trace is the path
through the state space representing the particular computation in which the
desired property is violated. The main problem regarding error traces is that
a very long trace, in the order of magnitude of hundreds of states, may be
very hard to analyze and interpret [21,22,23,24].

There are two widely used tactics for exhaustive traversal of the state space:
Depth First Search (DFS) and Breadth First Search (BFS). Specification of
a software unit (e.g. software component) usually generates huge state space.
This is caused by the need of modeling large data type domains and parallelism
(threads/processes). Therefore, the BFS-based tactics cannot be practically
used because of their high memory requirements; instead, a DFS-based tactic
has to be chosen. Unfortunately, in comparison with BFS, DFS has a drawback
— the error trace it finds is not the shortest one in general.

1.2 Goals and Structure of the Paper

Behavior protocols [1] are a method of software component behavior specifica-
tion. They are used for behavior specification in the SOFA [16] and the Fractal
[4] component models. We employed behavior protocols in several non-trivial
case studies of component behavior specification, comprising high number of
components. This includes a non-trivial component-based test bed application
in a project funded by France Telecom aiming at integration of behavior pro-
tocols into Fractal component model. One of the key lessons learned has been
that the error trace length problem is severe and has to be addressed seriously.
The goals of this paper are (i) to share with the reader the experience gained
during specifying behavior of a non-trivial component-based application and
show that the error trace length problem is really serious, and (ii) to describe
the techniques we designed to address this problem.

These goals are reflected in the rest of the paper as follows: Sect. 2.1
and 2.2 shortly describe behavior protocols and Sect. 2.3 illustrates how to
use them for component behavior specification and demonstrates the problem
with the error trace length on a fragment of a non-trivial application that will
be used as a running example. In Sect. 3, as the key contribution, the proposed
techniques for addressing the error trace length and interpretation problems
are described. Sect. 4 contains an evaluation of the proposed techniques while
Sect. 5 discusses related work. Sect. 6 concludes the paper and suggests future
research direction.

2

2 Behavior Protocol Checking

2.1 Behavior Protocols and Software Components

Software components are building blocks of software and communicate through
interface bindings [4,15,16]. A component may provide some functionality by
its provides (server) interfaces and may require other functionality from its
environment (other components) though its requires (client) interfaces. As
an example, consider the DhcpServer component on Fig. 3. It is a composite
component built of two other components — ClientManager and DhcpListener
that are bound via their Listener interfaces. The DhcpServer has a provides
interface (Mgmt) and two requires interfaces (PermanentDb and Callback).

A behavior protocol [1] is an expression describing the behavior of a com-
ponent; the behavior means the activity on component’s interfaces viewed as
sequences (traces) of accepted and emitted method call events. A behavior
protocol 2 is syntactically composed of event denotations (tokens), the opera-
tors (Fig. 1 and parentheses. For a method m on an interface i, there are four
event token variants:

Emitting an invocation: !i.m↑ Accepting an invocation: ?i.m↑
Emitting a response: !i.m↓ Accepting a response: ?i.m↓

Furthermore, three syntactic abbreviations of method calls are defined:

Issuing a method call: !i.m is an abbreviation for !i.m↑;?i.m↓
Accepting a method call: ?i.m is an abbreviation for ?i.m↑;!i.m↓
Processing of a method: ?i.m {expr } stands for ?i.m↑;expr ;!i.m↓mean-

ing that expr defines the m’s reaction to the call in terms of issuing and ac-
cepting other events.

Operator Meaning

; Sequence: a;b means after a is performed b is performed
+ Alternative: a+b means either a or b is performed
* Repetition: a* means a is performed zero to a finite number of times

|
And-parallel: a|b generates all arbitrary interleavings of the sequences defined
by a and b

|| Or-parallel: a||b stands for(a | b) + a + b

Fig. 1. Basic protocols operators

2 In principle, behavior protocols are similar to CSP, however they are not defined via
recursive equations, but by expressions only, and the generated traces are finite. Also,
parallel operators | and || are syntactical abbreviation in principle (can be replaced by
+ and ;). Parallel composition in the sense of CSP is covered by the consent operator
(Sect. 2.2). Since a full fledged definition of behavior protocols requires much more space
than it is provided in this paper, we refer the reader for details to [1,2].

3

As an example consider the fragment of behavior protocol in Fig. 2. Ac-
cording to it, the ClientManager component is able to accept RequestNew,
Update and Return method calls on the interface Listener in parallel any
finite number of times. If a Return method call is accepted, the component
reacts by performing a Disconnected method call on its Callback interface.
Furthermore, a Disconnected method call can be emitted at any time.

(
 ?Listener.RequestNew
 ||
 ?Listener.Update
 ||
 ?Listener.Return { !Callback.Disconnected }
)* | !Callback.Disconnected*

Fig. 2. Fragment of the ClientManager frame protocol

Although a behavior protocol may define an infinite set of traces, each
trace is finite — the repetition operator denotes any arbitrary finite number
of its argument repetition. Each behavior protocol defines a finite automaton
with transitions labeled by the protocol’s events.

����������

	
����������

�����������

����������

�������

�������

����

����������

���

���

	�

����

���������

�����

�����

	�

����

��������������

��� ����������

����!������ ����"���#����

����"���#����

�������

�������

	�
����

�������

Fig. 3. DhcpServer composite component architecture

A frame (behavior) protocol of a component describes its ”black-box” be-
havior (only the events on provides and requires interfaces are visible), while
an architecture protocol of a (composite) component describes its behavior as
defined by the composition of its first-level subcomponents, i.e. the commu-
nication events of these subcomponents appear in the behavior. Using the
DhcpServer composite component in Fig. 3 as an example, its frame protocol
contains only the events of the Mgmt, PermanentDb and Callback interfaces;
the architecture protocol of the DhcpServer component is created by a parallel
composition of frame protocols of DhcpListener and ClientManager compo-
nents.

4

2.2 Protocol Compliance and Composition

The key benefit of using behavior protocols to describe behavior of components
is at the design stage of an application. The developer can check whether
the components he/she composes have compatible behavior: it enables for
checking the component compatibility both horizontally (e.g. between the
ClientManager and DhcpListener components) and vertically (between the
DhcpServer frame protocol and the architecture protocol created by parallel
composition of the ClientManager and DhcpListener frame protocols) [1].

The horizontal protocol compatibility is defined via the consent operator
[2], which is basically a parallel composition converting the subcomponents’
communication events to internal (τ) events. This is similar to CSP, however
in addition the consent composition detects three kinds of composition errors:
bad activity, no activity, and infinite activity. Bad activity occurs when a
component emits a call on an interface and the component providing that
interface is not able to accept (according to its behavior protocol) such a
call. No activity is a deadlock and infinite activity means that there is ”no
agreement” in two composed repetitions on a joint exit (there is a loop that
cannot be exited due to the nature of communication). The consent operator
and composition errors are thoroughly described in [2].

The vertical compatibility is captured via protocol compliance [1]. The
protocol compliance is defined between the frame protocol of a component
and its architecture protocol, i.e. the protocol created from its subcomponents’
frame protocols composed via the consent operator.

2.3 Example: A Fragment of the Test Bed Application

In this section we describe a fragment of a test bed application (”Wireless
Internet Access”) mentioned in Sect. 1.2. The application is a quite complex
system allowing clients of various air-carriers to access the Internet from air-
port lounges via local Wi-Fi networks. The whole Wireless Internet Access
application is composed of about 20 Fractal components. One of the key com-
ponents is the DhcpServer composite component (Fig. 3). It communicates
with system’s clients at the lowest level, i.e. it is responsible for managing
clients’ IP addresses, monitoring overall state of the local wireless network
and providing this information to the rest of the system. A simplified version
is presented in this section.

2.3.1 DhcpServer Architecture

In principle, the DhcpServer composite component works in two functionality
modes which can be swapped via the Mgmt interface:

(i) DhcpServer generates IP addresses dynamically for new clients (this is the
default functionality that can be also set by calling the UseTransientIPs

5

method on the Mgmt interface).

(ii) DhcpServer assigns IP addresses statically based on mappings between
clients’ MAC and IP addresses in an external database accessible via the
PermanentDb interface (this functionality is set by calling the UsePermanentIPs
method on the Mgmt interface).

When a client disconnects from the network, the DhcpServer calls the Disconnected
method on its Callback interface to notify its environment about this event.

As already mentioned, the DhcpServer functionality is implemented by its
subcomponents: ClientManager and DhcpListener. The architecture of the
DhcpServer and bindings between the subcomponents is shown on Fig. 3.

 (
 !Listener.RequestNew
 ||
 !Listener.Update
 ||
 !Listener.Return
)*

Fig. 4. Frame protocol of DhcpListener

The DhcpListener component is responsible for the ”real” communication
with network clients and the network infrastructure. Internally it uses exist-
ing system infrastructure to manage client nodes. Events that occur at the
network level are unified by DhcpListener which converts them to method
calls. As they can arrive at any time, the corresponding frame protocol has
to express the inherent parallelism (Fig. 4).

ClientManager accepts notifications on network events from the DhcpLis-
tener and processes them either internally (RequestNew and Update) or for-
wards them to DhcpServer’s environment (via Callback.Disconnected) as
part of Return processing.

ClientManager’s behavior is expressed by its frame protocol in Fig. 5. The
part A of the protocol represents the ”generate IP addresses dynamically”
functionality of ClientManager while the part B represents the ”assign IP
addresses statically” functionality. The parts A.1 and B.1 express the Client-
Manager’s ability to process DhcpListener’s notifications and also describe re-
actions to them. The parts A.2 and B.2 capture ClientManager’s ability to de-
tect client disconnections internally, resulting in a call of Disconnected. The
ClientManager’s functionality mode swapping mechanism is reflected in the
parts A.3 and B.3: At any time, ClientManager can accept a method call re-
questing a mode change (?Mgmt.UsePermanentIPs↑ or ?Mgmt.UseTransientIPs↑),
but it does not respond it immediately. Instead, it waits until the processing
of all pending method calls on the Listener interface is finished and then
it issues the !Mgmt.UsePermanentIPs↓ or the !Mgmt.UseTransientIPs↓ re-
sponse. Then ClientManager is again ready to accept further calls on the

6

(((((
 ?Listener.RequestNew
 ||
 ?Listener.Update
 ||
 ?Listener.Return { !Callback.Disconnected }
)* | !Callback.Disconnected*
) | ?Mgmt.UsePermanentIPs �
) ; !Mgmt.UsePermanentIPs � ; (

 ((?Listener.RequestNew { !PermanentDb.GetIP }
 ||
 ?Listener.Update
 ||
 ?Listener.Return { !Callback.Disconnected }
)* | !Callback.Disconnected*
) | ?Mgmt.UseTransientIPs �
) ; !Mgmt.UseTransientIPs �
)*)

A
A.1

A.2

B
B.1

B.2

A.3

B.3

Fig. 5. Frame protocol of ClientManager (The highlighted lines denote the events
forming the composition error described in Sect. 2.3.3)

Listener interface and respond to them according to its newly set function-
ality mode.

2.3.2 DhcpServer Frame Protocol

The frame protocol of DhcpServer is shown in Fig. 6. The interactions be-
tween DhcpServer’s subcomponents are not visible in it. However, their com-
munication can trigger interaction with the environment of DhcpServer that
is therefore visible in its frame protocol. This is illustrated by the part C
of the frame protocol in Fig. 6: the !Callback.Disconnected call can be in-
voked by the ClientManager subcomponent either as a reaction to an accepted
?Listener.Return call or due to its internal detection of client disconnection
(Sect. 2.3.1); however these two causes are indistinguishable in the DhcpServer
frame protocol. The part D of the protocol expresses the DhpcServer’s ability
to swap between its two modes (Sect. 2.3.1).

(
 !Callback.Disconnected* | !Callback.Disconnected*
 | (
 ?Mgmt.UsePermanentIPs � ; (
 !PermanentDb.GetIP*
 + (
 !Mgmt.UsePermanentIPs � ;
 ?Mgmt.UseTransientIPs �
)) ; !Mgmt.UseTransientIPs �
)*
)

D

D.1

D.2

wrong operator selected

C

Fig. 6. First version of the frame protocol of DhcpServer (Instead of +, the | operator
should have been used here as demonstrated by the error trace in Sect. 2.3.3)

7

2.3.3 Checking for Composition Errors and Compliance

The application developer that sets up a composite component (such as Dhcp-
Server) creates also its frame protocol, whereas the frame protocols of sub-
components (ClientManager and DhcpListener) are created by their respective
authors.

It is the developer’s responsibility to check first for composition errors (hor-
izontal compatibility) between subcomponents (Sect. 2.2). The frame proto-
cols of ClientManager and DhcpListener (Sect. 2.3.1) as presented above are
compatible in this sense. It should be emphasized that behavior incompatibil-
ity may occur even though the components are connected via type-compatible
interfaces.

The next step in a composite component’s development is to check for
compliance (vertical compatibility (Sect. 2.2)) of its frame protocol with its
architecture protocol. During the development of the first version of the Dh-
pcServer component, the + operator was used in its frame protocol (Fig. 6).
However, such a protocol was not compliant with its architecture protocol
(Sect. 2.3.1). Using the behavior protocol checker, the error was found and
reported by an error trace (Fig. 7).

(S0) � Listener.Return �
(S1) � Listener.Update �
(S2) � Listener.Update �
(S3) � Listener.RequestNew �
(S4) � Listener.RequestNew �
(S5) � Mgmt.UsePermanentIPs �
(S6) � Callback.Disconnected �
(S7) � Callback.Disconnected �
(S46) � Callback.Disconnected �
(S47) � Listener.Return �
(S48) � Listener.Return �
(S49) � Listener.Update �
(S50) � Listener.Update �
(S51) � Listener.RequestNew �
(S52) � Listener.RequestNew �
(S53) � Callback.Disconnected �
(S54) � Callback.Disconnected �
(S55) � Callback.Disconnected �
(S56) � Listener.Return �
(S57) � Listener.RequestNew �

(S117) � Listener.RequestNew �
(S118) � Listener.Update �
(S127) � Listener.Update �
(S128) � Listener.Return �
(S129) � Callback.Disconnected �
(S130) � Callback.Disconnected �
(S171) � Callback.Disconnected �
(S188) � Listener.Return �
(S189) � Listener.Update �
(S190) � Listener.Update �
(S191) � Listener.RequestNew �
(S192) � Listener.RequestNew �
(S193) � Callback.Disconnected �
(S226) � Mgmt.UsePermanentIPs �
(S227) � Listener.Return �
(S228) � Listener.Update �
(S229) � Listener.Update �
(S230) � Listener.RequestNew �
(S231) !PermanentDb.GetIP �

Fig. 7. Error trace representing a compliance error

However, identifying the actual error only from such a plain error trace is
not a trivial task. The key problem is that error traces of real components
tend to be rather cryptic; in particular, several method calls of the frame
protocol can occur in parallel. This leads to interleaving of the error-related
events with other events processed in ”background”. For example, only the
highlighted events on Fig. 7 lead to the conclusion that the parts D.1 and
D.2 of DhcpServer’s frame protocol (Fig. 6) need to be processed in parallel,

8

because the ClientManager can issue the !PermanentDb.GetIP call (in B.1)
in parallel with accepting the ?Mgmt.UseTransientIPs↓ call (in B.3).

3 Approaches to Error Trace Analysis and Interpreta-
tion

In behavior protocols, an error trace’s end is reflected in the state space (de-
fined by the protocol) as a state F. It is a specific feature of behavior protocols
that each trace reaching F is an error trace. Hence, F is an error state. In
consequence, an error state represents a set of error traces SF. (Note that
the existence of error states is not a general feature of an LTS.) Finding all
elements of SF means complete traverse of the state space. Sometimes, how-
ever, the knowledge of the whole set of error traces corresponding to an error
state may be very beneficial for error cause’s identification. As the set of error
traces may be huge (or even infinite), providing it as a list of traces would not
be of much help. Therefore, additional forms of SF representation are needed.

3.1 Plain Error Trace

As demonstrated in Sect. 2.3.3, an error trace identifying a compliance or
composition error may be quite long and hard to interpret. Moreover, due to
the DFS tactic used, the error trace may contain states not capturing ”the
essence” of the error. For example, the state subsequence S5, S226, S230,
S231 of the error trace in Fig. 7 also forms an error trace, but the longer one
was found first. In this respect, the other states are ”not-important” ones. It
is a challenge to filter out these ”not-important” states (to find a canonical
representation of the error trace set associated with an error state). One can
imagine a filtering technique based on iterative re-searching the state space,
which would take advantage of the knowledge of the depth at which the error
was found.

3.2 State Space Visualization

One of the checking outputs we propose in order to make error interpretation
easier is state space visualization. Visualization is a graphical representation
of the state space associated with the protocol (Sect. 2.2). For the state space
related to Sect. 2.3.1, this is illustrated on Fig. 8 (only a fragment of the state
space is captured here for brevity). This helps find out what the problem
cause is by tracking the error trace in the state space.

Apparently, state space size might be a problem here — a state space
having more than 1,000 states is hard to visualize. Thus, visualizing only
a part of the state space becomes a practical necessity. In this perspective,
capturing only the part containing the error state and its ”neighborhood”

9

is a straightforward thought. We employed this idea with a very positive
experience. Such a result still provides useful information, detailed enough to
identify where the essence of an error is. Technically, our visualization outputs
all the transitions leading from a state on the error trace — this helps with
finding correspondence with the original protocol.

��

�

������

� �

�

�

����

� � � � � � � � � � � 	
 � � � � � � � �� � 	
 � � � � � � �
 � � � �

� � � � � � �
 � � � � � � � � �
 �� � 	
 � � � � � � � � � �

� � 	
 � � � � � � � � � �

� � � � � � � � � � � 	
 � � � � � � � �� � � � � � �
 � � � � � � � � �
 �

�

����

� � � � � � �
 � � � � � � � � �
 �

� � 	
 � � � � � � � � � �

� � 	
 � � � � � � �
 � � � �
�

� � � � � � � � � � � 	
 � � � � � � � �

�

� � � � � � �
 � � �
 	 � � � �
 �
�

� � � � � � �
 � � �
 	 � � � �
 �

� � � � � � � � � � � 	
 � � � � � � � �
�

Fig. 8. State space visualization — dashed lines represent longer paths omitted due
to the limited space of this paper. The state S231 is the error state F.

3.3 Protocol Annotation

Another way of representing an error state are annotated protocols. Consider a
composition of protocols P and Q via the consent operator. If the composition
yields a composition error in an error state S, the state S is represented by
marks <HERE> put into P and Q, forming the annotated protocols PS and QS.
For illustration consider Fig. 9 where a fragment of the annotated frame pro-
tocol of DhcpServer corresponding to the error trace in Sect. 2.3.3 is depicted.

Advantageously, there is no need to construct the entire state space, but
it suffices to annotate only the protocols featuring as operands in a composi-
tion. For example, the set of error traces specified by the annotated protocol
in Fig. 9, together with the annotated architecture protocol of DhcpServer
internals, yields the error traces:

τCallback.Disconnected↑; τCallback.Disconnected↓;
τMgmt.UsePermanentIps↑; τMgmt.UsePermanentIps↓
and
τMgmt.UsePermanentIps↑; τMgmt.UsePermanentIps↓;
τCallback.Disconnected↑; τCallback.Disconnected↓

There are two issues to be addressed with this technique:

(i) Identical prefixes in alternatives. For example, consider the following

10

frame protocol: (?i.m1; ?i.m2) + (?i.m1; ?i.m3). If an error state
is to be indicated after ?i.m1, the corresponding annotated protocol takes
the form:

(?i.m1<HERE>; ?i.m2) + (?i.m1<HERE>; ?i.m3)

Even though one of the alternatives could be eliminated, we prefer keep
them both to provide more context of the error.

(ii) Transformations performed on input protocols. In the protocol checker,
the protocols are modified during the parsing process (e.g. ?i.m is de-
composed into ?i.m↑; !i.m↓ and the formatting information is lost).
Therefore, exact mapping of an error state back to the source protocols
may be difficult. Fortunately, the transformations typically still yield a
reasonably readable behavior protocol, which, annotated, provides useful
information for specification debugging.

((
 ?Callback.Disconnected � ; !Callback.Disconnected � <HERE>
)*) | ((
 !Mgmt.UsePermanentIps � ; (
 (?PermanentDb.GetIp � ; !PermanentDb.GetIp �)*
) + (
 ?Mgmt.UsePermanentIps � <HERE>;
 !Mgmt.UseTransientIps �
) ; ?Mgmt.UseTransientIps � *
))

Fig. 9. DhcpServer annotated frame protocol - simplified.

4 Evaluation

During the work on the case study mentioned in Sect. 2.3, it has turned
out that combining all of the three forms of checking output is the most
promising approach. Even though protocol annotation (Sect. 3.3) appears a
very generic technique, in complex cases the other checking outputs have to be
also provided, since tracking all the path alternatives in a annotated complex
protocol may be error-prone.

The most complex components of the case study have behavior protocols
with up to 60 events; such behavior protocols generate a state space with hun-
dreds of thousands of states. The typical errors encountered during the devel-
opment of such components then generate error traces of about 100 states in
length. However there were also some error states that generated error traces
with several hundreds of states. It then took the developer about an hour
(often even more) to identify the actual error in case only a plain error trace
was available. The checking output techniques presented in Sect. 3 have been
developed to improve debugging efficiency. During the further development of

11

our case study application, the developers used a combination of these tech-
niques and an average time to resolve a typical error shortened down to one
third or one forth of the original time.

As for the plain error trace checking output, a problem is the existence
of ”local loops” in behavior of a component. Typically, with respect to the
other parts of the system, the actual number of local loop traversals is of no
significance in terms of an error localization. These loops lengthen the error
trace, making it more complex and hard to analyze. Apparently, if loops
are nested, the situation is even worse. A desire is to eliminate those of ”no
influence” on the rest of the system. This is a challenging problem - currently,
only the highest-level loops are identified and eliminated in an automated way.

Annotated protocols are very similar to the approach used in Bandera
Toolset [10] and PREfast [3] since they are based on emphasizing of the posi-
tions in the input protocols where a composition error has been found. Unlike
in Bandera and PREfast, in behavior protocols the positions between two
operations are highlighted to denote an error state.

5 Related Work

In [23], the authors address the counterexample complexity and interpretation
problem by proposing a method for finding ”positives” and ”negatives” as sets
of related correct traces and error traces. An interesting approach is chosen
in [21], where the authors analyze the complexity of error explanation via
constructing the ”closest” correct trace to a specific error trace. In [24], the
authors describe an algorithm (”delta debugging”) for finding a minimal test
case identifying an error in a program. This idea could be used to modify
an error trace in order to find a ”close enough” correct one. An optimization
of the checking process is described in [22] where multiple error traces are
generated in a single checking run.

Static Driver Verifier (SDV) [6] is a tool used to verify correct behavior
of WDM (Windows Driver Model) [8] drivers. The driver’s source code in C
and the model written in SLIC (a part of the SLAM project [7]) are combined
into a ”boolean” program that is maximally simplified and selected rules are
checked. If a rule is violated, an error trace of the program is generated and
mapped back to the driver’s C source code. Because WDM drivers are very
complex, to make checking feasible, both the Windows kernel model and the
rules used in the SDV have to be simplified. Thus the error traces generated
by SDV are relatively short and easy to interpret. And, since they contain
also the states corresponding to traversing through the kernel model, such
parts are optionally hidden in the checking output. This solution might be
also applicable to our plain error traces (Sect. 3.1): The events generated
inside a method call could be grouped into the ”background” (Sect. 2.3.3).

12

However, because it is not easy to identify the beginning and the end of a
single method call in error trace (especially when the i.m{...} shortcuts are
not used), employing this idea in the behavior protocol checker is not a trivial
task.

As to the classical model checker SPIN [9], in case of violating of checking
property specified in LTL, Spin allows traversing the trace to the error state
while watching the variable values, process communication graph, and high-
lighted source code. Sometimes the error trace length makes this approach
very hard to use and identification of the actual problem may be quite chal-
lenging. Although the approaches to ease the interpretation of an error trace
in SPIN work well in most cases, its modelling language Promela [9] is not a
suitable specifying software components. Since such specification in Promela
typically yields a large state space impossible to traverse in a reasonable time.

As for other tools, Java PathFinder (JPF) [11], Bogor [17], BLAST [18],
SMV [12], Moped [19], and MAGIC [20] cope with counterexamples and all
provide them as error traces. Specifically, JPF, Bogor, BLAST, Moped, and
MAGIC print the sequence of steps leading to an error state annotated by a
corresponding line of the source code, while the SMV tool provides an error
trace consisting of the input file lines written in the SMV specification lan-
guage. Moped is a similar to SDV in the sense that it first translates the input
program (in Java) into the language of LTL in which the counterexamples are
generated. They are then translated back to the input language. The MAGIC
tool checks behavior of a C program against a specification described via an
LTS. Besides an error trace, it can also generate control flow graphs and LTSs
using the dot tool of GraphViz package [13] (also used by the behavior pro-
tocol checker). In all cases, but especially in the case of JPF, the error trace
may get quite complex and not easy to interpret.

6 Conclusion and Future Work

During the work on the project (Sect. 2.3.1) it has turned out that, besides
plain error trace, additional checking outputs are needed for speeding up er-
ror detecting and debugging process. Therefore, we introduced two more
approaches: (i) state space visualization, and (ii) annotated protocols. Using
all the three methods in combination was found most beneficial (locating an
error was then more efficient (Sect. 4)).

Problems arise when checking the composition/compliance of several com-
ponents described by really complex behavior protocols. The large state space
generated by such a protocol causes that an error trace is typically very long
and hard to interpret. Still, in our view, this is worth to pursue since we
believe that the components’ compatibility problem cannot be restricted to
the syntactic/type compatibility of their (bounded) interfaces [1], even though

13

this could be checked with much smaller effort and would avoid the problems
discussed in this paper; in fact, we can hardly imagine putting together a
non-trivial component-based application of the size mentioned in Sect. 2.3.1,
if the compliance checks were based only on syntactic/type compatibility of
individual interfaces.

Our future work is therefore focused on improving the methods currently
used by the behavior protocol checker; in particular, a method for automated
removing of unnecessary ”local loops” (Sect. 4) would further simplify the
plain error trace checking output.

As for state space visualization, an automated method for detecting the
”important” part of the state space (currently done by hand) is needed to
simplify the resulting graphical representation of an error trace.

Similar to Bandera [10] and PREfast [3], the possibility to dynamically
indicate the correspondence between a particular position in an error trace
and the associated part of the protocol would perhaps further ease and speed
up the debugging process.

References

[1] F. Plasil, S. Visnovsky, “Behavior Protocols for Software Components,” IEEE
Transactions on Software Engineering, vol. 28, no. 11, Nov 2002

[2] J. Adamek, F. Plasil, “Component Composition Errors and Update Atomicity:
Static Analysis,” Journal of Software Maintenance and Evolution: Research and
Practice, vol. 17, no. 4, John Wiley, 2005

[3] PREfast —
http://www.microsoft.com/whdc/devtools/tools/PREfast.mspx

[4] E. Bruneton, T. Coupaye, M. Leclerc, V. Quema, J-B. Stefani. An Open
Component Model and Its Support in Java. 7th SIGSOFT International
Symposimum on Component-Based Software Engineering (CBSE7), LNCS 3054,
Edinburgh, Scotland, May 2004.

[5] J. Magee, J. Kramer, “Concurrency: State models & Java programs,” John Wiley
& Sons Ltd, ISBN 0-471-98710-7, 1999

[6] SDV — http://www.microsoft.com/whdc/devtools/tools/SDV.mspx

[7] T. Ball, S. K. Rajamani, “The SLAM Project: Debugging System Software via
Static Analysis,” POPL 2002, ACM, Jan 2002

[8] WDM — http://www.microsoft.com/whdc/archive/wdm.mspx

[9] Spin, Promela — http://spinroot.com/spin

[10] Bandera — http://bandera.projects.cis.ksu.edu

14

[11] Java Pathfinder — http://javapathfinder.sourceforge.net

[12] SMV — http://www-2.cs.cmu.edu/~modelcheck/smv.html

[13] GraphViz — http://www.research.att.com/sw/tools/graphviz

[14] Mach, M., Plasil, F., Kofron, J., “Behavior Protocol Verification: Fighting State
Explosion,” International Journal of Computer and Information Science, ACIS
vol. 6, no. 1, Mar 2005

[15] Wright — http://www-2.cs.cmu.edu/~able/wright

[16] SOFA — http://sofa.objectweb.org

[17] Bogor — http://bogor.projects.cis.ksu.edu

[18] BLAST — http://www-cad.eecs.berkeley.edu/~blast

[19] Moped — http://www.fmi.uni-stuttgart.de/szs/tools/moped

[20] MAGIC — http://www-2.cs.cmu.edu/~chaki/magic

[21] N. Kumar, V. Kumar, M. Viswanathan, “On the Complexity of Error
Explanation,” VMCAI’05, ACM, 2005

[22] Ball, T., Naik, M., Rajamani, S., “From symptom to cause: Localizing errors
in counterexample traces,” Proceedings of POPL 2003, ACM, 2003

[23] Groce, A., Visser, W., “What went wrong: Explaining counterexamples,”
Proceedings of the SPIN Workshop on Model Checking of Software, LNCS 2648,
Springer, 2003

[24] Zeller, A., “Isolating cause-effect chains for computer programs,” Proceedings
of FSE 2002, ACM 2002

15

