
Hybrid Partial Order Reduction with
Under-Approximate Dynamic Points-To and

Determinacy Information
Pavel Parı́zek

Charles University, Faculty of Mathematics and Physics

Abstract—Verification techniques for concurrent systems are
often based on systematic state space traversal. An important
piece of such techniques is partial order reduction (POR). Many
algorithms of POR have been already developed, each having
specific advantages and drawbacks. For example, fully dynamic
POR is very precise but it has to check every pair of visible
actions to detect all interferences. Approaches involving static
analysis can exploit knowledge about future behavior of program
threads, but they have limited precision.

We present a new hybrid POR algorithm that builds upon (i)
dynamic POR and (ii) hybrid field access analysis that combines
static analysis with data taken on-the-fly from dynamic program
states. The key feature of our algorithm is usage of under-
approximate dynamic points-to and determinacy information,
which is gradually refined during a run of the state space
traversal procedure. Knowledge of dynamic points-to sets for
local variables improves precision of the field access analysis.
Our experimental results show that the proposed hybrid POR
achieves better performance than existing techniques on selected
benchmarks, and it enables fast detection of concurrency errors.

I. INTRODUCTION

Software systems that involve multiple threads are now
ubiquitous, but also prone to errors such as data races.
Therefore, efficient methods for automated verification of
such systems are important. Verification algorithms based on
systematic state space traversal are particularly suited for this
purpose, but they do not scale well because of the huge number
of possible thread interleavings exhibited by any non-trivial
system. An important piece of such algorithms is partial order
reduction (POR), which identifies the subset of possible thread
interleavings that must be explored to cover all observable
behaviors of a given system, and in this way improves the
performance and scalability of verification. The goal of POR
is: (1) to ensure that, for each set of thread interleavings that
differ only in the order of independent actions, at least one
interleaving from the set is explored, and (2) to minimize
the number of thread interleavings from each set that are
explored — that means exactly one thread interleaving in the
optimal case. To achieve this goal, POR techniques create non-
deterministic thread scheduling choices only at visible actions
that represent possible interference between threads.

We distinguish between visible actions, which read or
modify the global state reachable by multiple threads, and
thread-local actions. Visible actions are, for example, accesses
to fields of heap objects and thread synchronization oper-

ations. Only a subset of visible actions is responsible for
the actual communication between threads — we call such
actions interfering. All other actions are independent. The state
space traveral procedure with POR has to explore all possible
interleavings of interfering actions. The main challenge is to
identify the interfering actions as precisely as possible.

A prominent example of a POR technique is the dynamic
approach by Flanagan and Godefroid [5]. Their algorithm
explores individual execution traces (interleavings) one by one
using dynamic analysis, and for each trace determines the set
of heap objects and fields that were truly accessed by multiple
threads. An advantage of dynamic POR is that it recognizes
each dynamic heap object, and thus identifies shared memory
locations precisely. New thread choices are created retroac-
tively only at accesses to shared locations, and every added
choice yields traces that must be explored eventually. On the
other hand, a limitation of this approach to dynamic POR is
that it has to (i) explore each trace until the end state, (ii)
keep track of all accesses to object fields that occurred on the
trace, and (iii) check every pair of visible actions to detect
all interferences (i.e., to compute the independence relation).
This can negatively impact performance especially in the case
of programs with large state spaces and long execution traces.

Another viable approach to POR is to use a hybrid analysis
of field accesses [12] [13], which consists of two phases —
static and dynamic. Static analysis computes only partial data
for each program point (i.e., a source code location). Full
results are generated and applied on-the-fly during the state
space traversal based on the knowledge of dynamic program
states. This approach determines an over-approximate set of
interfering actions, and it is directly compatible with state
matching. On the other hand, it has limited precision because
it uses a static pointer analysis that cannot distinguish among
dynamic heap objects allocated at the same code location.

We present a new hybrid POR algorithm that builds upon
dynamic POR [5] and the hybrid field access analysis [12],
combining their advantages and addressing their limitations.
The main idea behind the proposed algorithm is the usage
of under-approximate dynamic points-to and determinacy in-
formation for local variables, which is iteratively refined. We
use the definition of determinacy by Schaefer et al. [14],
which intuitively says that a given variable is determinate at a
particular code location if it always has the same value every
time program execution reaches the location. An informal

overview of the hybrid POR algorithm follows.
The state space traversal procedure augmented with our

hybrid POR works in a similar way to dynamic POR. It starts
by exploring an arbitrary execution trace, and on-the-fly inserts
new thread choices at field accesses that occur on the trace and
are deemed to be interfering. Two accesses to the same field
f are interfering if (i) they are performed by different threads,
(ii) they may target the same dynamic heap object, and (iii) at
least one of them is a write. Like in the dynamic POR, every
new choice corresponds to additional thread interleavings that
must be explored eventually. Another important feature of the
proposed algorithm is compatibility with state matching, which
is needed to support cyclic state spaces.

Hybrid POR recognizes interfering field accesses based on
(i) the results of the hybrid field access analysis and (ii) the
dynamic points-to and determinacy information. Execution
traces are processed by dynamic analysis that tracks field
accesses on heap objects. When processing a field access, our
hybrid POR algorithm performs the following three steps:

1) It retrieves the dynamic concrete value of the local
variable through which the field access was performed,
and updates the points-to and determinacy information to
reflect the concrete value (i.e., a dynamic heap object).

2) Then it queries the hybrid field access analysis and the
dynamic points-to information to find whether there may
be a future access to the same field on the same dynamic
heap object — in that case, the current field access is
marked as interfering with the future one and a new
thread choice is created.

3) Finally, for every previous field access on the current
trace, our algorithm checks whether the previous access
may be interfering with the current field access according
to the updated points-to and determinacy information —
additional thread choices may be created in this way.

We illustrate the main steps of hybrid POR using the
program in Figure 1. It involves two threads that perform field
accesses on shared objects. Let us assume that the execution
trace read o.f ; write p.g ; read q.h ; write o.f is explored first.
Hybrid POR detects interference between the read access to
o.f in thread T1 and the subsequent write in T2 just before
execution of the write, when the dynamic value of the variable
o is added to its points-to set and previous field accesses on
the trace are inspected. A new thread choice is added at the
read access in T1. The second explored trace is read q.h ;
write o.f ; read o.f ; write p.g. In this case, the interference is
discovered already before the write to o.f, which precedes all
other accesses to o.f on this trace, because the points-to sets
of all variables are already non-empty and thus the hybrid
analysis can identify the future interfering read access.

The key feature of our algorithm is that the initial under-
approximation of points-to and determinacy information is
very coarse — every variable of a reference type is assumed to
be determinate and to have an empty points-to set. However,
as more and more execution traces are explored during the
state space traversal, the under-approximation is gradually
refined to cover the possible behavior of a program under

read o.f ; read q.h ;
write p.g write o.f

T1 T2

Fig. 1. Example program

different schedules. The dynamically computed points-to set
and determinacy status for each reference variable enables the
hybrid field access analysis to provide precise information
about the future behavior of each thread, and that in turn
enables the hybrid POR to detect real interference between
field accesses in different threads very precisely.

A run of the state space traversal procedure terminates when
there are no unexplored thread choices and interleavings left.
Then, iterative refinement of the points-to and determinacy
information must have reached a fixed point, and results
of the hybrid analysis together with the dynamic points-to
information soundly over-approximate the set of field accesses
that may occur during the program execution under any thread
schedule. State space traversal with hybrid POR then covers
all interleavings of interfering actions. However, in general,
termination of the procedure is not guaranteed.

In addition to the limitations of existing approaches men-
tioned above, our rationale behind the hybrid POR algo-
rithm is based on partially-automated inspection of benchmark
programs (Section IV), where we analyzed the determinacy
status of variables through which field accesses are performed.
We discovered that, for many of the programs, there is a
quite high number (over 50%) of cases where such variables
are determinate at code locations that correspond to field
accesses. Our goal was to exploit this observation to optimize
verification of multithreaded programs, and also to enable
faster detection of real errors. Results of our experiments show
that usage of precise dynamic points-to sets and determinacy
information (1) eliminates many redundant thread choices and
(2) improves performance especially for large programs.

The rest of the paper is organized as follows. We provide
background definitions and an overview of the hybrid field
access analysis in Section II. Then, in Section III, we formally
define the hybrid POR algorithm and prove its soundness.
Section IV contains results of experiments with our implemen-
tation and their discussion. We compare the proposed approach
with related work in Section V, and then we conclude.

II. BACKGROUND

Program and state space. A program P consists of threads
t1, . . . , tn from the set T , where each thread executes actions
from the set A. Each action a ∈ A corresponds to a program
statement. Each state of the program is a snapshot of all
variables, heap objects, and threads at some point during its
execution. An atomic transition tr between two states is a
pair tr = (t, [a0, . . . , an]) of a thread t ∈ T and a sequence
of actions executed by t. The first action a0 in the sequence
is interfering and others must be independent. There can be
just one interfering action in any transition because a new
thread choice is created when the action to be executed next
is interfering. We assume that states are explicitly saved only

at transition boundaries, and therefore each visible state s
is associated with a choice ch over all threads runnable in
s. An execution trace e is a sequence (ti0 , a0), . . . , (tin , an)
of thread-action pairs. Each trace represents one thread in-
terleaving. Such definition of execution traces allows us to
identify, for each field access action a, the specific thread that
executed the action a — this information is needed to detect
interference. We also assume that the only source of non-
determinism in the program state space are thread scheduling
choices at interfering actions. Input data must be specified
explicitly in the source code.
Determinacy. In this paper, we extend the definition of deter-
minacy from [14], which applies only to sequential programs,
towards multiple threads. A variable v is determinate at a
program point p in the context of thread t, if v always has
the same value every time (1) execution reaches the point p
and (2) the thread t is active. Only the values assigned to v
in the scope of thread t are considered when the determinacy
status of v with respect to p and t has to be updated.
Hybrid field access analysis. The hybrid analysis of field ac-
cesses was introduced by Parı́zek and Lhoták [12]. It combines
static analysis with information taken on-the-fly from dynamic
program states. For each dynamic state s reached during the
traversal, and for each thread t in s, it computes an over-
approximation of the set of object fields possibly accessed by
t in the future on any execution path starting in s. Results of
the hybrid analysis are computed in two phases.

The first phase involves static analysis, which is run before
the state space traversal and computes only partial results. We
use a backward flow-sensitive and context-insensitive inter-
procedural data-flow analysis. For each point p in the code of
thread t, it provides information that cover the future behavior
of t only between the point p and return from the method
containing p (including nested method calls transitively).

The second phase is performed on-the-fly during the state
space traversal. Full results of the hybrid analysis are generated
on-demand, every time POR has to decide whether the current
field access is interfering with some other action. It is done
based on the knowledge of the dynamic call stack of each
thread. Let s be the current dynamic state just before execution
of a field access. The dynamic call stack of a thread t specifies
a sequence p0, p1, . . . , pn of program points, where p = p0
is the current program counter of thread t (in the top stack
frame), and pi, i > 0 is the point from which execution of t
would continue after return from the method associated with
the previous stack frame. When the hybrid analysis is queried
about the current point p of thread t in state s, it takes data
computed by the static analysis for each point pi, i = 0, . . . , n
on the dynamic call stack of t and merges all the data to get
the complete result for p in the context of the state s. The
result covers the future behavior of t after the point p, and
also the behavior of all child threads of t started after p.

A consequence of the usage of dynamic call stack is that
results of the whole hybrid analysis are fully context-sensitive
and therefore very precise. On the other hand, the results are
always valid only for the current dynamic state.

1 init : visited = ∅ ; pointsto = ∅ ; determinacy = ∅
2 exploreState (s0, ch0, [],∅)
3

4 procedure exploreState (s, ch, accs, hbo)
5 if s ∈ visited return
6 visited = visited ∪ s
7 for t ∈ getRunnableThreads (ch) do
8 (s′, accs ′, hbo′) = executeTransition (s, t, accs, hbo)
9 ch′ = createThreadChoice (s′)

10 exploreState (s′, ch′, accs ′, hbo′)
11 end for
12

13 procedure executeTransition (s, tc, accs, hbo)
14 ac = getNextAction (tc) // must be interfering
15 while ac 6= null do // not at the end of thread
16 s = executeAction (s, ac, tc)
17 if isErrorState (s) terminate
18 if isFieldAccess (ac) then
19 (vc, oc, fc, pc) = getFieldAccessInfo (ac, s)
20 accs = accs ⊕ (ac, tc)
21 extendDynPointstoSet (vc, oc, tc)
22 inspectPreviousAccesses (s, ac, tc, accs, hbo)
23 end if
24 hbo = updateHappensBeforeOrder (hbo, ac)
25 ac = getNextAction (tc)
26 if isInterferingAction (ac, tc, s) break
27 end while
28 return (s, accs, hbo)
29

30 procedure isInterferingAction (ac, tc, s)
31 if isFieldAccess (ac) then
32 for t ∈ getOtherThreads (s, tc) do
33 if existsFutureInterferingAccess (ac, tc, t, s) then
34 return true
35 // other kinds of actions
36 return false // default

Fig. 2. Algorithm for state space traversal with hybrid POR

III. HYBRID POR ALGORITHM

Figure 2 shows the core of the algorithm for state space
traversal combined with hybrid POR. Procedures that detect
interfering field accesses are defined in Figure 3. We present
a recursive definition of the algorithm because it allows us to
explain the key aspects of hybrid POR in a simple and clear
way — especially in comparison with an iterative encoding of
the algorithm that is more efficient (and therefore used by our
implementation) but also more intricate.
Core of the algorithm. The top-level procedure exploreState
drives the state space traversal and performs state matching.
When this recursive procedure is called for a state s that has
not been already visited during the traversal, it retrieves all
threads enabled in the choice ch associated with s (line 7) and
explores the next transition for each of the threads. Traversal
terminates immediately when it reaches an error state.

Three global data structures are used by the algorithm
— the set of visited states, the relation pointsto that cap-
tures dynamic points-to sets for variables, and the relation
determinacy that maintains the determinacy status of every
variable. Information stored in these data structures is pre-
served across all execution traces. Reading and updating of
the relations pointsto and determinacy are implemented by

37 procedure existsFutureInterferingAccess (ac, tc, t, s)
38 (vc, oc, fc, pc) = getFieldAccessInfo (ac, s)
39 for at ∈ getFutureFieldAccesses (t, s) do
40 if ¬(isInterferingAccess (ac, at) ∧ tc 6= t) continue
41 (vt, ft, pt) = getFieldAccessInfo (at)
42 if isDeterminate (vt, pt, t) then
43 ot = getSingleDynPointstoValue (vt, pt, t)
44 if oc = ot return true
45 else if // indeterminate variable
46 if oc ∈ getDynPointstoSet (vt, pt, t) return true
47 end if
48 end for
49 return false
50

51 procedure inspectPreviousAccesses (s, ac, tc, accs, hbo)
52 (vc, oc, fc, pc) = getFieldAccessInfo (ac, s)
53 for (at, t) ∈ accs do // previous accesses
54 if ¬(isInterferingAccess (ac, at) ∧ tc 6= t) continue
55 (vt, ft, pt) = getFieldAccessInfo (at)
56 ptt = getDynPointstoSet (vt, pt, t)
57 if oc ∈ ptt ∧ ¬isOrderedStrictly (hbo, at, ac) then
58 markInterferingAction (at)
59 end for

Fig. 3. Procedures that recognize interfering field accesses

auxiliary procedures isDeterminate, extendDynPointstoSet,
getDynPointstoSet, and getSingleDynPointstoValue. Both
points-to and determinacy information are always specific to a
tuple (v, p, t) of a variable v, a program point p, and a thread
t. It means that, like in the case of determinacy, the dynamic
points-to set for a variable v is defined only in the context of
a specific program point p and thread t.

In addition, our algorithm uses the data structures named
accs and hbo, which hold information specific to the currently
processed dynamic execution trace. The list accs contains all
the field access actions that were performed on the current
trace before the current state, and hbo captures the happens-
before ordering relation between actions. Both data structures
are needed for precise identification of pairs of interfering field
accesses, as we explain below in more detail.

The symbol tc in Figures 2 and 3 represents the currently
active thread. Symbols having the subscript c, such as ac and
fc, refer to information associated with the current thread tc
or with the current field access action. Analogously, symbols
having the subscript t refer to information associated with
some other thread that is represented by the symbol t.

A run of the algorithm starts with empty determinacy and
points-to relations (line 1) in order to satisfy the initial assump-
tion that (i) every variable is determinate and (ii) all possibly
concurrent accesses to the same field are performed through
variables that have disjoint points-to sets. This initial coarse
under-approximation is refined during the state space traversal,
and at every moment it reflects all the actions and traces
that were explored so far. The hybrid field access analysis
depends on the points-to and determinacy information. Both
the precision of the analysis and its coverage of possible future
behavior of program threads are improved during the run of the
algorithm based on the gradually refined under-approximation.

For each executed field access action ac, the algorithm
performs the following four steps (at lines 19-22):

1) Calls the auxiliary procedure getFieldAccessInfo to re-
trieve information about the field access: the variable vc
through which the access is performed, a dynamic heap
object oc to which vc points in the current dynamic state
s, the field name fc, and a program point pc.

2) Updates the list accs of field accesses that were already
performed on the current execution trace.

3) Adds the heap object oc into the points-to set of the
variable vc, and updates the determinacy information for
vc based on the size of its points-to set. The variable vc
remains determinate only if the size is 0 or 1.

4) Inspects all the previous field accesses on the current trace
in order to detect additional pairs of interfering actions.
We provide more details about this step later.

We use two variants of the function getFieldAccessInfo. The
dynamic heap object is returned as an element of the tuple only
by the variant that takes the current state s as an argument.

The happens-before ordering relation is updated for each
executed action (line 24). It has to reflect also synchronization
actions that may block or release some thread.

A transition ends when the next action ac to be executed
in thread tc is interfering with some other action, because
then a new thread choice has to be created. The main part
of the corresponding logic is implemented by the procedure
isInterferingAction. For every thread other than the current
one (tc), it calls another procedure that looks for interfering
future field accesses (line 33). If the action ac is a field access,
and some thread t may in the future access the same field of
the same dynamic heap object, then ac is interfering. Similar
checks have to be done for all kinds of actions.
Detection of interfering field accesses. The procedure
existsFutureInterferingAccess queries the hybrid field access
analysis for the current program point in thread t (line 42),
and inspects the results to find whether some of the possible
future accesses by thread t may be interfering with the current
field access action ac. For each interfering future access, the
algorithm queries the points-to set and determinacy status of
the respective variable vt at the point pt in thread t. It has to
decide whether one of the following two conditions holds.
(A) The variable vt is determinate, and its points-to set has

a single element ot that is equal to the target object oc
of the currently processed field access ac.

(B) The variable vt is not determinate, which means it may
point to different objects at distinct execution traces, and
some element of the points-to set of vt is equal to oc.

If one of the conditions is true then the current field access
action ac in the active thread tc may really interfere with the
future action at on some thread interleaving. Note also that
the condition A does not hold for all determinate variables,
because the points-to set of some variable can be empty as a
consequence of the initial under-approximation.

After each update of the dynamic points-to sets (line 21),
where the target object oc of the current access ac is the

newly added element, it is necessary to check all the previous
field accesses on the current trace and compare them with ac,
because some new pairs of interfering actions may be discov-
ered. This is done in the procedure inspectPreviousAccesses,
using an approach very similar to the original dynamic POR
algorithm [5] (which is based on vector clocks). For each
possibly interfering previous access at on the current trace,
the procedure retrieves the dynamic points-to set ptt for the
respective variable vt and checks presence of oc in the set. If
oc is in ptt and there is not a strict happens-before ordering
between the field accesses in question, then the action at has
to be marked as interfering with ac. The corresponding thread
choice will be added later during the state space traversal.

Our hybrid POR algorithm uses the happens-before ordering
relation in the same way (and for the same purpose) as the
original approach to dynamic POR [5]. That is, to avoid iden-
tifying some pairs of field accesses spuriously as interfering,
when only a single interleaving of the actions is possible due
to thread synchronization. A pair (ai, aj) of interfering field
accesses, where i < j, meaning that ai precedes aj on the
current trace, is strictly ordered according to the happens-
before relation if the following two conditions hold:

1) There is an action ak, i < k < j, that is in the happens-
before relation with ai or with some action following ai.

2) Both actions ak and aj are executed by the same thread
that is different from the thread executing ai.

If both conditions hold, then ai must happen strictly before
aj with respect to the ordering relation for the current trace.
A thread choice at ai can be soundly avoided because actions
ai and aj cannot be interleaved the other way in this context.

The main benefit of the dynamic points-to and determinacy
information is that hybrid POR can detect interference between
field accesses very precisely with respect to (i) possible future
behavior of program threads and (ii) previous accesses on the
current trace. Usage of the under-approximate dynamic points-
to sets enables the hybrid field access analysis to provide much
more precise results than with a static pointer analysis.

A. Soundness and Termination

Theorem 1. The proposed algorithm for state space traversal
with hybrid POR terminates either (A) when it reaches an
error state or (B) when all possible distinct interleavings of
interfering actions in concurrent threads have been explored.

Proof. The first condition (A) is trivally satisfied by the call
of the procedure isErrorState at line 17 in Figure 2, so we
focus on the second condition (B) in our proof. We need
to consider only distinct interleavings of interfering actions,
because execution traces that differ only in the order of
independent actions yield equivalent observable behavior. To
satisfy the condition B, our algorithm has to (1) identify all
pairs of interfering field accesses, (2) add a new thread choice
to every interfering action, and (3) explore all thread choices
in the state space. We show in the next few paragraphs that all
three tasks are performed in a sound manner by the algorithm.

For each field access ac, all interfering actions are detected
by combination of the hybrid analysis with the inspection of
previous accesses. The hybrid analysis alone may fail to detect
some future accesses interfering with ac because of the under-
approximate points-to sets. Let at be such a future access.
Interference between ac and at will be detected when at is
executed, because the target dynamic object of at becomes
known at that moment and ac will then represent a previous
access with respect to at. A complete dynamic information
about every previous action on the current trace is available.

Regarding thread choices at interfering actions, we distin-
guish two cases. If the algorithm determines that the current
field access action ac in the active thread tc is interfering with
some possible future accesses, then a new choice is created
at the current action (line 9 in the procedure exploreState)
and its exploration starts immediately. The process is more
complicated when some previous field access at on the current
trace is newly identified as interfering with ac. A correspond-
ing thread choice will be created and explored later just when
the state space traversal procedure backtracks over the action
at. We omitted the respective statements — for adding new
choices retroactively to previous accesses on the current trace
— from the pseudo-code in Figure 2, because this aspect of
hybrid POR cannot be encoded in the recursive definition of
the algorithm in a simple way.

It follows from the discussion above that a new choice
is created at a field access action a iff there is some other
access interfering with a. For each pair (ai, aj) of interfer-
ing accesses, existence of the choice guarantees that both
interleavings of ai and aj will be explored eventually. The
state space traversal procedure explores all transitions enabled
at each choice ch, and therefore backtracks from a state s
associated with ch only when the whole state space fragment
with s as the root has been processed. Consequently, no thread
interleaving will be omitted during the traversal.

IV. EVALUATION

We implemented our hybrid POR algorithm in Java Path-
finder (JPF) [21], which is a framework for verification and
analysis of Java programs. JPF is responsible for traversal of
the program state space and for execution of Java bytecode
instructions. In order to support decisions about thread choices,
we created a non-standard interpreter of bytecode instructions
for accesses to object fields. Our interpreter queries results
of the hybrid field access analysis and the data structures
maintained by the algorithm. We used the WALA library [23]
for static analysis and JPF API to retrieve information from the
dynamic program states. One custom listener for JPF collects
the dynamic points-to sets, and another listener computes the
happens-before ordering relation.

The complete source code of our implementation, together
with benchmark programs and scripts needed to run all exper-
iments, is available at http://d3s.mff.cuni.cz/projects/formal
methods/jpf-static/fmcad16.html.

The goal of our experimental evaluation was to compare the
performance and scalability of hybrid POR against selected

other approaches to POR. For each approach, we wanted to
find how much time it takes to explore the whole state space of
individual benchmarks, and how fast it can detect concurrency
errors. We consider POR based on heap reachability [4] and
the original dynamic POR [5], both combined with stateful
traversal of the program state space. While POR based on heap
reachability is supported by JPF for a long time, we created our
own implementation of dynamic POR. Note that combination
of the original dynamic POR with stateful search addresses
the first limitation mentioned in Section I, i.e. the need to
explore each trace until the end state — details are provided
in Section V. We used this variant of dynamic POR in our
experiments in order to perform a fair comparison, because
other approaches involve state matching too. Moreover, the
original dynamic POR [5] (that performs a stateless search)
would not scale at all to most of our larger benchmarks, as
we found at the initial stage of this research project.
Benchmarks. We performed experiments on 16 multithreaded
Java programs, mostly from widely known benchmark suites
(Java Grande [19], CTC [18], Inspect [16], and pjbench [22]).
Other programs, such as jPapaBench [20] and Simple JBB,
were used in our previous work and recent experimental
studies. The smallest benchmark in our set is Prod-Cons with
130 lines of source code and 2 threads, while the most complex
one is jPapaBench with 4500 lines of code and 7 threads.
Experiments. We evaluated four configurations of POR in our
experiments: (1) POR based on heap reachability, (2) POR
based on heap reachability together with hybrid analysis of
field accesses, (3) dynamic POR with state matching, and (4)
hybrid POR. In tables with results, we use a short name ”Heap
Reach” for the first configuration in the list and a short name
”HR + fields” for the second configuration (which corresponds
to the technique proposed by Parı́zek and Lhoták in [12]).

For every experiment, we report (1) the number of thread
choices created by JPF during the state space traversal, which
we use to assess precision of POR techniques, and (2) the
total running time of JPF (with static analysis), which indicates
performance and scalability of the techniques.

Table I shows results for the first set of experiments, where
we configured JPF to explore the whole state space of each
benchmark, i.e. we disabled the check for error states. We used
the time limit of 12 hours and memory limit of 20 GB.

Error detection performance of the POR techniques is
reported in Table II. For the purpose of these experiments,
we selected only those benchmarks from our set that already
contained some concurrency errors (e.g., race conditions). We
used the time limit of 1 hour only in this case.
Discussion. In the case of complete traversal of a program
state space (Table I), the results are mixed. Hybrid POR
achieves better precision and performance than other ap-
proaches for 5 benchmarks out of 15 — Cache4j, Alarm
Clock, RAX Extended, Rep Workers, and TSP. The biggest
improvement was achieved for Cache4j, where hybrid POR
is faster than the second-best configuration ”HR + fields” by
the factor of 3.1. Dynamic POR achieves better precision and
performance than other techniques for 2 benchmarks, Simple

JBB and Linked List. For three benchmarks — CoCoME,
Crypt, and SOR — hybrid POR and dynamic POR have the
same precision, but dynamic POR yields better performance.

Results are not clearly in favor of one technique in the case
of remaining five benchmarks. Hybrid POR is more precise
than ”HR + fields” for CRE Demo and Daisy, but it has the
same or worse performance. Dynamic POR achieves the best
precision for CRE Demo and Elevator, but it is slower than
hybrid POR in both cases. On the other hand, hybrid POR
is the most precise technique for Prod-Cons, while dynamic
POR is the fastest. The results for Elevator also highlight the
limitations of dynamic POR that we discussed in Section I —
it creates less thread choices than hybrid POR, but it is slower
by the factor of 2.2.

All the POR techniques failed on jPapaBench because of:
(1) a high number of field accesses at execution traces, (2)
the length of transitions (JPF must interpret all instructions),
and (3) the size of program states which must be processed by
the state matching procedure. Over 1.5 million thread choices
were created in the state space of jPapaBench until the timeout.
In addition, dynamic POR run out of the time limit also for
Daisy, Cache4j, and Rep Workers. The memory limit was
sufficiently large for all our experiments. However, especially
in the case of Daisy and jPapaBench, memory consumption
was quite high and therefore a large part of the running time
of JPF was spent by garbage collection.

When considering the search for errors (Table II), state
space traversal with hybrid POR is faster than competing
techniques for 4 benchmarks out of 7 — Elevator, jPapaBench,
Rep Workers, and QSort MT. The biggest improvement by the
factor of 5.7 was achieved for jPapaBench, which is the most
complex benchmark in our set. Although none of the POR
techniques can explore the whole state space of jPapaBench,
an error state was reached quite fast with hybrid POR.

Dynamic POR detects an error faster in the case of 3
benchmarks out of 7. For one of them, Alarm Clock, dynamic
POR is faster than hybrid POR but it creates more thread
choices. It failed to detect any error in jPapaBench before the
time limit. In the case of LinkedList, hybrid POR creates much
more thread choices because of the under-approximate points-
to analysis — more program states and field accesses have to
be explored before the points-to analysis is refined enough to
identify a data race. Results for other benchmarks nevertheless
show that such ”anomaly” is quite rare.

The hybrid POR algorithm has a certain overhead, when
compared to dynamic POR, because it runs the static analysis
upfront and performs numerous queries of the hybrid analysis
results on-the-fly. This overhead is clearly visible on smaller
benchmarks, such as Prod-Cons, for which hybrid POR creates
less thread choices but its total running time is higher. Just few
seconds are taken by the static analysis for each benchmark.

To summarize, we have made the following two main
observations based on our experimental results:

• There is not an obvious winner in the comparison be-
tween hybrid POR and dynamic POR, as each is better
than the other roughly for a half of the benchmarks.

TABLE I
EXPERIMENTAL RESULTS: COMPLETE STATE SPACE TRAVERSAL

Heap Reach HR + fields dynamic POR hybrid POR
benchmark choices time choices time choices time choices time

CRE Demo 30942 50 s 2476 9 s 2015 11 s 2086 9 s
CoCoME 81150 160 s 23880 59 s 72 3 s 72 5 s
Daisy 28436002 15405 s 6647236 4574 s - 6028026 7787 s
Crypt 4993 3 s 9 2 s 9 1 s 9 2 s
Elevator 10167560 7617 s 2731316 1954 s 429466 1288 s 461996 585 s
Cache4j 11716552 7336 s 8615847 5613 s - 1970110 1785 s
Simple JBB 575519 1768 s 277599 959 s 602 31 s 5648 81 s
jPapaBench - - - -
Alarm Clock 531463 432 s 141138 117 s 109018 188 s 48166 47 s
Linked List 5919 3 s 1969 5 s 283 1 s 1422 5 s
Prod-Cons 6410 4 s 2532 6 s 592 1 s 356 4 s
RAX Extended 26346 18 s 13864 13 s 11315 125 s 3519 7 s
Rep Workers 9810966 6850 s 1653037 1264 s - 739418 584 s
SOR 222129 122 s 86193 72 s 135 2 s 135 4 s
TSP 35273 591 s 9285 154 s 101 65 s 86 37 s

TABLE II
EXPERIMENTAL RESULTS: SEARCH FOR CONCURRENCY ERRORS

Heap Reach HR + fields dynamic POR Hybrid POR
benchmark choices time choices time choices time choices time

Elevator 27053 12 s 9123 7 s 119797 285 s 1156 5 s
jPapaBench 230709 147 s 48337 40 s - 262 7 s
Alarm Clock 428 1 s 161 3 s 167 1 s 65 3 s
Linked List 1341 1 s 270 3 s 80 1 s 1290 6 s
RAX Extended 1315 1 s 22 2 s 18 1 s 20 3 s
Rep Workers 6685 6 s 1522 5 s 4516 6 s 1054 4 s
QSort MT 3221 2 s 959 3 s - 274 2 s

• Hybrid POR achieves better performance than purely dy-
namic POR on benchmarks that have larger state spaces,
such as Cache4j and Daisy, and it can successfully verify
3 out of the 4 benchmarks at which dynamic POR fails.

State space traversal with hybrid POR detects errors very fast,
and it can also explore all distinct interleavings of interfering
actions in a reasonable time. By manual inspection of the
execution logs of JPF, we found that the precision achieved
by hybrid POR is largely due to the fact that our algorithm
maintains the dynamic points-to sets and determinacy informa-
tion separately for each program point and each thread. Many
redundant thread choices are avoided in this way.

Dynamic POR is less precise than hybrid POR for some
benchmarks (e.g., Alarm Clock and Prod-Cons) because it can
make a redundant thread choice at instruction i that accesses an
object o in the following situation: (1) there is an instruction j
in another thread that accesses o, (2) j was executed before i,
and (3) the object o is not reachable by multiple threads at the
time j was executed. In the case of hybrid POR, the hybrid
analysis marks the access by j as thread-local, and therefore
enables more precise handling of situations like this.

Now we discuss the performance differences between hy-
brid POR and dynamic POR in either direction. An advantage
of hybrid POR is that it needs to check much less pairs of
visible field accesses to detect the interfering ones (i.e., to
compute the full independence relation). When the hybrid
analysis is queried at a dynamic state, it efficiently identifies
all future field accesses that cannot interfere with the current

action. For those accesses, hybrid POR can safely omit checks
of interference also during the inspection of previous actions
on the current trace (line 54 in Figure 3). On the other hand,
the purely dynamic POR has to consider all the previous
accesses. The difference in the number of pairs of visible
accesses that must be checked is quite significant for programs
with large state spaces and long execution traces. It is mainly
for this reason that hybrid POR achieves better performance on
larger benchmarks. On the other hand, for some benchmarks,
performance of hybrid POR suffers (i) from imprecision of
the underlying static analysis and (ii) from the need to refine
the under-approximate information in multiple iterations.

V. RELATED WORK

Many approaches to POR have already been developed
in the context of model checking and concurrency testing.
Notable examples are the original dynamic POR [5] and
Cartesian POR [8]. Furthermore, Abdulla et al. [1] recently
proposed an optimal algorithm for dynamic POR.

The goal of all POR techniques is to limit the number of
thread choices on every execution trace. In addition, most POR
algorithms try to minimize the number of transitions to be
explored from each thread choice, using the concepts of per-
sistent sets and sleep sets [6]. Our hybrid POR minimizes just
the number of thread choices in the state space, i.e. all enabled
transitions are explored at each thread choice. Cartesian POR
is the most closely related approach in this respect.

The algorithm for dynamic POR by Flanagan and Gode-
froid [5] works only with stateless model checking. It does not

handle cyclic state spaces, and performs redundant computa-
tion when re-exploring already visited states. Other researchers
designed extensions of this algorithm to address its limitations.
Yang et al. [17] combined dynamic POR with stateful search,
and Thomson et al. [15] proposed the lazy happens-before
relation that enables dynamic POR to avoid redundant explo-
ration of some thread interleavings for programs with coarse-
grained locking. We adapted the ideas of Yang et al. [17] in
our implementation of dynamic POR in JPF. Upon reaching
an already visited state, the algorithm just has to consider field
accesses that could occur in the rest of the program execution
after the state. The necessary information about possible future
field accesses is collected at backtracking steps.

Hybrid POR is directly compatible with state matching.
Unlike the approach of Yang et al. [17], it does not have to
keep track of field accesses that may occur after the given
state. The hybrid field access analysis provides the information
about future behavior of each thread.

We are aware of several other techniques involving POR
that combine static and dynamic analysis [3] [9]. A common
pattern behind them is the computation of an approximate
dependency relation (a set of interfering actions) by static
analysis, followed by (or interleaved with) the usage of dy-
namic analysis to improve precision based on information
taken from dynamic program states and execution traces. For
example, Kusano and Wang [9] proposed a framework that
combines dynamic POR with a slicing algorithm in order
to focus the search on interfering accesses that may cause
assertion violations or deadlocks. The slicing algorithm uses
static analysis to identify data dependencies and dynamic
analysis to compute a precise aliasing information on-the-fly.

Our approach also follows the recent trend of verification
algorithms based on iteratively refined under-approximation
that captures (prefixes of) feasible execution traces of a
given program. This large group of techniques includes, for
example, context-bounded search with iterative increase of the
maximal number of preemptions [11], and lazy abstraction
with refinement based on interpolants [10]. There are even
algorithms, such as UFO [2] and SMASH [7], that combine
under-approximation with over-approximation and iteratively
refine both abstractions until an error is found or the program
is proven safe. The motivation behind such techniques is the
detection of real errors in a practical time. When there are
sufficient resources, use of the iterative refinement enables the
algorithms to gradually increase coverage of the program state
space, and to eventually explore all the execution traces.

VI. CONCLUSION

Our main contribution presented in this paper is the hybrid
POR algorithm and its usage in a state space traversal proce-
dure. Hybrid POR combines static analysis with data taken on-
the-fly from dynamic program states, with iteratively refined
under-approximate dynamic points-to and determinacy infor-
mation, and also with the happens-before ordering relation.

Results of our experiments show that, for programs with
larger state spaces, hybrid POR outperforms all the other

approaches that we considered. The ability to look ahead by
querying the hybrid field access analysis is the main reason
behind good performance of hybrid POR. On the other hand,
there is a certain overhead associated with the hybrid field
access analysis. Hybrid POR is slower than dynamic POR for
small benchmarks due to the overhead, but it still achieves
good running times.

In the future, we would like to adapt the lazy happens-
before relation [15] in order to improve the precision and
performance of hybrid POR even further. We also plan to
investigate possible incremental approaches to POR.

ACKNOWLEDGEMENTS.

This work was partially supported by the Grant Agency of
the Czech Republic project 14-11384S and Charles University
institutional funding SVV-2016-260331.

REFERENCES

[1] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas. Optimal Dynamic
Partial Order Reduction. Proceedings of POPL 2014, ACM.

[2] A. Albarghouthi, A. Gurfinkel, and M. Chechik. From Under-
Approximations to Over-Approximations and Back. Proceedings of
TACAS 2012, LNCS, vol. 7214.

[3] G. Brat and W. Visser. Combining Static Analysis and Model Checking
for Software Analysis. Proceedings of ASE 2001, IEEE.

[4] M. Dwyer, J. Hatcliff, Robby, and V. Ranganath. Exploiting Object
Escape and Locking Information in Partial-Order Reductions for Con-
current Object-Oriented Programs. Formal Methods in System Design,
25(2-3), 2004.

[5] C. Flanagan and P. Godefroid. Dynamic Partial-Order Reduction for
Model Checking Software. Proceedings of POPL 2005, ACM.

[6] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems. LNCS, vol. 1032, 1996.

[7] P. Godefroid, A. Nori, S.K. Rajamani, and S. Tetali. Compositional
May-Must Program Analysis: Unleashing the Power of Alternation.
Proceedings of POPL 2010, ACM.

[8] G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesian Partial-Order
Reduction. Proceedings of SPIN 2007, LNCS, vol. 4595.

[9] M. Kusano and C. Wang. Assertion Guided Abstraction: A Cooperative
Optimization for Dynamic Partial Order Reduction. Proceedings of ASE
2014, ACM.

[10] K. McMillan. Lazy Abstraction with Interpolants. Proceedings of CAV
2006, LNCS, vol. 4144.

[11] M. Musuvathi and S. Qadeer. Iterative Context Bounding for Systematic
Testing of Multithreaded Programs. Proceedings of PLDI 2007, ACM.

[12] P. Parı́zek and O. Lhoták. Identifying Future Field Accesses in Exhaus-
tive State Space Traversal. Proceedings of ASE 2011, IEEE.

[13] P. Parı́zek and O. Lhoták. Model Checking of Concurrent Programs with
Static Analysis of Field Accesses. Sci. Comput. Programm., 98, 2015.

[14] M. Schaefer, M. Sridharan, J. Dolby, and F. Tip. Dynamic Determinacy
Analysis. Proceedings of PLDI 2013, ACM.

[15] P. Thomson and A. Donaldson. The Lazy Happens-Before Relation:
Better Partial-Order Reduction for Systematic Concurrency Testing.
Proceedings of PPoPP 2015, ACM.

[16] Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A Runtime Model
Checker for Multithreaded C Programs. Technical Report UUCS-08-004,
University of Utah, 2008.

[17] Y. Yang, X. Chen, G. Gopalakrishnan, and R.M. Kirby. Efficient Stateful
Dynamic Partial Order Reduction. Proc. of SPIN 2008, LNCS, vol. 5156.

[18] Concurrency Tool Comparison repository, https://facwiki.cs.byu.edu/
vv-lab/index.php/Concurrency Tool Comparison

[19] The Java Grande Forum Benchmark Suite, https://www2.epcc.ed.ac.uk/
computing/research activities/java grande/index 1.html

[20] jPapaBench, http://d3s.mff.cuni.cz/∼malohlava/projects/jpapabench/
[21] Java Pathfinder, http://babelfish.arc.nasa.gov/trac/jpf
[22] pjbench: Parallel Java Benchmarks, https://bitbucket.org/pag-lab/pjbench
[23] WALA: T.J. Watson Libraries for Analysis, http://wala.sourceforge.net/

