
USE CASES: ASSEMBLING “WHOLE PICTURE” BEHAVIOR

by

Frantisek Plasil, Vladimir Mencl

TR 02/11

Technical Report Series
DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF NEW HAMPSHIRE
Durham, New Hampshire 03824

2

Contents

Abstract . 3

1. Introduction . 4
1.1. Use Cases – Brief Overview . 4
1.2. Goals and Structure of the Paper . 5

2. Our View on Traditional Use Case Modeling Techniques . 6
2.1. Generic UC View . 6
2.2. Case Study: Textual Scenario Specifications . 9
2.3. Comparing Generic UC View and UML . 10

3. Protocols Use Cases – Pro-cases . 11
3.1. Basic Idea . 11
3.2. Deriving Pro-cases from Textual Use Cases . 14

4. Evaluation and Related Work . 17

5. Summary and Future Work . 18

Appendix A: Marketplace Use Case Model and Pro-case Model 21
A.1. Marketplace Information System . 22
A.2. Computer System . 31
A.3. Clerk . 41
A.4. Supervisor . 44

3

Abstract

Although widely used, traditional use case modeling does not provide explicit means
which could be easily used for capturing and testing behavior compliance of the entities
involved in a particular use case model. Specifically, a use case model (a set of use cases)
related to a system under design provides neither an explicit abstraction to capture the
“whole picture” of the behavior of the system, nor to cover the interactions of subsystems
and internal actors with the parent system. With the aim to allow for reasoning on the
behavior, the paper introduces a simple formal model Generic UC View which identifies
important abstractions and the relations upon them which target the goal. Among them,
the concept of use case expression is the base for the desired reasoning on whether the
behavior of an entity (such as an agent and a subsystem) complies with the composed
behavior of its sub-entities, and the behavior on the communication links of two
neighboring entities is compliant.

As a proof of the concept, an instance of use case expressions, pro-cases is introduced.
Based on behavior protocols [19], pro-cases can be checked for compliance via an already
existing verifier. As pro-cases’ syntax is simple, resembling regular-expressions, there are
simple guidelines for transforming a use case written in classical textual form (based on
a template) into a pro-case.

4

Use Case: #1 Seller submits an offer
Scope: Marketplace
SuD: Marketplace Information System
Level: Primary Task
Primary Actor: Seller
Supporting Actor: Trade Commission
Main success scenario specification:
1. Seller submits information describing

an item
2. System validates the description.
3. Seller adjusts/enters price and enters

contact and billing information.
4. System validates the seller’s contact

information.
5. System verifies the seller’s history to

permit the seller to operate

6. System validates the whole offer with
the Trade Commission

7. System lists the offer in published
offers.

8. System responds with an uniquely
identified authorization number.

Extensions:
2a Item not valid

2a1 Use case aborted
5a Seller’s history inappropriate

5a1 Use case aborted
6a Trade commission rejects the offer

6a1 Use case aborted
Sub-variations:
2b Price assessment available

2b1 System provides the seller with
a price assessment.

1. Introduction
1.1. Use Cases – Brief Overview
In principle a use case [11, 3, 16] is a description of a set of scenarios specifying how a set
S of entities ought to communicate to achieve a certain goal; a communication is viewed
as a sequence of events, such as a request or a response exchanged among the entities.
Frequently, the use case is written from the perspective of one those entities (SuD, system
under discussion) – it specifies how SuD executes certain actions while communicating
with other entities, actors, from S to achieve a specific goal. Basically, a scenario is
considered a sequence of actions to be performed by SuD and the actors which reflects a
particular case of their desired communication.

Practitioners, e.g. [3, 14, 20], typically prefer use cases to be specified in plain English,
to make them easily comprehendible to “wide audience”. Such a use case is inherently
informal, even though a predefined template is usually asked to follow. For example, such
template can be a form to be filled in to specify in a semi-programing way the desired set
of scenarios:

There is a whole variety of ways different authors recommend to write use cases, ranging
e.g. from employing preconditions/postconditions in Catalysis [5], Use Case Maps [2],
transition systems [22], to abstract state machines with the goal to generate test scenarios
[8].

UML [16] includes a use case concept as well. It is, however, primarily focused on use
case as an abstraction to capture the existence of a set of interaction scenarios among a set
of actors and an SuD; it leaves the way internals of a use case are specified very open (the

5

alternatives explicitly mentioned without any details include plain text, a state machine,
activity graph, and specification via preconditions and postconditions). Rather, it
concentrates on the relations among use cases (as a use case is a classifier in UML, a
relation can be a dependency (extends/includes) or generalization).

In general, the bottom line is that there are many different approaches and hard to
compare techniques related to use cases, none of them being strongly recommended nor
preferred; an overview is e.g. in [10, 7].

Intuitively, there can be conflicts in use cases specifying two cooperating entities
(separate SuDs). Even though there are many approaches to finding conflicts in dynamic
and functional requirements, as pointed out in [9], they are frequently based on logic (and
typically closely dependent on a particular use case technology) and require highly
specialized experts to handle. This is in obvious contrast with practitioners’ desire to make
a use case easy to read and comprehend as mentioned above.

1.2. Goals and Structure of the Paper
In [19, 18], we developed an agent model, where the agents process sequences (traces) of
atomic events, and introduced a way to describe (approximate) the agents’ behavior via
behavior protocols, which was applied on software components in SOFA, in order to
specify component behavior and test behavior compliance of components, including
neighboring levels of refinement. Based on this experience, we realized that similar
compliance check should be done also for use cases associated with component based
(interface-centered [5]) design.

Here, as a variety of different use case techniques might be considered, the key question
is what the basic relations among the behaviors of entities in use cases are, provided these
relations should allow for capturing the behavior relationships among the proposed
components in a hierarchical system. For instance, whether the composed behavior of
components (at a particular level of nesting), specified separately for each of the
components, corresponds to the behavior specified for the parent component, etc. Another
question is what the basic relations upon a set of scenarios are, in order to define some
“reasonable” behavior concepts and relations among them (associated with use case
entities) which could be easily interpreted in classical formal tools, such as state machine,
labeled transition systems, etc. Based on this objectives, the paper aims at these goals:

(1) Finding a generic view on UC in order to articulate key abstractions allowing for
capturing behavior compliance of entities/actors at different levels of their decomposition,
resp. refinement, and identifying which relations should be chosen as the basis for such
reasoning.

(2) Showing how the abstractions in the proposed generic view correspond to the use
case related concepts in UML and how the classical textual, system centric use case
specifications can be mapped/interpreted in terms of these abstractions.

(3) Introducing a UC technique which would feature these abstractions and thus provide
reasoning, while still simple enough to be easy to apply in practice (emphasis on readability
and easy comprehension); for instance, transforming a textual use case to the form the new
UC technique would require should be an easy step.

6

A1
_

A3
_

S

C1

A1

A2

A3

C3

A2
_

C2

C4

Figure 1 (a)

C1

A1

A2

A3

C3

A2
_

C2
C4

Figure 1 (b)

Reflecting this aim, the paper is organized as follows: Sect. 2 targets the goals (1) and
(2), by providing “Generic UC View”, and its comparison to UML, while Sect. 3 addressed
the goal (3) by introducing “Protocol Use Cases”. The final two sections 4 and 5 contain
an evaluation, discuss practical experience and related work, and articulate a conclusion.

2. Our View on Traditional Use Case Modeling Techniques
2.1. Generic UC View
To provide a basis for reasoning about the key abstraction (and capture their relationship)
in the traditional use case modeling [3, 11, 13, 16], we introduce the following generic
model (generic UC view).

Basic concepts. Assume an entity S is composed of sub-entities A1, ... ,An. By definition
S forms scope of Ai; the topmost scope is called system. An entity Ai communicates
through communication links (connections for short) with (1) other (actors) Aj of the scope
S, and potentially (2) with other external actors located in the parent scope, i.e. in the scope
of S. In case (1), the communication is observed on the internal connections of S, while
in case (2) on external connection of S. Advantageously, the nesting of entities and their
scopes can be expressed as a scope diagram. Here, by convention, the stick-figure symbol
(��°) denotes an entity which is an abstraction of a particular human role, while rectangle
denotes an entity which activity is at least partially software driven (typically a SuD), and
a line represents a connection. For example, in Fig. 1(a), A1, A2, and A3 are in the scope
of A�2. Here, C1 and C3 are external connections of A�2, while C2 and C4 are internal
connections of A�2. In a similar vein, C1, C2 and C3 are the external connection of A2.
Furthermore, A�1, A�2, and A�3 are in the scope of S. Frequently, not all of the levels of
entity nesting are captured on a scope diagram, typically leaving out the targets of the
external connections of the outmost scope (Fig. 1(b)).

Figure 2 shows the scope diagram of a sample Marketplace. Within the scope of
Martketplace (a business entity), the actors Buyer, Seller, Agency, TradeCommissioner and
the Marketplace Information System and their connections are visible. Inside the
Marketplace information system are three entities: the Clerk, the Supervisor and the
Computer system. The use case demonstrated in Sect 1.1 describes the interaction of the
Marketplace information system with its surrounding actors in the scope of Marketplace.

7

Buyer

Seller

Clerk

Marketplace Information System

Computer system

Agency

TradeCommisionSupervisor

Marketplace

Figure 2

Scenarios. A particular way of communication of an entity A on its connections in a run
of system � is captured as a scenario s � Scenarios. All the scenarios of A in any run of �
form the behavior Com(A) � Scenarios. On the domain Scenarios we assume the existence
of a subscenario relation (partial order).

By convention, Com(A)/ExConn(A) is the behavior of A restricted to its external
connections (while Com(A)/InConn(A) is restricted to the internal connections of A).
Assuming an entity C is composed of entities A and B, Com(C) is composed of Com(A)
and Com(B), written Com(A) � Com(B)), in such a way that
(1) together with Com(A)/InConn(A) � Com(B)/InConn(B) the behavior on the joint
connections between A and B becomes a part of Com(C)/InConn(C),
(2) (Com(A)/ExConn(A) � Com(B)/ExConn(B)) - (Com(A)/ExConn(A) � Com(B)/
ExConn(B))
becomes Com(C)/ExConn(C),

Use case model. Let UA be the set of basic uses cases (behavior specifications) where A
is the SuD. A use case UCA � UA describes/generates a set of scenarios, so, by convention,
we write also Com(UCA) � Scenarios. Further, we define a binary relation includes such
that UCA

j includes UCA
k means that the specification of UCA

j includes (refers to) the
specification of UCA

k (macro substitution idea, thus no circular dependencies allowed).
Also we assume that if a UCA

j � UA and UCA
j includes UCA

k then also UCA
k � UA;

moreover we require UCA
j includes UCA

k to imply that for any s � Com(UCA
k) there exists

an s’ � Com(UCA
j) such that s subscenario s’ (subscenario preservation).

Notice that even if Com(UCA
k) = Com(UCA

j), not necessarily UCA
k = UCA

j; thus
different specifications can generate the same behavior. Also, in the need to distinguish the
elements of UA we do so by subscripts, writing e.g. UCA

k (this also reflect that use cases of
A are enumerated in a typical use case technology).

A use case model of A (denoted UMA) is a set of use case expressions, (also use cases
for short), where an expression UEA (syntactically in principle) generates a set of scenarios
(by convention we write Com(UEA) � Scenarios). A use case expression UEA is either a

8

basic use case UCA or is composed by applying operations from a set of operations UEop
on their operands – (sub)expressions, assuming some priorities, parenthesis, etc. apply. The
semantic of these operations can include sequencing, parallel composition of the scenarios
generated by the operands, etc. (as illustrated in Sect. 3.1).

Whole picture behavior. As a use case UEA
j � UMA provides only a partial “j-th”

description of A’s behavior (“the whole picture behavior” of A), the assembled behavior
of UMA is defined as Com(UMA) = � {Com(UEA): UEA � UMA }. To emphasize an
important special case, we say that UMA has a representative if there is UEA in UMA such
that Com(UMA) = Com(UEA); (also: UEA is an representative of UMA).

2.1.1. Consistency Issues
In our view, the key consistency issues to be addressed by a concrete UC view in order to
support refinement in the design and implementation of a specified system � include the
following:

(a) Does the combined behavior as specified by all UMAi in a scope S comply with the
behavior specified for S in UMS.

(b) Does the assembled behavior as specified by a UMA really reflect the desired
behavior of A (as this is hard to address directly, we will consider equivalence checking �
decidability whether two use case models UMA and ‘UMA specify the same behavior, i.e.
Com(UMA) = Com(‘UMA)).

(c) Is the desired communication between Ai and Aj via their connection(s) in S really
reflected in the behavior as specified (separately) by UMAi and UMAj.

(d) If there is no representative of UMA and the behaviors of use cases in UMA overlap,
is there a way to find/construct a representative in order to get a “whole picture behavior”
directly from the specifications, without the need to generate scenarios.

In principle, all four issues are closely related to the need inherent to
refinement/synthesis steps in a design of �: The necessity to combine behavior
specifications in order to get “the whole picture” behavior specification and capture the
behavior specification compliance of several cooperating/nested entities.

In general, addressing (a) and (b) requires defining a behavior compliance as a binary
relation upon the behavior of entities. Intuitively, Com(A) compliant with Com(B) if B can
be replaced in � by A by taking over all its external connections in such a way that “B
behaves on A’s place as it were A”. The issue (c) can be addressed by finding a binary
relation consent upon behavior of entities: Intuitively, Com(A) consent Com(B) if there is
no inconsistency resp.“erroneous scenario” in the behavior of A and B on their joint
connections. To define these relations (and �) precisely, a specific interpretation of
Scenarios and the relations/operations available for it have to be known.

Assuming the existence of compliant with and consent, the issues (a) - (c) can be
rephrased as
(a) Com(UMA1) � Com(UMA2) � � Com(UMAn) compliant with Com(UMS), and
(b) Com(UMA) compliant with Com(‘UMA) and Com(‘UMA) compliant with Com(UMA)

9

(c) Com(Ai) consent Com(Aj)
Obviously a big advantage can be taken of extending the definitions of compliant with,

consent and � to UMA (to make them applicable not only on Com(A), i.e. the behavior
itself but also on the behavior specification). Then, assuming a set UEop is “reasonably”
defined, the consistency issues (a) - (d) can be addressed by reasoning on uses case
expression (for an example see Sect. 3.2).

2.2. Case Study: Textual Scenario Specifications
There is a variety of use case techniques/technologies based on textual specification of UCA

(ranging from unstructured narratives to semi-structured scripts, see overviews in [10, 7]).
In this section we analyze the textual use case specification described in [3], which is based
on a structured template (Sect 1.1). We choose it because of its broad recognition [4].
Basic concepts. The central concept, actor has an important special case: stakeholder,
having a goal. Scope is introduced as the entity A for which a UCA is written (A is SuD).
Communication links (connections) are introduced indirectly by identifying the cooperating
actors in each UCA.

Scenarios. A scenario is “sequence of steps showing how actions and interactions unfold“
(thus sequence of interacting actions in principle); however, the domain Scenarios is not
explicitly defined. The subscenario relation is not introduced explicitly, being considered
only indirectly, as a consequence of the includes relation (below).

Use cases and relations. A goal k of a stakeholder H with respect to an entity A
(considered as SuD and also scope) is identified as the reason for writing a use case UCA

k.
To emphasize that UCA

k is focused on a goal of A, the stakeholder H is also called
(ultimate) primary actor in UCA

k. The description of communication of A with external
entities is “white-box” based, i.e. all external actors of A are visible, regardless of how
deep is A nested in the entity hierarchy forming �. On the contrary, it is strongly
discouraged to specify any communication of A with internal entities in any UCA

k (black
box view recommended). No UMA is introduced, but there is the concept of � (the
computer system to be designed).

As illustrated in Sect.1.1, the structure of the textual descriptions is defined as template,
providing generic guidelines as to how to specify the generated scenarios by means of main
success scenario, its extensions, and variants, plus which fields should be included in the
header of a use case (Stakeholder, Scope = SuD, etc.).

Addressing includes in principle, a sub use case relation is defined with the semantics
UCA

j “calls” UCA
k where acyclic property is silently assumed and indirectly supported by

introducing specific levels of nested use case calls (cloud, sea-level, underwater). Thus, the
subscenario preservation is silently guarantied on the domain assumed for UCA

j. Here, any
top-most use case is also a summary use case – this roughly corresponds to the choice of
use cases to form a UMA. Moreover, inspired by UML, the extends relation is defined,
based on the idea of ex post defined extension points in a use case: UCA

j extends UCA
k

10

means that UCA
j explicitly states which parts of UCA

k are the extension points (could be
described by a set of context rewriting rules). Generalization (again UML inspired) is not
explicitly considered in the recommended template (using generalization is discouraged).

For UCA
j, Com(UCA

j) is explicitly defined as the set of scenarios generated by UCA
j.

Com(A) is considered the collection of scenarios where A is involved as SuD (generated
by a UCA

j) – considering just summary use cases to be involved in behavior assembling is
silently assumed.

Whole picture behavior. The idea of selecting use cases from UA to form UMA is reflected
in the concept summary use case. In principle, the summary use case idea implies nesting
and sequencing of use cases from UA (via includes or extends) in the form described by a
higher level use case from UMA. On the other hand, the precondition and postconditions
of a UCA

i and UCA
j from UMA allow for partial ordering of the behaviors Com(UCA

i) and
Com(UCA

j), including a parallel composition; here, preconditions can be interpreted as
unary operations from UEop for which only basic use cases are allowed as operands. As
the semantical spectrum of behavior composition via preconditions can be really broad, the
original paper on use cases [12] assumes that no concurrency is modeled in a use case.

Addressing consistency issues. No compliant with, consent, nor � are defined, therefore
none of the key consistency issues is addressed (except for reasoning “by hand” on an
intuitive basis).

2.3. Comparing Generic UC View and UML
Basic concepts. The UML use case package (a subpackage of the Behavior Elements
package) is a very generic framework for specifying use cases. UML specifies the actor and
use case as the central concepts. These corresponds to our entity A and UCA concepts. The
idea of communication links (connections) in UCview is reflected in UML very indirectly:
the information about connections among the entities in a subsystem can be obtained only
by a systematic walk-through of the use cases (for these entities) and recording their
associations with actors – an use case of an entity (SuD) A contains (as an association) the
info with which external entities (actors) A communicates. As to nesting of entities, a UML
actor can model (not be) a system, subsystem, or class; in a hierarchical system, it is very
hard to imagine capturing the communication among entities (their behavior) at such
different abstraction levels under the circumstances that the info on their communication
is so hard to get.

Scenarios. A scenario is a use case instance (no Scenarios introduced). As to the way of
how a UCA is actually specified, UML is very generic (p.2-142): A use case can be
described in plain text, using operations and methods together with attributes, in activity
graphs, by a state machine, or by other behavior description techniques, such as
preconditions and postconditions. Even though UML considers nested entities, it does not
bring an explicit scope concept.

11

Use cases and relations. UML is specific on the relations defined for UA. It defines the
include, extend, and generalize relations, but in a very generic way: As to include, it
requires nothing more than a use case contains the behavior defined in another use case.
We interpret this in such a way that include corresponds to our includes (and also that
subscenario preservation is required by the UML include).

The extend relation and generalize relation are defined for use cases UCA
i and UCA

j, but
in a very general way. While generalization allows for systematic modifications of
scenarios (one could imagine employing rewriting rules for this purpose), extends allows
only for insertion of several subscenarios into an existing scenario at its predefined
extension points. But elsewhere it is argued that these relations are not well defined, e.g. [3,
7, 6]. In addition, there is the concept of superordinate and subordinate use case (below).

Whole picture behavior. There is no concept similar to Com(UMA), so it is not clear
where “the generation of scenarios really starts”. Using the terminology from Sect. 2.1,
consider UCA

i and UCA
j from a UA and assume UCA

i include UCA
j and UCA

i � UMA; it is
not clear whether UCA

j � UMA, i.e. whether UCA
j contributes also to Com(UMA) or

produces just subscenarios employed in Com(UCA
i).

Consistency issues. The issues (a), (b) are addressed in only in a very general way by
asking (p. 2-145): Thus, if use cases are used for the specification part of the system
package, these use cases are equivalent to those in the use-case model of the system; that
is, they express the same behavior but possibly slightly differently structured. and
Furthermore, if several models are used for modeling the realization of a system (for
example, an analysis model and a design model), the set of use cases of all system
packages and the use cases of the use-case model must be equivalent.

In addition (a) is also, again in a very general way, addressed by the
subordinate/superordinate relations upon UCj

Ai and UCS where Ai are in the scope S by
asking all UCj

Ai subordinate to UCS to “cooperate” in a way described by a collaboration
diagram. No compliant with, consent, nor � are defined, therefore none of the key
consistency issues is addressed. Also, no use case expressions (and thus no operations
UEop) are considered.

3. Protocols Use Cases – Pro-cases
In Sect. 2, we saw what the benefits of the relations compliant with, consent, and the
operations for creating use case expressions could be. This section presents a concrete
instance of our Generic UC View – Protocol use cases (pro-cases) as a proof of the concept
having all these features.

3.1. Basic Idea
In [19], behavior of an entity (called agent in [19]), is modeled as the set of traces – finite
sequences of atomic events, capturing the communication on the entity’s connections (both
internal and external). A regular expression-like notation is used to approximate the actual
behavior of entities by regular languages. These concepts are applied to a hierarchical

12

component model [17, 21]. As the behavior is formally defined and there are powerful
operations upon the protocols and behavior (languages), decidable relations and operations
exist (�, compliant with, consent [1]) which allow to decide on compatibility of two
components (their specifications). We show, that (and how) the behavior protocol concept
fits into the generic UC view (a key idea is that a “use case” corresponds to a “protocol”).

Basic concepts. An entity exchanges atomic events with other entities on its external
connections. In case of an entity S composed of entities A1, A2, connections among A1, A2
are internal connections of S, events on these internal connections are internal events of S.
Other external connections of A1 and A2 are external connections of S. S is the scope of
both A1 and A2.

Scenarios. A scenario (called a trace in behavior protocols) is a finite sequence of atomic
events. The events are denoted by event tokens from a domain ACT in [19]. For our
purpose, we assume ACT* corresponds to the Scenarios domain. The subscenario relation
is thus defined as a substring (therefore decidable). An event is modeled as an event token
a either emitted (!a), absorbed (?a) or internally processed (�a). Com(A) � ACT* denotes
the behavior of entity A (a language upon ACT). (In [19], L(A) is used for the language;
to be consistent with the generic UC view, we use Com(A) here).

The following example suggests (in a simplified form), how the scenario generated by
a use case could be mapped to a trace of a behavior protocol.

< ?sic.submitItem, �ValidateItem, ?sic.submitPrice, �ValidateSeller,
�VerifySellerHistory, !tradecom.validate, �ListOffer, !sellernotify.putAuthNr >

The trace corresponds to the main success scenario specification of the use case used in
Sect. 1.1. Actions performed internally by SuD are represented as internal actions (�),
actions taken by an actor towards SuD are captured as events absorbed (by SuD, ? used),
actions taken by SuD towards an actor are captured as being emitted (!).

Use cases and relations. A pro-case with an entity A as SuD (notation PEA) is a behavior
protocol ProtA approximating the behavior of A by bounding the behavior of A (see below).

Syntactically, a protocol ProtA is an expression generating a set of traces over ACT*,
denoted Com(ProtA). The behavior protocol notation stems from the regular expressions
notation. In addition to the basic regular expression operators: + (alternative), ;
(sequencing), * (iteration), there is also parallel operator | (A|B means parallel execution
of A and B) and || (A||B stands for A + B + A|B). Parallel execution is an arbitrary
interleaving of the atomic events captured in a pair of traces generated by A and B. The
composed operators (taking a set X � ACT as a third operand) are:

composition A �X B (events from X emitted by A (!a) and absorbed by B (?a) or vice
versa are replaced with internal events �a in the resulting trace; except for this explicit
synchronization, the traces are arbitrarily interleaved);

13

adjustment A |X| B (similar to composition, but exact match (instead of ?/!
correspondence) of events from X is required) and

consent A �X B (similar to composition, but erroneous traces are included where the
interaction of A and B might result into an error).

For the full definition, please refer to [19, 1]. It is important to note that even with the
additional operators, the language generated by a protocol remains regular. Furthermore,
the notation uses abstractions of specific sequences of atomic action (e.g., procedure call),
which yield much higher “expressive power” with respect to readability of the protocols.

In particular, procedure calls are modeled as pairs of events; an operation a is modeled
as a request (a�) and a response (a�). In the notation, ?a (resp. !a) can be used as shortcut
for ?a�, !a� (resp. !a�, ?a�). Moreover, ?a{Prot} (resp. !a{Prot}) can be used for ?a�
Prot !a� (resp. !a� Prot ?a�). This way, it can be expressed that a sequence of events
occurs during a procedure call, while the higher level abstraction of the procedure call is
still preserved. This significantly improves the readability of the notation. The events a�
and a� are atomic, while the shortcut abstractions are non-atomic, embracing method call-
like pairs of events.

As an example, we show a behavior protocol fragment corresponding to actions 1 and
2 of the sample use case used in the introduction (the extensions and variations pertaining
to these lines are considered). The events corresponding to the main success scenario
specification are printed in bold.

?sic.submitItem { ����ValidateItem ;
(Null + �PriceAssessmentAvailable ; !sellernotify.putPriceAssessment + �invalidItem)
}

Here, the ?sic.submitItem{} shortcut is used to reflect that the action step 2 is performed
within (as a part of) the action step 1. The extensions and variations attached to the action
step 2 are captured as alternatives (+). In the main success scenario specification, no
additional processing is done after performing action 2 (Null). The condition of the
extension (resp. variation) is expressed as an internal action (�PriceAssessmentAvailable
and �invalidItem); this represents the internal choice to be performed by the entity
Marketplace Information System.

The language generated by this protocol fragment contains three traces:
1. <?sic.submitItem�, �ValidateItem, !sic.submitItem� >
2. <?sic.submitItem�, �ValidateItem, �PriceAssessmentAvailable,

!sellernotify.putPriceAssessment�, ?sellernotify.putPriceAssessment�,
!sic.submitItem� >

3. <?sic.submitItem�, �ValidateItem, �invalidItem, !sic.submitItem� >

For a protocol ProtA, Com(ProtA) denotes the set of traces generated by ProtA. As
Com(ProtA) is a regular language; but Com(A) is not in general, ProtA only approximates
behavior of A. In [19], the approximation is based on the bounded behavior relation, A is

14

bounded by ProtA, if Com(A) is compliant with Com(ProtA). As to the definition of
compliance, roughly, Com(A) is compliant with Com(ProtA) on set S � ACT (S divided
into inputs Sprov and outputs Sreq) if Com(A) can respond to any sequence of inputs dictated
by Com(ProtA) and for such inputs, creates only outputs anticipated by Com(ProtA).
Formally, via the adjustment operator: (i) Com(ProtA)/Sprov � Com(A)/Sprov and (ii)
Com(ProtA)/Sprov |Sprov| Com(A)/S � Com(ProtA)/S.

The includes relation is defined as an inclusion of behavior protocol specifications
(similar to macro substitution, naturally acyclic).

Whole picture behavior. Typically, only a single pro-case is used (as the representative
of UMA); such a pro-case is called the frame pro-case (inspired by frame protocol in SOFA
[19, 17]). The basic and parallel operators used in the behavior protocols notation can be
advantageously employed as the operations for use case expressions (the UEop set); thus
assembling the behavior via use case expressions is natural here.

Addressing consistency issues. Even though the variety of the behavior protocol operators
provides strong expressive power, the behavior (language) generated is a regular language.
This significant advantage allows for comparing behavior described by behavior protocols,
as, e.g., inclusion of regular languages is decidable. The composition operation �X
conforms to the generic view of composition (�). The relations compliant with and consent
are defined and are decidable, thus the consistency issues (a), (b) and (c) are addressed
here.

3.2. Deriving Pro-cases from Textual Use Cases
In this section, we show a way to transform a textual use case model UMA into a pro-case
model PMA (to emphasize the difference between the Generic UC view and an its instance
Pro-cases, we write PCA, PMA, PEA, and PA instead of UCA, UMA, UEA, and UA).

We illustrate the proposed transformation on the Marketplace textual use case model.
Based on its scope diagram (Fig. 2), we identified the corresponding future software
components and their interfaces (Fig. 3).
The basic idea is that the textual use case models of the entity Marketplace Information
System (M) and of the nested entities Clerk (CL), Computer System (CS) and Supervisor
(SU) will be transformed into pro-case models PMM, PMCL, PMCS and PMSU where,
advantageously, the assembled behavior is expressed via the operations from PEop as a
single protocol – a representative pro-case). Using the composition operation (�X), the
behavior of the nested entities (CL, CS, and SU) will be composed together and verified
for consistency with the assembled behavior of the enclosing entity (M). For this purpose,
a protocol verifier tool will be employed to evaluate the compliant with relation.

The stages of the whole transformation are:

(i) Intermediate form. Based on the textual description of each action (in an action step),
we select an event token (roughly: future method) to represent the corresponding action,

15

Marketplace Information System

Marketplace

Buyer

Seller

bic

sic

tobuyer

toseller

sellernotify

Computer system

cs:tobuyer

cs:csysbuy

cs:csyssell

cs:toseller

cs:sellernotify

...

cs

Clerk

cl:bic

cl:sic

cl:csysbuy

cl:csyssell

cl

...

...

...

...

Supervisor su

...

m

Figure 3

Main success scenario specification:
1. ?sic.submitItem
2. �ValidateItem
3. ?sic.submitPrice
4. �ValidateSeller
5. �VerifySellerHistory
6. !tradecom.validate
7. �ListOffer
8. !sellernotify.putAuthNr

Extensions:
2a �invalidItem

2a1 Null//Abort
5a �VerifyFailed

5a1 Null//Abort
6a �TradeComValidateFailed

 6a1 Null //Abort
Sub-variations:
2b �PriceAssessmentAvailable

2b1 !sellernotify.putPriceAssessment

Event token can contain composed names to reflect connection names among entities and
the action they represent. for example ?sic.submitPrice is an action token meaning
accepting event submitPrice on the connection sic.

Assuming the textual descriptions use a restricted (simple) form of English (e.g., the
“Subject-Verb-Direct object(s)-Prepositions-Indirect object(s)” form (SVDPI) [7]), an
action description has typically the form of a request issued by one entity and addressed to
another one. We suggest using verb-noun phrases for the action symbols; the connection
and the information whether the event is emitted or absorbed is typically obvious from the
action step. For the use case “Seller submits an offer” (Sect 1.1), we get the following
intermediate form.

(ii) Transforming the intermediate form into a pro-case. Applying the sequencing
operator ; to action steps is the natural way to transform the main success scenario of an
intermediate form into a protocol; however, it is important to identify whether an action

16

actually spans the execution of several consecutive action step(s) – in such a case the
a{Prot} shortcut is to be applied.

Extensions and variations are transformed in a similar way and inserted as alternatives
(using +) at their respective positions; their condition is represented as an internal event (�).
Applying these guidelines to our example yields the following pro-case (walk-through of
the main success scenario shown in bold):

?sic.submitItem { ����ValidateItem ; (NULL + �PriceAssessmentAvailable ;
!sellernotify.putPriceAssessment + �invalidItem) } ;

(?sic.submitPrice { ����ValidateSeller ; ����VerifySellerHistory ;
(!tradecom.validate ; (����ListOffer ; !sellernotify.putAuthNr +
�TradeComValidateFailed) + �VerifyFailed)
} + �invalidItem)

(iii) Assembling behavior. Based on the set PA, i.e. several protocols similar to the one
above, the pro-case model PMA is constructed, by forming use case expressions via
operations from PEop.

As an example, consider again UMM. In addition to what we have presented so far, the
whole UM is to be considered (available in appendix A); at this point, listing the names and
numbers of the use cases in UM will do: #1 Seller submits an offer, #2 Buyer searches for
an offer, #3 Buyer buys a selected item, #4 Seller cancels an offer, #5 Seller checks on the
status of an offer, #6 Seller updates an offer, #7 Buyer makes a purchase. In the appendix
A, it is easy to see that use case #7 includes use cases #2 and #3. Resulting from that, UMM

contains all these use cases except for #2 and #3, which generate only subscenarios of #7.
At this stage, we assume a PCM

k has been constructed in the set PM for each use case #k
in UM (we will refer to a pro-case by the number of the original use case as subscript). In
our example, the use cases #1, #4, #5, #6 describe communication of the entity M with the
same actor, therefore we do not assume any parallelism here and use the + (alternative)
operator to assemble these use cases into a sub-expression (PEM

1); this actually corresponds
to joining their behavior (languages) with � (union). As use case #7 has a different primary
actor (the one initiating the generated scenarios), we regard this as source of a possible
parallelism and we assemble this use case with PEM

1 via the || (parallel-or) operator (which
permits alternative execution, besides interleaved traces). To allow for arbitrary iteration,
we suffix each of the operands of || with *.

Thus, we represent the behavior of M with a single use case expression

PEM
R = (PCM

1 + PCM
4 + PCM

5 + PCM
6) * || (PCM

7) *

and then construct PMM = { PEM
R }; obviously, PEM

R is the frame pro-case of M.

(iv) Compliance test. Having transformed the textual use case models into pro-case models
which have a representative, we apply the composition operator �X to acquire the
composed behavior of the internals of M. With the protocol verifier tool [21], we check
that the composed behavior of entities CL, CS and SU is compliant with Com(PMM). This

17

means we check PECL
R �X1 PECS

R �X2 PESU
R compliant with PEM

R; here X1 resp. X2 is the
set of event tokens (roughly action names) on the connections between CL and CS, resp.
CS and SU.

4. Evaluation and Related Work
Practical experience: (1) As a proof of the concepts, we (re)designed a part of a project
featuring nested entities (Fig. 3); Marketplace Information System (M) yielded 7 use cases,
while the internal three entities 2, 8 and 2 use cases. About 20 min were required to
transform a textual use case (written using a unified template [3]) into a pro-case. To
assemble the behavior into frame pro-cases, the time requirement was about 10 min for
each of the four components. An important side-effect of this process had been realizing
that one of the pro-cases of M can be added to its assembled behavior via parallel
composition, which in principle means that we have added 8th (very complex, describing
all potential trace interleavings) use case to the original behavior description of M.
Compliance of the composition of the three internal frame pro-cases with the frame pro-
case of M was done by the SOFA Protocol Verifier [21] (written in Java), finding three
inconsistencies in the original specification.

(2) In a major group assignment, students taking their first software design course were
instructed to transform their use cases into pro-cases. It took them only about 15 minutes
to get the behavior protocol idea. Our observation had been that students had no difficulty
creating pro-cases and actually very much preferred them over System Sequence Diagrams
[14]. Furthermore, as the requirements were specified more precisely, the projects
progressed more smoothly compared to a previous run of the course where classical data-
driven design was used.

Related work: Most of the recent work in the use case field pertains to uses cases in UML.
In [22], it is emphasized that the use case concept in UML has not reached the point where
a tool could support the use of use cases without making major decisions concerning how
to interpret the standard. It basically argues that use cases should be formalizable in a
soundly-based, tool-supportable way, in order to relate use cases to the design of a
respective system. One of the ways of formalizing use cases in UML is to formally
interpret them as sequences of actions. Here, to avoid possible limitations imposed by
choosing a concrete process algebra, a labeled transition system (LTS) is recommended;
a high-level formalism is intentionally avoided. It is highlighted that UML state machine
should not be used to realize an LTS, due to its extra power with respect to LTS and the
correspondingly complex semantics. Compared to this, our approach in Generic UC View
is to capture the generic properties of use cases (and the behavior they describe) in such a
way that a variety of concrete instances (Concrete UC Views) can be defined later on,
including a LTS (which our pro-cases in principle are), each of them featuring these
generic properties.

In [8], a use case is written in an abstract state machine language; compliance of use
cases is not considered, as the focus is on generating tests for a particular use case. The
authors of [23] performed a study of readability of formal requirements, evaluating how

18

the presence of certain features in a notation influences readability of the notation. It is
emphasized that readability is crucial for acceptance of formal methods by the industrial
community; we believe that our pro-cases meet this requirement well. Cockburn [3]
touches the problem of hierarchy of systems (SuD), but does not consider compliance
among different levels. The recommended design methodologies in [14, 5] consider system
sequence diagrams as a way to identify the interface of the system under design. Since in
a sequence diagram, only a single scenario is captured, there would we be a significant
number of diagrams to balance a single frame pro-case. An interesting approach is taken
in [9] where a use case is represented as an activity diagram and for each action in it, a
graph transformation rule is defined upon collaborations of the objects involved in the
action. Conflicts/dependencies between actions in different use cases (UCA

i and UCA
k in

our terminology) can be identified.
As Sect. 2.3 was devoted to comparison of UML use cases and our Generic UC View,

we limit ourselves here to a comment to Sect. 2.11.4.2 of [16]: It requires an activity in a
use case to be initiated by a message of an actor – via pro-cases, it can be easily shown that
behavior composition Com(UMA) � Com(UMB) of cooperating A and B would always
yield an empty behavior if this UML assumption were really applied!

Discussion: While assembling the “whole picture behavior”, additional variants (especially
parallel combinations) of behavior can be identified as desirable. Naturally, capturing such
aspects of the requirements is important for the design in general, but very hard to express
in textual use cases (for instance, the idea of summary use cases as the means of behavior
assembly is very limiting). On the contrary it can easily done if use case expressions with
an appropriate set of operations UEop are available. When adopting such new variants, use
case expressions also simplify the necessary corrections back in lower level use cases.
Here, evaluation of compliance is inevitable.

Favoring readability, behavior protocols lack direct support for conditions, neither
consider the data transferred (e.g., as method parameters). The key argument of the
experimental study [23] is that readability is the most important property of a specification
to be accepted by industrial community. Though textual use cases have a high level of
readability, it is very hard to obtain the “whole picture” behavior in a textual use case and
to reason on compliance (very important as the risk of ambiguities and inconsistencies is
inherent to any textual specification). Wherever a textual specification is highly desirable
for communication at whatever level of the project management, our recommendation it
to create both textual specification and pro-cases which are easy to get and allow for
reasoning on the compliance issues (a) - (d) articulated in Sect. 2.1.1.

5. Summary and Future Work
Meeting the goal (1) articulated in Sect.1.2, we presented Generic UC View on use case
modeling. The message of this model is as follows: (i) For very basic modeling define a
domain Scenarios. If an includes relation on use cases is desirable then define also a
subscenario relation upon Scenarios as it helps define semantics on includes clearly. (ii) It
has to be stated without any ambiguity how the scenarios of a use case UCA contribute to

19

scenarios in Com(A). Therefore the Generic UC View distinguishes the set UA of all use
cases of A and a use case model UMA of A as the set of use cases where “the scenario
generations start”. (iv) The whole picture behavior of A (Com(A)) can be infinite, it is
desirable to “see” it as a single use case – representative. This can be advantageously done
when use case expressions are defined. (v) To reason on specification consistency of
cooperating entities, in both nested an “sibling” position, Generic UC View articulates
three relations/operations to be defined.

Addressing the goal (2) we compared the UML use case package. Here the bottom line is
that UML does not clearly address (ii) above which in principle means that it is not clear
what the whole picture behavior of an entity A really should be if there are more use cases
written for A. Being very generic, UML does not consider reasoning on use case
specifications.

As a proof of the concepts, protocol use cases (pro-cases), based on behavior protocols
[19], have been introduced (addressing goal(3)), which support all the features (i) - (v)
above. Moreover, as they are based on in principal regular languages, all the relations and
operations introduces in Generic UC View are decidable. To summarize the benefits from
creating a pro-case model: (I) With use case expressions, behavior can be assembled to
form a single pro-case as the “whole picture” of an entity’s behavior, in a readable and
comprehendible notation; (II) Parallelism can be captured, creating a more precise
specification; (III) Using the decidable compliant with relation, the consistency issues (a),
(b), (c) can be addressed; (IV) Pro-cases can be helpful in early stage of design – showing
the interactions of an entity, they can be useful when assigning responsibilities to classes,
identifying operations, behavior (structure) of methods; thus, pro-cases can serve as a
powerful replacement of system sequence diagrams [14].

In use cases, failure handling is a important issue. In the current state, pro-cases allow
for expressing extensions as alternatives, with the condition captured as an internal event.
In the case of nested failures, the readability of the pro-case can be negatively influenced.
Our future work aims at enhancing behavior protocols with exceptions, to allow for a more
elegant way to handle error conditions. Our intention is to preserve the current readability
and lightweight nature of the notation; the key point is to avoid turning the notation into
process equations. Moreover, erroneous traces are being investigated [1] to capture
inconsistencies in composition.

Furthermore, we consider investigating the opportunity to employ a natural language
parser to provide a level of automation while creating a pro-case model based on a textual
use case model.

References
[1] Adamek, J., Plasil, F.: Behavior Protocols Capturing Errors and Updates (submitted, extended version available

as TR 02/10, Dept. of Computer Science, University of New Hampshire, Durham, 2002)
[2] Amyot, D., Mussbacher, G.: On the Extension of UML with Use Case Maps Concepts. UML 2000, York, UK,

October 2-6, 2000, in Proceedings LNCS 1939, Springer 2000
[3] Cockburn, A.: Writing Effective Use Cases, Addison-Wesley Pub Co, ISBN: 0201702258, 1st edition, January 2000

20

[4] Cockburn, A.: Harnessing Convection Currents of Information, Invited Talk, OOPSLA 2001, October 14-18 2001,
Tampa Convention Center, Tampa Bay, FL

[5] D’Souza, D. Components with Catalysis, www.catalysis.org, 2001
[6] Genova, G., Llorens, J., Quintana, V.: Digging into Use Case Relationships, UML 2002, September 30 - October

4, 2002, Dresden, Germany
[7] Graham, I.: Object-Oriented Methods: Principles and Practice, Addison-Wesley Pub Co, ISBN: 020161913X, 3rd

edition December 2000
[8] Grieskamp, W., Lepper, M., Schulte, W., Tillmann, N.: Testable Use Cases in the Abstract State Machine

Language, APAQS'01, December 10 - 11, 2001, Hong Kong
[9] Hausmann, J. H., Hecke, R., Taentzer, G.: Detection of Conflicting Functional Requirements in a Use Case-Driven

Approach, ICSE 2002, Orlando, Florida, USA, May 19-25, 2002
[10] Hurlbut R. R.: A Survey of Approaches For Describing and Formalizing Use Cases, Expertech, Ltd., Document:

XPT-TR-97-03
[11] Jacobson, I., Christerson, M.: A Growing Consensus on Use Cases, JOOP 8(1): 15-19 (1995)
[12] Jacobson, I.: Formalizing Use-Case Modeling., JOOP 8(3): 10-14 (1995)
[13] Jacobson, I., Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-Wesley Pub Co;

ISBN: 0201544350; 1st edition (June 30, 1992)
[14] Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the Unified

Process, Prentice Hall PTR, ISBN: 0130925691, 2nd edition, July 2001
[15] Nierstrasz, O., Arévalo, G., Ducasse, S., Wuyts, R., Black, A., Müller, P., Zeidler, C., Genssler, T., Born, R. van

den: A Component Model for Field Devices. IFIP/ACM Conference on Component Deployment, Berlin, Germany,
June 2002, pp. 200-209.

[16] OMG: Unified Modeling Language (UML), version 1.4, formal/2001-09-67, http://www.omg.org/uml/
[17] Plasil, F., Balek, D., Janecek, R.: SOFA/DCUP Architecture for Component Trading and Dynamic Updating,

Proceedings of the ICCDS '98, Annapolis, IEEE Computer Soc. Press, 1998, pp. 43–52.
[18] Plasil, F., Visnovsky, S., Besta, M.: Bounding Behavior via Protocols, Proceedings of TOOLS USA ‘99, Santa

Barbara, CA, Aug. 1999.
[19] Plasil F., Visnovsky, S.: Behavior Protocols for Software Components. Transactions on Software Engineering,

IEEE, vol 28, no 11, Nov 2002
[20] Schneider, G., Winters, J. P.: Applying Use Cases: A Practical Guide, Addison-Wesley Pub Co, ISBN:

0201708531, 2nd edition, March 2001
[21] SOFA Behavior Protocol Verifier, the SOFA project, http://nenya.ms.mff.cuni.cz/projects/sofa/tools/
[22] Stevens, P.: On Use Cases and Their Relationships in the Unified Modelling Language in Proceedings, FASE 2001

(Part of ETAPS 2001), Genova, Italy April 2-6, 2001, Springer LNCS 2029, ISBN 3-540-41863-6
[23] Zimmerman, M. K., Lundqvist, K., Leveson, N.: Investigating the Readability of State-Based Formal Requirements

Specification Languages, ICSE 2002, Orlando, Florida, USA, May 19-25, 2002

21

Appendix A: Marketplace Use Case Model and Pro-case Model

This appendix provides a complete set of use cases for the sample Marketplace application
used in the paper. For the nested entity Marketplace Information System (M) and for each
of the nested entities it consists of (Computer System CS, Clerk CL and Supervisor SU),
a complete use case model and a pro-case model is provided (see Fig. 3).

For each of the entities, first, all use cases of the entity are listed; below each use case,
the corresponding pro-case is included. Then, the use case model is expressed, by explicitly
naming the use cases to be included in the assembled behavior. Finally, the pro-case model
is provided, as a single use case expression, being a frame pro-case. To illustrate the
semantics of the expression, an expanded form of the frame pro-case is provided (obtained
by substituting all primitive use case expressions with pro-cases in the frame pro-case).

22

A.1. Marketplace Information System

Use Case: #1 Seller submits an offer
Scope: Marketplace
SuD: Marketplace Information System
Level: Primary Task
Primary Actor: Seller
Supporting Actor: Trade Comission
Main success scenario specification:
1. Seller submits information describing an item
2. System validates the description.
3. Seller adjusts/enters price and enters contact and billing information.
4. System validates the seller’s contact information.
5. System verifies the seller’s history to permit the seller to operate
6. System validates the whole offer with the Trade Commission
7. System lists the offer in published offers.
8. System responds with an uniquely identified authorization number.
Extensions:
2a Item not valid

2a1 Use case aborted
5a Seller’s history inappropriate

5a1 Use case aborted
6a Trade commission rejects the offer

6a1 Use case aborted
Sub-variations:
2b Price assessment available

2b1 System provides the seller with a price assessment.

Pro-case #1

?sic.submitItem { ����ValidateItem ; (NULL + �PriceAssessmentAvailable ;
!sellernotify.putPriceAssessment + �invalidItem) } ;

(?sic.submitPrice { ����ValidateSeller ; ����VerifySellerHistory ;
(!tradecom.validate ; (����ListOffer ; !sellernotify.putAuthNr +
�TradeComValidateFailed) + �VerifyFailed)
} + �invalidItem)

23

Use Case: #2 Buyer searches for an offer
Scope: Marketplace
SuD: Marketplace Information System
Level: Primary Task
Primary Actor: Buyer
Main success scenario specification:
1. Buyer enters basic search criteria.
2. System responds with the list of matches.
3. Buyer requests the complete listing of a selected offer.
4. System responds with the requested information.
Extensions:
2a No matches found

2a1 Use case aborted
Sub-variations:
2b The amount of matches is too high

2b1 Buyer narrows the search results with additional criteria
2b2 Resume with step 2

Pro-case #2

?tobuyer.search ; ?tobuyer.narrowSearch* ; (?tobuyer.requestDetails +
�NoMatchesFound)

24

Use Case: #3 Buyer buys a selected item
Scope: Marketplace
SuD: Marketplace Information System
Level: Primary Task
Primary Actor: Buyer
Supporting Actor: Seller, Credit Verification Agency
Main success scenario specification:
1. Buyer chooses to accept a selected offer.
2. System validates the offer.
3. User enters billing information, select a payment method and provides the payment

details.
4. System validates the buyer’s information with the Credit Verification Agency.
5. System performs the sale.
6. System informs the seller that the offer has been accepted and provides the shipping

information.
7. System transfers the payment to the sellers account.
8. System responds to the buyer with an uniquely identified authorization number.
Extensions:
2a Offer is not valid

2a1 Use case is aborted
Sub-variations:

Pro-case #3

?bic.initBuyOffer { ����ValidateOffer + �OfferInvalid } ;
(

?bic.doBuyOffer { !agency.validate ; ����performSale; !sellernotify.shipItem ;
����TransferPayment }

+ �OfferInvalid)

25

Use Case: #4 Seller cancels an offer
Scope: Marketplace
SuD: Marketplace Information System
Level: Primary Task
Primary Actor: Seller
Supporting Actor:
Main success scenario specification:
1. Seller locates a previously submitted offer.
2. Seller requests the system to cancel the offer.
3. System responds with a request for the seller to prove identity.
4. Seller responds with the authorization number obtained when the offer was

submitted.
5. System validates the request and seller’s identity..
6. System removes the offer.
Extensions:
4a Seller cannot provide the authorization number

4a1 Use case is aborted
5a Authorization number is not valid

5a1 Retry with step 3
Sub-variations:

Pro-case #4

?toseller.locateOffer ; ?toseller.requestCancelOffer
{ !sellernotify.getAck ; ����ValidateAck ;

(�InvalidAck ; !sellernotify.provideAck ; �ValidateAck) * ;
(����RemoveOffer + �InvalidAck)

}

26

Use Case: #5 Seller checks on the status of an offer
Scope: Marketplace
SuD: Marketplace Information System
Level: Primary Task
Primary Actor: Seller
Supporting Actor:
Main success scenario specification:
1. Seller locates a previously submitted offer.
2. Seller requests the system to provide status of the offer.
3. System responds with a request for the seller to prove identity.
4. Seller responds with the authorization number returned when the offer was

submitted.
5. System validates the request and seller’s identity..
6. System returns the status of the offer.
Extensions:
4a Seller cannot provide the authorization number

4a1 Use case is aborted
5a Authorization number is not valid

5a1 Retry with step 3
Sub-variations:

Pro-case #5

?toseller.locateOffer ; ?toseller.requestStatus
{ !sellernotify.getAck ; ����ValidateAck ;

(�InvalidAck ; !sellernotify.provideAck ; �ValidateAck) * ;
(����GetOfferStatus + �InvalidAck)

}

27

Use Case: #6 Seller updates an offer
Scope: Marketplace
SuD: Marketplace Information System
Level: Primary Task
Primary Actor: Seller
Supporting Actor:
Main success scenario specification:
1. Seller locates a previously submitted offer.
2. Seller requests the system to update the offer, providing new details (e.g., price).
3. System responds with a request for the seller to prove identity.
4. Seller responds with the authorization number returned when the offer was

submitted.
5. System validates the request and seller’s identity..
6. System updates the offer.
Extensions:
4a Seller cannot provide the authorization number

4a1 Use case is aborted
5a Authorization number is not valid

5a1 Retry with step 3
Sub-variations:

Pro-case #6

?toseller.locateOffer ; ?toseller.updateOffer
{ !sellernotify.getAck ; ����ValidateAck ;

(�InvalidAck ; !sellernotify.provideAck ; �ValidateAck) * ;
(����UpdateOffer + �InvalidAck)

}

28

Use Case: #7 Buyer makes a purchase
Scope: Marketplace
SuD: Marketplace Information System
Level: Primary Task
Primary Actor: Buyer
Supporting Actor: Seller, Credit Verification Agency
Main success scenario specification:
1. Buyer searches for an offer (#2)
2. Buyer buys a selected item (#3)
Extensions:
1a The Buyer did not find any matching offer

1a1 Use case aborted
Sub-variations:
1b The Buyer decides not to accept the offer.

1b1 Use case ends here.

Pro-case #7

Transforming this use case (which includes use cases #2 and #3), we initially get a use
case expression referring to basic pro-cases #2 and #3.

? buyer.searchForOffer[#2] ; (buyer.buyOffer[#3] + �NoMatchesFound + NULL)

We expand the use case expression by substituting the pro-cases for the special
symbols; this way, we get:

?tobuyer.search ; ?tobuyer.narrowSearch* ; (?tobuyer.requestDetails +
�NoMatchesFound)
(?bic.initBuyOffer { ����ValidateOffer + �OfferInvalid } ;
(

?bic.doBuyOffer { !agency.validate ; ����performSale; !sellernotify.shipItem ;
����TransferPayment }

+ �OfferInvalid) + NULL + �NoMatchesFound)

29

Use Case Model

For the entity Marketplace Information System (M), the use case model UMM consists of
the use cases #1, #4, #5, #6 and #7.

Frame Pro-case

We represent the behavior of M with a single use case expression

PEM
R = (PCM

1 + PCM
4 + PCM

5 + PCM
6) * || (PCM

7) *

By substituting the primitive use case expressions with the pro-cases, we get the following
frame pro-case:

30

(
?sic.submitItem { ����ValidateItem ; (NULL + �PriceAssessmentAvailable ;

!sellernotify.putPriceAssessment + �invalidItem) } ;
(?sic.submitPrice { ����ValidateSeller ; ����VerifySellerHistory ;

(!tradecom.validate ; (����ListOffer ; !sellernotify.putAuthNr +
�TradeComValidateFailed) + �VerifyFailed)
} + �invalidItem)

+
?toseller.locateOffer ; ?toseller.requestCancelOffer
{ !sellernotify.getAck ; ����ValidateAck ;

(�InvalidAck ; !sellernotify.provideAck ; �ValidateAck) * ;
(����RemoveOffer + �InvalidAck)

}
+
?toseller.locateOffer ; ?toseller.requestStatus
{ !sellernotify.getAck ; ����ValidateAck ;

(�InvalidAck ; !sellernotify.provideAck ; �ValidateAck) * ;
(����GetOfferStatus + �InvalidAck)

}
+
?toseller.locateOffer ; ?toseller.updateOffer
{ !sellernotify.getAck ; ����ValidateAck ;

(�InvalidAck ; !sellernotify.provideAck ; �ValidateAck) * ;
(����UpdateOffer + �InvalidAck)

}
)*
||
(
?tobuyer.search ; ?tobuyer.narrowSearch* ; (?tobuyer.requestDetails +
�NoMatchesFound)
(?bic.initBuyOffer { ����ValidateOffer + �OfferInvalid } ;
(

?bic.doBuyOffer { !agency.validate ; ����performSale; !sellernotify.shipItem ;
����TransferPayment }

+ �OfferInvalid) + NULL + �NoMatchesFound)
)*

31

A.2. Computer System

Use Case: CS#1 Clerk submits an offer on behalf of a Seller
Scope: Marketplace Information System
SuD: Computer System
Level: Primary Task
Primary Actor: Clerk (ultimate: Seller)
Supporting Actor: Trade Commission, Supervisor
Main success scenario specification:
1. Clerk submits information describing an item
2. System validates the description.
3. Clerk adjusts/enters price and enters seller’s contact and billing information.
4. System validates the seller’s contact information.
5. System asks the Supervisor to validate the seller.
6. Supervisor permits the seller to operate on the marketplace.
7. System validates the whole offer with the Trade Commission
8. System lists the offer in published offers.
9. System responds with an uniquely identified acknowledgment.
Extensions:
2a Validation performed by the system fails

2a1 Use case aborted
Sub-variations:
2b Price assessment available

2b1 System provides the seller with a price assessment.
7a Trade commission rejects the offer

7a1 Use case aborted

Pro-case CS#1
?csyssell.submitItem { ����ValidateItem ; (NULL + �PriceAssessmentAvailable ;

!sellernotify.putPriceAssessment)
} ;

(
?csyssell.submitPrice { ����ValidateSeller; !syssu.verifySeller ; ?susys.permitSeller ;

!tradecom.validate ; (����ListOffer ; !sellernotify.putAuthNr +
�VerifyFailed)
}

+ �InvalidItem)

32

Use Case: CS#2 Buyer searches for an offer
Scope: Marketplace Information System
SuD: Computer System
Level: Primary Task
Primary Actor: Buyer
Main success scenario specification:
1. Buyer enters basic search criterie
2. System responds with the list of matches.
3. Buyer requests the complete listing of a selected offer.
4. System responds with the requested information.
Extensions:
2a No matches found

2a1 Use case aborted
Sub-variations:
2b The amount of matches is too high

2b1 Buyer narrows the search results with additional criteria
2b2 Resume with step 2

Pro-case CS#2

?tobuyer.search ; ?tobuyer.narrowSearch* ; (?tobuyer.requestDetails +
�NoMatchesFound)

33

Use Case: CS#3 Clerk buys a selected item on behalf of a Buyer
Scope: Marketplace Information System
SuD: Computer System
Level: Primary Task
Primary Actor: Clerk (ultimate: Buyer)
Supporting Actor: Seller, Credit Verification Agency
Main success scenario specification:
1. Clerk is contacted by a buyer who has decided to accept a selected offer.
2. System validates the offer.
3. System requests billing and shipping information, payment method and payment detail

information.
4. Clerk enters billing information, select a payment method and provides the necessary

details.
5. System validates this information with a Credit Verification Agency.
6. System performs the trade.
7. System informs the seller that the offer has been accepted and provides the shipping

information.
8. System transfers the payment to the sellers account.
9. System responds to the buyer with an uniquely identified authorization number.
Extensions:
2a Offer is not valid

2a1 Use case is aborted
Sub-variations:

Pro-case CS#3

?csysbuy.initBuyOffer { ����ValidateOffer + �InvalidOffer } ;
(

?csysbuy.doBuyOffer { !agency.validate ; ����PerformSale; !sellernotify.shipItem
; ����TransferPayment }

+ �InvalidOffer)

34

Use Case: CS#4 Seller cancels an offer
Scope: Marketplace Information System
SuD: Computer System
Level: Primary Task
Primary Actor: Seller
Supporting Actor:
Main success scenario specification:
1. Seller locates a previously submitted offer.
2. Seller requests the system to cancel the offer.
3. System responds with a request for the seller to prove identity.
4. Seller responds with the authorization number returned when the offer was submitted.
5. System validates the request and seller’s identity..
6. System removes the offer.
Extensions:
4a Seller cannot provide the authorization number

4a1 Use case is aborted
5a Authorization number is not valid

5a1 Retry with step 3
Sub-variations:

Pro-case CS#4

?toseller.locateOffer ; ?toseller.requestCancelOffer
{ !sellernotify.getAck ; ����ValidateAck ;

(�InvalidAck ; !sellernotify.provideAck ; �ValidateAck) * ;
(����RemoveOffer + �InvalidAck)

}

35

Use Case: CS#5 Seller checks on the status of an offer
Scope: Marketplace Information System
SuD: Computer System
Level: Primary Task
Primary Actor: Seller
Supporting Actor:
Main success scenario specification:
1. Seller locates a previously submitted offer.
2. Seller requests the system to provide status of the offer.
3. System responds with a request for the seller to prove identity.
4. Seller responds with the authorization number returned when the offer was submitted.
5. System validates the request and seller’s identity..
6. System returns the status of the offer.
Extensions:
4a Seller cannot provide the authorization number

4a1 Use case is aborted
5a Authorization number is not valid

5a1 Retry with step 3
Sub-variations:

Pro-case CS#5

?toseller.locateOffer ; ?toseller.requestStatus
{ !sellernotify.getAck ; ����ValidateAck ;

(�InvalidAck ; !sellernotify.provideAck ; �ValidateAck) * ;
(����GetOfferStatus + �InvalidAck)

}

36

Use Case: CS#6 Seller updates an offer
Scope: Marketplace Information System
SuD: Computer System
Level: Primary Task
Primary Actor: Seller
Supporting Actor:
Main success scenario specification:
1. Seller locates a previously submitted offer.
2. Seller requests the system to update the offer, providing new details (e.g., price).
3. System responds with a request for the seller to prove identity.
4. Seller responds with the authorization number returned when the offer was submitted.
5. System validates the request and seller’s identity..
6. System updates the offer.
Extensions:
4a Seller cannot provide the authorization number

4a1 Use case is aborted
5a Authorization number is not valid

5a1 Retry with step 3
Sub-variations:

Pro-case CS#6

?toseller.locateOffer ; ?toseller.updateOffer
{ !sellernotify.getAck ; ����ValidateAck ;

(�InvalidAck ; !sellernotify.provideAck ; �ValidateAck) * ;
(����UpdateOffer + �InvalidAck)

}

37

Use Case: CS#7 Buyer makes a purchase
Scope: Marketplace Information System
SuD: Computer System
Level: Primary Task
Primary Actor: Buyer
Supporting Actor: Clerk, Seller (, Credit Verification Agency)
Main success scenario specification:
1. Buyer searches for an offer (#2/F)
2. Buyer contacts a clerk to buys the selected item (#3/P)
Extensions:
1a The Buyer did not find any matching offer

1a1 Use case aborted
Sub-variations:
1b The Buyer decides not to accept the offer.

1b1 Use case ends here.

Pro-case CS#7

Transforming this use case (which includes use cases CS#2 and CS#3), we initially get a
use case expression referring to basic pro-cases CS#2 and CS#3.

buyer.searchForOffer[CS#2] ; (clerk.buyOffer[CS#3] + �NoMatchesFound + NULL)

We expand the use case expression by substituting the pro-cases for the special symbols;
this way, we get:

?tobuyer.search ; ?tobuyer.narrowSearch* ; (?tobuyer.requestDetails +
�NoMatchesFound)
(?csysbuy.initBuyOffer { ����ValidateOffer + �InvalidOffer } ;
(

?csysbuy.doBuyOffer { !agency.validate ; ����PerformSale; !sellernotify.shipItem
; ����TransferPayment }

+ �InvalidOffer) + NULL + �NoMatchesFound)

38

Use Case: CS#8 Supervisor makes an internal audit
Scope: Marketplace Information System
SuD: Computer System
Level: Primary Task
Primary Actor: Supervisor
Supporting Actor:
Main success scenario specification:
1. Supervisor searches the database of offers for sensitive keywords in item description
2. Supervisor displays the description of the item.
3. Supervisor removes the item from the database of currently visible offers.
Extensions:
1a Supervisor did not find any match

1a1 Use case terminates
2a Supervisor did not find any offending items.

2a1 Use case terminates
2b Supervisor requests details of another item

2b1 Repeat step 2
Sub-variations:

Pro-case CS#8

?susys.search ; (?susys.requestDetails; ?susys.requestDetails* ; (?susys.removeOffer
+ �ItemValid) + �NoItemFound)

39

Use Case Model

For the entity Computer System (CS), the use case model UMCS consists of the use cases
CS#1, CS#4, CS#5, CS#6, CS#7 and CS#8.

Frame Pro-case

We represent the behavior of M with a single use case expression. We employ the parallel
composition operator to reflect parallel execution of both the use cases #7 and #8.

PECS
R = (PCCS

1 + PCCS
4 + PCCS

5 + PCCS
6)* || (PCCS

7)* || (PCCS
8)*

By substituting the primitive use case expressions with the pro-cases, we get the following
frame pro-case:

40

(
?csyssell.submitItem { ����ValidateItem ; (NULL + �PriceAssessmentAvailable ;

!sellernotify.putPriceAssessment)
} ;

(
?csyssell.submitPrice { ����ValidateSeller; !syssu.verifySeller ; ?susys.permitSeller ;

!tradecom.validate ; (����ListOffer ; !sellernotify.putAuthNr +
�VerifyFailed)
} + �InvalidItem)

+
?toseller.locateOffer ; ?toseller.requestCancelOffer
{ !sellernotify.getAck ; ����ValidateAck ;

(�InvalidAck ; !sellernotify.provideAck ; �ValidateAck) * ;
(����RemoveOffer + �InvalidAck)

}
+
?toseller.locateOffer ; ?toseller.requestStatus
{ !sellernotify.getAck ; ����ValidateAck ;

(�InvalidAck ; !sellernotify.provideAck ; �ValidateAck) * ;
(����GetOfferStatus + �InvalidAck)

}
+
?toseller.locateOffer ; ?toseller.updateOffer
{ !sellernotify.getAck ; ����ValidateAck ;

(�InvalidAck ; !sellernotify.provideAck ; �ValidateAck) * ;
(����UpdateOffer + �InvalidAck)

}
)*
||
(
?susys.search ; (?susys.requestDetails; ?susys.requestDetails* ; (?susys.removeOffer
+ NULL) + NULL)
)*
||
(
?tobuyer.search ; ?tobuyer.narrowSearch* ; (?tobuyer.requestDetails +
�NoMatchesFound)
(?csysbuy.initBuyOffer { ����ValidateOffer + �InvalidOffer } ;
(

?csysbuy.doBuyOffer { !agency.validate ; ����PerformSale; !sellernotify.shipItem
; ����TransferPayment }

+ �InvalidOffer) + NULL + �NoMatchesFound)
)*

41

A.3. Clerk

Use Case: CL#1 Seller to Clerk
Scope: Marketplace Information System
SuD: Clerk
Level: Primary Task
Primary Actor: Seller
Supporting Actor: Computer System
Main success scenario specification:
1. Seller submits item description to the clerk.
2. Clerk submits the description to the system.
3. Clerk reports the system response to the seller.
4. Seller submits the price, billing and contact information to the clerk.
5. Clerk enters the price, billing and contact information to the system.
6. Clerk reports the system response to the seller.
Extensions:
2a Validation performed by the system fails

2a1 Use case aborted
Sub-variations:

Pro-case CL#1

?sic.submitItem { !csyssell.submitItem } ; (?sic.submitPrice { !csyssell.submitPrice
} + �InvalidItem)

42

Use Case: CL#2 Buyer to Clerk
Scope: Marketplace Information System
SuD: Clerk
Level: Primary Task
Primary Actor: Buyer
Supporting Actor: Computer System
Main success scenario specification:
1. Buyer submits to the clerk a reference to a selected offer.
2. Clerk submits the reference to the system.
3. Clerk reports the system response to the seller and requests billing and shipping

information, payment method and payment details.
4. Buyer submits to the clerk the requested billing and shipping information, payment

method and payment details.
5. Clerk enters the billing and shipping information, payment method and payment

details.
6. Clerk reports the system response (with the unique acknowledgment) to the buyer.
Extensions:
3a System failed to validate the offer

3a1 Use case aborted
Sub-variations:

Pro-case CL#2

?bic.initBuyOffer { !csysbuy.initBuyOffer } ; (?bic.doBuyOffer {
!csysbuy.doBuyOffer } + �InvalidOffer)

43

Use Case Model

For the entity Clerk (CL), the use case model UMCL consists of the use cases CL#1, CL#2.

Frame Pro-case

We represent the behavior of M with a single use case expression employing parallel
composition:

PECL
R = (PCCL

1)* || (PCCL
2)*

By substituting the primitive use case expressions with the pro-cases, we get the following
frame pro-case:

(
?sic.submitItem { !csyssell.submitItem } ; (?sic.submitPrice { !csyssell.submitPrice
} + �InvalidItem)
)*
||
(
?bic.initBuyOffer { !csysbuy.initBuyOffer } ; (?bic.doBuyOffer {
!csysbuy.doBuyOffer } + �InvalidOffer)
)*

44

A.4. Supervisor

Use Case: SU#1 Supervisor validates a seller
Scope: Marketplace Information System
SuD: Supervisor
Level: Primary Task
Primary Actor: Computer System
Supporting Actor:
Main success scenario specification:
1. Computer system asks the supervisor to decide on permitting a seller to operate on the

marketplace.
2. System validates the seller and signals the system to permit the seller to operate.
Extensions:
Sub-variations:

Pro-case SU#1

?system.verifySeller{ ����ValidateSeller; !system.permitSeller};

45

Use Case: SU#2 Supervisor performs internal audit
Scope: Marketplace Information System
SuD: Supervisor
Level: Primary Task
Primary Actor: Computer System
Supporting Actor:
Main success scenario specification:
1. Supervisor requests the computer system to search the database of offers for sensitive

keywords in item description
2. Supervisor requests from the computer system detailed descriptions of an item found.
3. Supervisor requests the computer system to remove the item from the database of

currently visible offers.
Extensions:
1a No matching item found

1a1 Use case terminates
2a The item does is not an offending item.

2a1 Use case terminates
2b Supervisor requests details of another item

2b1 Repeat step 2
Sub-variations:

Pro-case SU#2

!susys.search ; (!susys.requestDetails; !susys.requestDetails* ;
(!susys.removeOffer + �ItemValid) + �NoItemFound)

46

Use Case Model

For the entity Supervisor (SU), the use case model UMSU consists of the use cases SU#1,
SU#2.

Frame Pro-case

We represent the behavior of M with a single use case expression employing parallel
composition:

PESU
R = (PCSU

1)* || (PCSU
2)*

By substituting the primitive use case expressions with the pro-cases, we get the following
frame pro-case:

(
?system.verifySeller{ ����ValidateSeller; !system.permitSeller};
)*
||
(
!susys.search ; (!susys.requestDetails; !susys.requestDetails* ;

(!susys.removeOffer + �ItemValid) + �NoItemFound)
)*

