UseE CASES: ASSEMBLING “WHOLE PICTURE” BEHAVIOR
by
Frantisek Plasil, Vladimir Mencl

TR 02/11

Technical Report Series
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF NEW HAMPSHIRE
Durham, New Hampshire 03824

Contents

N o 3
LINtrodUCtioN e 4
11 UseCases—Brief OVerviewt 4
1.2. Goalsand Structureof thePaper i, 5
2. Our View on Traditional Use Case Modeling Techniques 6
2.1 . GENeriCUC VIBW . ..o e 6
2.2. Case Study: Textual Scenario Specifications 9
2.3. Comparing GenericUCViewandUML 10
3. ProtocolsUse CaseS—Pro-CasesS.o v i i e 11
3. BaSICIAEAo 11
3.2. Deriving Pro-casesfrom Textual UseCases, 14
4. Evauationand Related Work 17
5. Summary and Future Work 18
Appendix A: Marketplace Use Case Model and Pro-caseModel 21
A.l. Marketplace Information System i 22
A2, Computer SYyStemM .. 31
A ClErK o 41
AL SUPBIVISO . ottt et e e 44

Abstract

Although widely used, traditional use case modeling does not provide explicit means
which could be easily used for capturing and testing behavior compliance of the entities
involved in a particular use case model. Soecifically, a use case model (a set of use cases)
related to a system under design provides neither an explicit abstraction to capture the
“wholepicture’ of the behavior of the system, nor to cover the interactions of subsystems
and internal actors with the parent system. With the aim to allow for reasoning on the
behavior, the paper introduces a simple formal model Generic UC View which identifies
important abstractions and the relations upon them which target the goal. Among them,
the concept of use case expression is the base for the desired reasoning on whether the
behavior of an entity (such as an agent and a subsystem) complies with the composed
behavior of its sub-entities, and the behavior on the communication links of two
neighboring entitiesis compliant.

As a proof of the concept, an instance of use case expressions, pro-casesisintroduced.
Based on behavior protocols[19], pro-casescan be checked for complianceviaan already
existing verifier. Aspro-cases syntaxissimple, resembling regular-expressions, thereare
simple guidelines for transforming a use case written in classical textual form (based on
a template) into a pro-case.

1. Introduction

1.1. Use Cases— Brief Overview

Inprincipleausecase[11, 3, 16] isadescription of aset of scenarios specifying how a set
S of entities ought to communicate to achieve a certain goal; acommunication is viewed
as a sequence of events, such as a request or a response exchanged among the entities.
Frequently, the use case iswritten from the perspective of one those entities (SuD, system
under discussion) — it specifies how SuD executes certain actions while communicating
with other entities, actors, from S to achieve a specific goa. Basically, a scenario is
considered a sequence of actions to be performed by SuD and the actors which reflects a
particular case of their desired communication.

Practitioners, e.g. [3, 14, 20], typically prefer use casesto be specified in plain English,
to make them easily comprehendible to “wide audience”. Such a use case is inherently
informal, even though a predefined templateisusually asked to follow. For example, such
template can be aformto befilled in to specify in a semi-programing way the desired set
of scenarios:

Use Case: #1 Seller submitsan offer 6. System validatesthewhole offer with

Scope: Marketplace the Trade Commission
SuD: Marketplace Information System 7. System lists the offer in published
Level: Primary Task offers.
Primary Actor: Seller 8. System responds with an uniquely
Supporting Actor: Trade Commission identified authorization number.
Main success scenario specification: Extensions:
1. Seller submitsinformationdescribing 2altem not valid

anitem 2al Use case aborted
2. System validates the description. 5a Seller’ s history inappropriate
3. Sdller adjusts/enters price and enters 5al Use case aborted

contact and billing information. 6a Trade commission rejects the offer
4. System validates the seller’s contact 6al Use case aborted

information. Sub-variations:
5. System verifiesthe seller’s history to 2b Price assessment available

permit the seller to operate 2bl System provides the seller with

a price assessment.

Thereisawhole variety of ways different authors recommend to write use cases, ranging
e.g. from employing preconditions/postconditions in Catalysis [5], Use Case Maps [2],
transition systems[22], to abstract state machines with the goal to generate test scenarios
[8].

UML [16] includes ause case concept aswell. It is, however, primarily focused on use
case as an abstraction to capture the existence of a set of interaction scenarios among a set
of actorsand an SuD; it leaves the way internals of a use case are specified very open (the

alternatives explicitly mentioned without any details include plain text, a state machine,
activity graph, and specification via preconditions and postconditions). Rather, it
concentrates on the relations among use cases (as a use case is a classifier in UML, a
relation can be a dependency (extends/includes) or generalization).

In general, the bottom line is that there are many different approaches and hard to
compare techniques related to use cases, none of them being strongly recommended nor
preferred; an overview ise.g. in[10, 7].

Intuitively, there can be conflicts in use cases specifying two cooperating entities
(separate SuDs). Even though there are many approaches to finding conflicts in dynamic
and functional requirements, as pointed out in [9], they are frequently based on logic (and
typically closely dependent on a particular use case technology) and require highly
specialized expertsto handle. Thisisin obvious contrast with practitioners’ desireto make
ause case easy to read and comprehend as mentioned above.

1.2. Goals and Structure of the Paper
In[19, 18], we developed an agent model, where the agents process sequences (traces) of

atomic events, and introduced a way to describe (approximate) the agents' behavior via
behavior protocols, which was applied on software components in SOFA, in order to
specify component behavior and test behavior compliance of components, including
neighboring levels of refinement. Based on this experience, we realized that similar
compliance check should be done aso for use cases associated with component based
(interface-centered [5]) design.

Here, asavariety of different use case techniques might be considered, the key question
iswhat the basi c relations among the behaviors of entitiesin use cases are, provided these
relations should allow for capturing the behavior relationships among the proposed
components in a hierarchical system. For instance, whether the composed behavior of
components (at a particular level of nesting), specified separately for each of the
components, correspondsto the behavior specified for the parent component, etc. Another
guestion is what the basic relations upon a set of scenarios are, in order to define some
“reasonable’ behavior concepts and relations among them (associated with use case
entities) which could be easily interpreted in classical formal tools, such as state machine,
labeled transition systems, etc. Based on this objectives, the paper aims at these goals:

(1) Finding a generic view on UC in order to articulate key abstractions allowing for
capturing behavior compliance of entities/actorsat different levelsof their decomposition,
resp. refinement, and identifying which relations should be chosen as the basis for such
reasoning.

(2) Showing how the abstractions in the proposed generic view correspond to the use
case related concepts in UML and how the classical textual, system centric use case
specifications can be mapped/interpreted in terms of these abstractions.

(3) Introducing aUC technique which would feature these abstractionsand thus provide
reasoning, whilestill ssmple enough to be easy to apply in practice (emphasi son readability
and easy comprehension); for instance, transforming atextual use caseto theform the new
UC technigue would require should be an easy step.

5

Reflecting this aim, the paper is organized as follows: Sect. 2 targets the goals (1) and
(2), by providing“GenericUC View”, and itscomparisonto UML, while Sect. 3 addressed
the goal (3) by introducing “Protocol Use Cases’. The final two sections 4 and 5 contain
an evaluation, discuss practical experience and related work, and articul ate a conclusion.

2. Our View on Traditional Use Case M odeling Techniques
2.1. Generic UC View

To provide abasis for reasoning about the key abstraction (and capture their relationship)
in the traditional use case modeling [3, 11, 13, 16], we introduce the following generic
model (generic UC view).

Basic concepts. Assume an entity Siscomposed of sub-entitiesA1l, ... ,An. By definition
S forms scope of Ai; the topmost scope is called system. An entity Ai communicates
through communi cation links (connectionsfor short) with (1) other (actors) Aj of the scope
S, and potentially (2) with other external actorslocated in the parent scope, i.e. in the scope
of S. In case (1), the communication is observed on the internal connections of S, while
in case (2) on external connection of S. Advantageously, the nesting of entities and their
scopes can be expressed as a scope diagram. Here, by convention, the stick-figure symbol
?) denotes an entity which is an abstraction of a particular human role, while rectangle
denotes an entity which activity isat least partially software driven (typically a SuD), and
aline represents a connection. For example, in Fig. 1(a), A1, A2, and A3 are in the scope
of A2. Here, C1 and C3 are external connections of A2, while C2 and C4 are internal
connections of A2. In asimilar vein, C1, C2 and C3 are the external connection of A2,
Furthermore, A1, A2, and A3 are in the scope of S. Frequently, not all of the levels of
entity nesting are captured on a scope diagram, typically leaving out the targets of the
external connections of the outmost scope (Fig. 1(b)).

S

A2
Al A2 A3 Al A3
*
A
= c2
= cl [o<

cl L (3

Figurel (b)
Figurel (a)

Figure 2 shows the scope diagram of a sample Marketplace. Within the scope of
Martketplace (abusinessentity), theactorsBuyer, Seller, Agency, TradeCommissioner and
the Marketplace Information System and their connections are visible. Inside the
Marketplace information system are three entities: the Clerk, the Supervisor and the
Computer system. The use case demonstrated in Sect 1.1 describes the interaction of the
Marketplace information system with its surrounding actorsin the scope of Marketplace.

Marketplace

Marketplace Information System
—_— | —
\\ Computer system | _— |
Buyer ™~ — Agency

/ -

—
Clerk \

//

Seller Supervisor | TradeCommision

Figure2

Scenarios. A particular way of communication of an entity A on its connectionsin arun
of system X is captured asascenario s € Scenarios. All the scenariosof A inany run of 2
form the behavior Com(A) < Scenarios. Onthe domain Scenarioswe assumethe existence
of a subscenario relation (partial order).

By convention, Com(A)/ExConn(A) is the behavior of A restricted to its externa
connections (while Com(A)/InConn(A) is restricted to the internal connections of A).
Assuming an entity C is composed of entities A and B, Com(C) is composed of Com(A)
and Com(B), written Com(A) n Com(B)), in such away that
(1) together with Com(A)/InConn(A) u Com(B)/InConn(B) the behavior on the joint
connections between A and B becomes a part of Com(C)/InConn(C),

(2) (Com(A)/ExConn(A) v Com(B)/ExConn(B)) - (Com(A)/ExConn(A) n Com(B)/
ExConn(B))
becomes Com(C)/ExConn(C),

Use case model. Let U be the set of basic uses cases (behavior specifications) where A
isthe SuD. A use case UC* € U” describes/generates aset of scenarios, so, by convention,
we write also Com(UC?) < Scenarios. Further, we define a binary relation includes such
that UC*, includes UC*, means that the specification of UC”, includes (refers to) the
specification of UC*, (macro substitution idea, thus no circular dependencies allowed).
Also we assume that if a UCY e U* and UC" includes UC*, then also UC", € U*;
moreover werequire UC*, includes UC*, toimply that for any se Com(UC*,) there exists
ans € Com(UCAJ-) such that s subscenario S' (subscenario preservation).

Notice that even if Com(UC?*) = Com(UC"), not necessarily UC* = UC"; thus
different specificationscan generate the same behavior. Also, inthe need to distinguish the
elements of U*we do so by subscripts, writing e.g. UC*, (thisalso reflect that use cases of
A are enumerated in atypical use case technology).

A use case model of A (denoted UM*) is aset of use case expressions, (also use cases
for short), where an expression UE* (syntactically in principle) generates aset of scenarios
(by convention we write Com(UE*) c Scenarios). A use case expression UE* is either a

basic use case UC* or is composed by applying operations from aset of operations UEop
ontheir operands— (sub)expressions, assuming somepriorities, parenthesis, etc. apply. The
semantic of these operations can include sequencing, parallel composition of the scenarios
generated by the operands, etc. (asillustrated in Sect. 3.1).

Whole picture behavior. As a use case UEAJ- e UM* provides only a partial “j-th”
description of A’sbehavior (“the whole picture behavior” of A), the assembled behavior
of UM* is defined as Com(UM*) = u {Com(UE”): UE* ¢ UM” }. To emphasize an
important special case, we say that UM* has a representativeif thereis UE*in UM* such
that Com(UM*) = Com(UE?); (also: UE” is an representative of UM*).

2.1.1. Consistency I ssues

In our view, the key consistency issues to be addressed by a concrete UC view in order to
support refinement in the design and implementation of a specified system X include the
following:

(a) Does the combined behavior as specified by all UMA' in ascope S comply with the
behavior specified for Sin UMS,

(b) Does the assembled behavior as specified by a UM* redly reflect the desired
behavior of A (asthisishard to addressdirectly, we will consider equivalence checking -
decidability whether two use case models UM* and ‘ UM* specify the same behavior, i.e.
Com(UM*) = Com(‘UM*)).

(c) Isthe desired communication between Ai and Aj viatheir connection(s) in Sreally
reflected in the behavior as specified (separately) by UMA and UM,

(d) If thereis no representative of UM* and the behaviors of use casesin UM” overlap,
isthere away to find/construct arepresentative in order to get a*“whole picture behavior”
directly from the specifications, without the need to generate scenarios.

In principle, al four issues are closely related to the need inherent to
refinement/synthesis steps in a design of X: The necessity to combine behavior
specifications in order to get “the whole picture” behavior specification and capture the
behavior specification compliance of several cooperating/nested entities.

In general, addressing (a) and (b) requires defining a behavior compliance as a binary
relation upon thebehavior of entities. Intuitively, Com(A) compliant with Com(B) if B can
be replaced in £ by A by taking over all its external connections in such a way that “B
behaves on A’s place as it were A”. The issue (c) can be addressed by finding a binary
relation consent upon behavior of entities: Intuitively, Com(A) consent Com(B) if thereis
no inconsistency resp.”erroneous scenario” in the behavior of A and B on their joint
connections. To define these relations (and) precisely, a specific interpretation of
Scenarios and the relations/operations available for it have to be known.

Assuming the existence of compliant with and consent, the issues (@) - (c) can be
rephrased as
(@) Com(UM*Y) 1 Com(UM*??) 1 ... m Com(UMA™ compliant with Com(UM?%), and
(b) Com(UM*) compliant with Com(‘ UM*) and Com(‘ UM*) compliant with Com(UM*)

(c) Com(A;) consent Com(A,)

Obviously abig advantage can be taken of extending the definitions of compliant with,
consent and n to UM* (to make them applicable not only on Com(A), i.e. the behavior
itself but also on the behavior specification). Then, assuming a set UEop is “reasonably”
defined, the consistency issues (a) - (d) can be addressed by reasoning on uses case
expression (for an example see Sect. 3.2).

2.2. Case Study: Textual Scenario Specifications

Thereisavariety of use casetechniques/technol ogiesbased ontextual specification of UCA
(ranging from unstructured narrativesto semi-structured scripts, seeoverviewsin[10, 7]).
Inthissection weanalyzethetextual use case specification describedin[3], whichisbased
on astructured template (Sect 1.1). We choose it because of its broad recognition [4].
Basic concepts. The central concept, actor has an important special case: stakeholder,
having agoal. Scopeisintroduced as the entity A for which a UC* iswritten (A is SuD).
Communication links(connections) areintroduced indirectly by identifying the cooperating
actorsin each UCA.

Scenarios. A scenariois* sequence of steps showing how actionsand interactionsunfol d*
(thus sequence of interacting actionsin principle); however, the domain Scenariosis not
explicitly defined. The subscenario relation is not introduced explicitly, being considered
only indirectly, as a consequence of the includes relation (below).

Use cases and relations. A goa k of a stakeholder H with respect to an entity A
(considered as SuD and al so scope) isidentified as the reason for writing ause case UC*,.
To emphasize that UC”, is focused on a goal of A, the stakeholder H is also called
(ultimate) primary actor in UC*,. The description of communication of A with external
entities is “white-box” based, i.e. all external actors of A are visible, regardless of how
deep is A nested in the entity hierarchy forming X. On the contrary, it is strongly
discouraged to specify any communication of A with internal entitiesin any UC", (black
box view recommended). No UM* is introduced, but there is the concept of T (the
computer system to be designed).

Asillustratedin Sect.1.1, the structure of thetextual descriptionsisdefined astemplate,
providing generic guidelinesasto how to specify the generated scenarios by meansof main
success scenario, its extensions, and variants, plus which fields should be included in the
header of a use case (Stakeholder, Scope = SuD, etc.).

Addressing includes in principle, asub use case relation is defined with the semantics
UCH “calls’ UC*, where acyclic property is silently assumed and indirectly supported by
introducing specificlevelsof nested use casecalls(cloud, sea-level, underwater). Thus, the
subscenario preservation is silently guarantied on the domain assumed for UCAJ-. Here, any
top-most use caseis a'so asummary use case — this roughly corresponds to the choice of
use cases to form a UM”. Moreover, inspired by UML, the extends relation is defined,
based on the idea of ex post defined extension pointsin a use case: UC*, extends UC*,

means that UC*, explicitly states which parts of UC", are the extension points (could be
described by a set of context rewriting rules). Generalization (again UML inspired) is not
explicitly considered in the recommended template (using generalization is discouraged).

For UC";, Com(UC") is explicitly defined as the set of scenarios generated by UCA,.
Com(A) is considered the collection of scenarioswhere A isinvolved as SuD (generated
by aUCAJ-) —considering just summary use casesto be involved in behavior assembling is
silently assumed.

Wholepicturebehavior. Theideaof selecting use casesfrom U” toform UM*isrefl ected
in the concept summary use case. In principle, the summary use case ideaimplies nesting
and sequencing of use cases from U* (viaincludes or extends) in the form described by a
higher level use case from UM”. On the other hand, the precondition and postconditions
of aUC"; and UC*, from UM* allow for partial ordering of the behaviors Com(UC*,) and
Com(UCAJ-), including a paralel composition; here, preconditions can be interpreted as
unary operations from UEop for which only basic use cases are alowed as operands. As
the semantical spectrum of behavior composition viapreconditionscan bereally broad, the
original paper on use cases [12] assumes that no concurrency is modeled in a use case.

Addressing consistency issues. No compliant with, consent, nor r are defined, therefore
none of the key consistency issues is addressed (except for reasoning “by hand” on an
intuitive basis).

2.3. Comparing Generic UC View and UML

Basic concepts. The UML use case package (a subpackage of the Behavior Elements
package) isavery generic framework for specifying use cases. UML specifiestheactor and
use case asthe central concepts. These correspondsto our entity A and UC* concepts. The
ideaof communication links (connections) in UCview isreflected in UML very indirectly:
the information about connections among the entities in a subsystem can be obtained only
by a systematic walk-through of the use cases (for these entities) and recording their
associations with actors—an use case of an entity (SuD) A contains (as an association) the
infowith which externa entities(actors) A communicates. Asto nesting of entities,aUML
actor can model (not be) a system, subsystem, or class; in ahierarchical system, itisvery
hard to imagine capturing the communication among entities (their behavior) at such
different abstraction levels under the circumstances that the info on their communication
IS S0 hard to get.

Scenarios. A scenario isause case instance (no Scenarios introduced). Asto the way of
how a UC” is actually specified, UML is very generic (p.2-142): A use case can be
described in plain text, using operations and methods together with attributes, in activity
graphs, by a state machine, or by other behavior description techniques, such as
preconditions and postconditions. Even though UML considers nested entities, it does not
bring an explicit scope concept.

10

Use cases and relations. UML is specific on the relations defined for U, It defines the
include, extend, and generalize relations, but in a very generic way: As to include, it
requires nothing more than a use case contains the behavior defined in another use case.
We interpret this in such a way that include corresponds to our includes (and also that
subscenario preservation is required by the UML include).

Theextend relation and generalize rel ation are defined for use casesUC* and UCH,, but
in a very general way. While generalization allows for systematic modifications of
scenarios (one could imagine employing rewriting rules for this purpose), extends allows
only for insertion of several subscenarios into an existing scenario at its predefined
extension points. But elsewhereitisargued that theserel ationsare not well defined, e.g. [3,
7, 6]. In addition, there is the concept of superordinate and subordinate use case (below).

Whole picture behavior. There is no concept similar to Com(UM?*), so it is not clear
where “the generation of scenarios redly starts’. Using the terminology from Sect. 2.1,
consider UC* and UC*, from a U* and assume UC*, include UC* and UC* € UM*; itis
not clear whether UC* ¢ UM*, i.e. whether UC* contributes also to Com(UM*) or
produces just subscenarios employed in Com(UC*).

Consistency issues. The issues (a), (b) are addressed in only in a very genera way by
asking (p. 2-145): Thus, if use cases are used for the specification part of the system
package, these use cases are equivalent to those in the use-case model of the system; that
is, they express the same behavior but possibly dightly differently structured. and
Furthermore, if several models are used for modeling the realization of a system (for
example, an analysis model and a design model), the set of use cases of all system
packages and the use cases of the use-case model must be equivalent.

In addition (a) is aso, again in a very general way, addressed by the
subordinate/superordinate relations upon UCJ-Ai and UC® where A, are in the scope S by
asking all UCJ-Ai subordinate to UCS to “cooperate” in away described by a collaboration
diagram. No compliant with, consent, nor n are defined, therefore none of the key
consistency issues is addressed. Also, no use case expressions (and thus no operations
UEop) are considered.

3. Protocols Use Cases — Pro-cases
In Sect. 2, we saw what the benefits of the relations compliant with, consent, and the

operations for creating use case expressions could be. This section presents a concrete
instance of our Generic UC View — Protocol use cases (pro-cases) asaproof of the concept
having all these features.

3.1. Basic ldea

In[19], behavior of an entity (called agent in [19]), ismodeled as the set of traces—finite
sequencesof atomic events, capturing the communication ontheentity’ sconnections(both
internal and external). A regular expression-like notation is used to approximate the actua
behavior of entities by regular languages. These concepts are applied to a hierarchica

11

component model [17, 21]. As the behavior is formally defined and there are powerful
operationsupon the protocol sand behavior (languages), decidablerel ationsand operations
exist (m, compliant with, consent [1]) which alow to decide on compatibility of two
components (their specifications). We show, that (and how) the behavior protocol concept
fitsinto the generic UC view (akey ideaisthat a“use case” correspondsto a“protocol”).

Basic concepts. An entity exchanges atomic events with other entities on its externd
connections. In case of an entity S composed of entitiesA;, A,, connectionsamong A, A,
areinternal connectionsof S, eventson theseinternal connectionsareinternal eventsof S.
Other external connections of A, and A, are external connections of S. Sis the scope of
both A, and A,.

Scenarios. A scenario (called atrace in behavior protocols) isafinite sequence of atomic
events. The events are denoted by event tokens from a domain ACT in [19]. For our
purpose, weassume ACT* correspondsto the Scenariosdomain. The subscenario relation
isthus defined as asubstring (therefore decidable). An event ismodeled as an event token
aeither emitted (1a), absorbed (?a) or internally processed (ta). Com(A) < ACT* denotes
the behavior of entity A (alanguage upon ACT). (In[19], L(A) isused for the language;
to be consistent with the generic UC view, we use Com(A) here).

Thefollowing example suggests (in asimplified form), how the scenario generated by
a use case could be mapped to atrace of a behavior protocol.

< ?9c.submititem, rValidateltem, ?sic.submitPrice, 7ValidateSdler,
VerifySdlerHistory, !tradecom.validate, zListOffer, !sellernotify.putAuthNr >

The trace corresponds to the main success scenario specification of the use case used in
Sect. 1.1. Actions performed internally by SuD are represented as internal actions (t),
actions taken by an actor towards SuD are captured as events absorbed (by SuD, ? used),
actions taken by SuD towards an actor are captured as being emitted (!).

Use casesand relations. A pro-casewith an entity A as SuD (notation PE") isabehavior
protocol Prot” approximating the behavior of A by bounding the behavior of A (seebelow).

Syntactically, a protocol Prot* is an expression generating a set of traces over ACT*,
denoted Com(Prot*). The behavior protocol notation stems from the regular expressions
notation. In addition to the basic regular expression operators. + (aternative), ;
(sequencing), * (iteration), thereisalso parallel operator | (A|B means parallel execution
of A and B) and || (A|IB stands for A + B + A|B). Parallel execution is an arbitrary
interleaving of the atomic events captured in a pair of traces generated by A and B. The
composed operators (taking aset X < ACT as athird operand) are:

composition A ry, B (events from X emitted by A ('a) and absorbed by B (?a) or vice
versa are replaced with internal events ta in the resulting trace; except for this explicit
synchronization, the traces are arbitrarily interleaved);

12

adjustment A || B (smilar to composition, but exact match (instead of ?/!
correspondence) of events from X isrequired) and

consent A v, B (Smilar to composition, but erroneous traces are included where the
interaction of A and B might result into an error).

For the full definition, please refer to [19, 1]. It isimportant to note that even with the
additional operators, the language generated by a protocol remains regular. Furthermore,
the notation uses abstractions of specific sequences of atomic action (e.g., procedurecall),
which yield much higher “expressive power” with respect to readability of the protocols.

In particular, procedure calls are modeled as pairs of events; an operation ais modeled
asarequest (at) and aresponse (a!). Inthe notation, ?a (resp. 'a) can be used as shortcut
for ?at, lal (resp. !'at, ?al). Moreover, ?a{ Prot} (resp. !a{Prot}) can be used for ?a?
Prot 'al (resp. 'at Prot ?al). This way, it can be expressed that a sequence of events
occurs during a procedure call, while the higher level abstraction of the procedure call is
still preserved. This significantly improves the readability of the notation. The eventsa?
and al areatomic, whilethe shortcut abstractions are non-atomic, embracing method call-
like pairs of events.

As an example, we show abehavior protocol fragment corresponding to actions 1 and
2 of the sample use case used in the introduction (the extensions and variations pertaining
to these lines are considered). The events corresponding to the main success scenario
specification are printed in bold.

?sic.submitlitem { tValidateltem ;
(Null + tPriceAssessmentAvailable ; ! sellernotify.putPriceA ssessment + tinvaliditem)

}

Here, the ?sic.submititem({} shortcut is used to reflect that the action step 2 is performed
within (as apart of) the action step 1. The extensions and variations attached to the action
step 2 are captured as alternatives (+). In the main success scenario specification, no
additional processing is done after performing action 2 (Null). The condition of the
extension (resp. variation) isexpressed as an internal action (tPriceAssessmentAvailable
and tinvaliditem); this represents the interna choice to be performed by the entity
Marketplace Information System.

The language generated by this protocol fragment contains three traces:

1. <?sic.submititem?, zValidateltem, !sic.submititem! >

2. <?sic.submititem?, 7Validateltem, PriceAssessmentAvailable,
I'sellernotify.putPriceAssessment T, ?sellernotify.putPriceAssessment |,
Isic.submitltem! >

3. <?dsic.submitltem?, 7Validateltem, rinvaliditem, !sic.submititem! >

For a protocol Prot*®, Com(Prot®) denotes the set of traces generated by Prot®. As

Com(Prot*) is aregular language; but Com(A) is not in general, Prot* only approximates
behavior of A. In[19], the approximation is based on the bounded behavior relation, A is

13

bounded by Prot*, if Com(A) is compliant with Com(Prot*). As to the definition of
compliance, roughly, Com(A) is compliant with Com(Prot*) on set Sc ACT (S divided
intoinputs S,,.,, and outputs S) if Com(A) can respond to any sequence of inputs dictated
by Com(Prot*) and for such inputs, creates only outputs anticipated by Com(Prot?).
Formally, via the adjustment operator: (i) Com(ProtA)/Sp,OV c Com(A)/S,,, and (ii)
Com(Prot*)/S, o, lsorol COM(A)/S = Com(Prot?)/S.

The includes relation is defined as an inclusion of behavior protocol specifications
(similar to macro substitution, naturally acyclic).

Whole picture behavior. Typicaly, only asingle pro-case is used (as the representative
of UM*); such apro-caseiscalled theframe pro-case (inspired by frame protocol in SOFA
[19, 17]). The basic and parallel operators used in the behavior protocols notation can be
advantageously employed as the operations for use case expressions (the UEop set); thus
assembling the behavior via use case expressionsis natural here.

Addressing consistency issues. Eventhoughthevariety of the behavior protocol operators
providesstrong expressive power, the behavior (language) generated isaregular language.
Thissignificant advantage allowsfor comparing behavior described by behavior protocols,
as, e.g., inclusion of regular languages is decidable. The composition operation riy
conformsto the generic view of composition (m). Therelationscompliant with and consent
are defined and are decidable, thus the consistency issues (@), (b) and (c) are addressed
here.

3.2. Deriving Pro-cases from Textual Use Cases

In this section, we show away to transform atextual use case model UM* into a pro-case
model PM* (to emphasi ze the difference between the Generic UC view and anitsinstance
Pro-cases, we write PC*, PM#, PE*, and P* instead of UC*, UM#, UE* and U*).

We illustrate the proposed transformation on the Marketplace textual use case model.

Based on its scope diagram (Fig. 2), we identified the corresponding future software
components and their interfaces (Fig. 3).
The basic idea is that the textual use case models of the entity Marketplace Information
System (M) and of the nested entities Clerk (CL), Computer System (CS) and Supervisor
(SU) will be transformed into pro-case models PMY, PM“, PM® and PM%’ where,
advantageoudly, the assembled behavior is expressed via the operations from PEop as a
single protocol — a representative pro-case). Using the composition operation (rmy), the
behavior of the nested entities (CL, CS, and SU) will be composed together and verified
for consistency with the assembled behavior of the enclosing entity (M). For this purpose,
aprotocol verifier tool will be employed to evaluate the compliant with relation.

The stages of the whole transformation are:

(i) Intermediate form. Based on the textual description of each action (in an action step),
we select an event token (roughly: future method) to represent the corresponding action,

14

Event token can contain composed names to reflect connection names among entities and
the action they represent. for example ?sic.submitPrice is an action token meaning
accepting event submitPrice on the connection sic.

Mar ket pl ace

Mar ket pl ace | nformation System [m|

Clerk
cl : csysbuy
cl:bic

cl : csyssel
cl:sic

tosel |l er

sellernotify

Comput er system [CS

cs: tobuyer
cs: csyshuy
cs: csyssel

cs:toseller

cs:sellernotify

Super vi sor

Figure3

Assuming the textual descriptions use arestricted (simple) form of English (e.g., the
“Subject-Verb-Direct object(s)-Prepositions-Indirect object(s)” form (SVDPI) [7]), an
action description hastypically the form of arequest issued by one entity and addressed to
another one. We suggest using verb-noun phrases for the action symbols; the connection
and the information whether the event isemitted or absorbed istypically obviousfrom the
action step. For the use case “Seller submits an offer” (Sect 1.1), we get the following

intermediate form.

Main success scenario specification:
?sic.submititem

tValidateltem

?sic.submitPrice

tValidateSeller
tVerifySelerHistory
Itradecom.validate

tListOffer

Isellernotify.putAuthNr

N~ WDNE

Extensions:
2atinvaliditem

2al Null//Abort
S5atVeifyFailed

5al Null//Abort
6atTradeComValidateFailed

6al Null //Abort

Sub-variations:
2b tPriceAssessmentAvailable

2b1 Isdllernotify.putPriceA ssessment

(if) Transforming the intermediate form into a pro-case. Applying the sequencing
operator ; to action stepsisthe natural way to transform the main success scenario of an
intermediate form into a protocol; however, it isimportant to identify whether an action

actually spans the execution of several consecutive action step(s) — in such a case the
a{Prot} shortcut isto be applied.

Extensions and variations are transformed in asimilar way and inserted as alternatives
(using +) at their respectivepositions; their conditionisrepresented asaninternal event (t).
Applying these guidelines to our example yields the following pro-case (walk-through of
the main success scenario shown in bold):

?sic.submititem { tValidateltem ; (NULL + tPriceAssessmentAvailable;;
Isellernotify.putPriceAssessment + tinvaliditem) } ;
(?sic.submitPrice { tValidateSeller ; tVerifySelerHistory ;
('tradecom.validate ; (tListOffer ; Isellernotify.putAuthNr +
tTradeComValidateFailed) + tVerifyFailed)
} + zinvaliditem)

(iii) Assembling behavior. Based on the set P*, i.e. several protocols similar to the one
above, the pro-case model PM* is constructed, by forming use case expressions via
operations from PEop.

As an example, consider again UMM, In addition to what we have presented so far, the
whole UM isto be considered (availablein appendix A); at this point, listing the namesand
numbers of the use casesin UM will do: #1 Seller submits an offer, #2 Buyer searches for
an offer, #3 Buyer buys a selected item, #4 Seller cancels an offer, #5 Seller checkson the
status of an offer, #6 Seller updates an offer, #7 Buyer makes a purchase. In the appendix
A, itiseasy to seethat use case#7 includes use cases#2 and #3. Resulting from that, UM"
contains all these use cases except for #2 and #3, which generate only subscenarios of #7.

At this stage, we assume a PC", has been constructed in the set PV for each use case #k
in UM (we will refer to a pro-case by the number of the original use case as subscript). In
our example, the use cases#1, #4, #5, #6 describe communication of the entity M with the
same actor, therefore we do not assume any parallelism here and use the + (alternative)
operator to assembl ethese use casesinto asub-expression (PEY,); thisactually corresponds
tojoining their behavior (languages) withu (union). Asuse case#7 hasadifferent primary
actor (the one initiating the generated scenarios), we regard this as source of a possible
parallelism and we assembl e this use case with PEM, viathe || (parallel-or) operator (which
permits alternative execution, besides interleaved traces). To allow for arbitrary iteration,
we suffix each of the operands of || with *.

Thus, we represent the behavior of M with asingle use case expression

PEM; = (PCY, + PCY, + PCYs + PCM;) * || (PCY;) *
and then construct PM™ = { PEM }; obviously, PE";, is the frame pro-case of M.

(iv) Compliancetest. Having transformed thetextual use case modelsinto pro-case models
which have a representative, we apply the composition operator r, to acquire the
composed behavior of the internals of M. With the protocol verifier tool [21], we check
that the composed behavior of entities CL, CSand SU is compliant with Com(PM"). This

16

means we check PE; my, PESS; ry, PE™; compliant with PEM,; here X1 resp. X2 isthe
set of event tokens (roughly action names) on the connections between CL and CS, resp.
CSand SU.

4. Evaluation and Related Work

Practical experience: (1) Asaproof of the concepts, we (re)designed a part of a project
featuring nested entities (Fig. 3); Marketplace Information System (M) yielded 7 use cases,
while the internal three entities 2, 8 and 2 use cases. About 20 min were required to
transform a textual use case (written using a unified template [3]) into a pro-case. To
assemble the behavior into frame pro-cases, the time requirement was about 10 min for
each of the four components. An important side-effect of this process had been realizing
that one of the pro-cases of M can be added to its assembled behavior via parallel
composition, which in principle means that we have added 8th (very complex, describing
al potentia trace interleavings) use case to the original behavior description of M.
Compliance of the composition of the three internal frame pro-cases with the frame pro-
case of M was done by the SOFA Protocol Verifier [21] (written in Java), finding three
inconsistencies in the origina specification.

(2) Inamajor group assignment, studentstaking their first software design course were
instructed to transform their use casesinto pro-cases. It took them only about 15 minutes
to get the behavior protocol idea. Our observation had been that students had no difficulty
creating pro-casesand actually very much preferred them over System Sequence Diagrams
[14]. Furthermore, as the requirements were specified more precisely, the projects
progressed more smoothly compared to a previous run of the course where classical data-
driven design was used.

Related work: Most of the recent work in the use casefield pertainsto uses casesin UML.
In[22], it isemphasized that the use case concept in UML has not reached the point where
atool could support the use of use cases without making major decisions concerning how
to interpret the standard. It basically argues that use cases should be formalizable in a
soundly-based, tool-supportable way, in order to relate use cases to the design of a
respective system. One of the ways of formalizing use cases in UML is to formally
interpret them as sequences of actions. Here, to avoid possible limitations imposed by
choosing a concrete process algebra, alabeled transition system (LTS) is recommended,;
ahigh-level formalismisintentionally avoided. It is highlighted that UML state machine
should not be used to realize an LTS, due to its extra power with respect to LTS and the
correspondingly complex semantics. Compared to this, our approachin Generic UC View
isto capture the generic properties of use cases (and the behavior they describe) in such a
way that a variety of concrete instances (Concrete UC Views) can be defined later on,
including a LTS (which our pro-cases in principle are), each of them featuring these
generic properties.

In [8], ause case is written in an abstract state machine language; compliance of use
cases is not considered, as the focus is on generating tests for a particular use case. The
authors of [23] performed a study of readability of formal requirements, evaluating how

17

the presence of certain features in a notation influences readability of the notation. It is
emphasized that readability is crucia for acceptance of formal methods by the industrial
community; we believe that our pro-cases meet this requirement well. Cockburn [3]
touches the problem of hierarchy of systems (SuD), but does not consider compliance
among different levels. Therecommended design methodol ogiesin[14, 5] consider system
sequence diagrams as away to identify the interface of the system under design. Sincein
a sequence diagram, only a single scenario is captured, there would we be a significant
number of diagramsto balance a single frame pro-case. An interesting approach is taken
in [9] where a use case is represented as an activity diagram and for each action in it, a
graph transformation rule is defined upon collaborations of the objects involved in the
action. Conflicts/dependencies between actionsin different use cases (UC* and UC*, in
our terminology) can be identified.

As Sect. 2.3 was devoted to comparison of UML use cases and our Generic UC View,
we limit ourselves here to acomment to Sect. 2.11.4.2 of [16]: It requires an activity ina
use caseto beinitiated by amessage of an actor —viapro-cases, it can be easily shown that
behavior composition Com(UM*#) 1 Com(UM®) of cooperating A and B would always
yield an empty behavior if this UML assumption were really applied!

Discussion: Whileassembling the®wholepicturebehavior”, additional variants(especially
parallel combinations) of behavior can beidentified asdesirable. Naturally, capturing such
aspects of the requirementsisimportant for the design in general, but very hard to express
intextual use cases (for instance, the idea of summary use cases as the means of behavior
assembly isvery limiting). On the contrary it can easily done if use case expressions with
an appropriate set of operations UEop are avail able. When adopting such new variants, use
case expressions also smplify the necessary corrections back in lower level use cases.
Here, evauation of complianceisinevitable.

Favoring readability, behavior protocols lack direct support for conditions, neither
consider the data transferred (e.g., as method parameters). The key argument of the
experimental study [23] isthat readability isthe most important property of a specification
to be accepted by industrial community. Though textual use cases have a high level of
readability, it isvery hard to obtain the “whole picture’ behavior in atextual use case and
to reason on compliance (very important as the risk of ambiguities and inconsistenciesis
inherent to any textual specification). Wherever atextual specification ishighly desirable
for communication at whatever level of the project management, our recommendation it
to create both textual specification and pro-cases which are easy to get and allow for
reasoning on the compliance issues (@) - (d) articulated in Sect. 2.1.1.

5. Summary and Future Work
Meeting the goal (1) articulated in Sect.1.2, we presented Generic UC View on use case

modeling. The message of this model is as follows: (i) For very basic modeling define a
domain Scenarios. If an includes relation on use cases is desirable then define also a
subscenario relation upon Scenarios asit hel ps define semantics on includesclearly. (ii) It
has to be stated without any ambiguity how the scenarios of ause case UC* contribute to

18

scenariosin Com(A). Therefore the Generic UC View distinguishes the set U* of all use
cases of A and a use case model UM* of A as the set of use cases where “the scenario
generations start”. (iv) The whole picture behavior of A (Com(A)) can be infinite, it is
desirableto “see” it asasingle use case—representative. This can be advantageously done
when use case expressions are defined. (v) To reason on specification consistency of
cooperating entities, in both nested an “sibling” position, Generic UC View articulates
three relations/operations to be defined.

Addressing the goal (2) we compared the UML use case package. Here the bottom lineis
that UML does not clearly address (ii) above which in principle meansthat it is not clear
what the whol e picture behavior of an entity A really should beif there are more use cases
written for A. Being very generic, UML does not consider reasoning on use case
specifications.

Asaproof of the concepts, protocol use cases (pro-cases), based on behavior protocols
[19], have been introduced (addressing goal(3)), which support al the features (i) - (v)
above. Moreover, asthey are based on in principal regular languages, all the relations and
operationsintroducesin Generic UC View are decidable. To summarizethe benefitsfrom
creating a pro-case model: (1) With use case expressions, behavior can be assembled to
form a single pro-case as the “whole picture” of an entity’s behavior, in a readable and
comprehendible notation; (II) Parallelism can be captured, creating a more precise
specification; (111) Using the decidable compliant with relation, the consistency issues (a),
(b), (c) can be addressed; (1V) Pro-cases can be helpful in early stage of design — showing
the interactions of an entity, they can be useful when assigning responsibilitiesto classes,
identifying operations, behavior (structure) of methods; thus, pro-cases can serve as a
powerful replacement of system sequence diagrams [14].

In use cases, failure handling is aimportant issue. In the current state, pro-cases allow
for expressing extensions as alternatives, with the condition captured asan internal event.
In the case of nested failures, the readability of the pro-case can be negatively influenced.
Our futurework aims at enhancing behavior protocolswith exceptions, to allow for amore
elegant way to handle error conditions. Our intention isto preserve the current readability
and lightweight nature of the notation; the key point isto avoid turning the notation into
process equations. Moreover, erroneous traces are being investigated [1] to capture
inconsistencies in composition.

Furthermore, we consider investigating the opportunity to employ a natural language
parser to provide alevel of automation while creating a pro-case model based on atextual
use case model.

References

[1] Adamek, J., Plasil, F.: Behavior Protocols Capturing Errors and Updates (submitted, extended version available
as TR 02/10, Dept. of Computer Science, University of New Hampshire, Durham, 2002)

[2] Amyot, D., Mussbacher, G.: On the Extension of UML with Use Case Maps Concepts. UML 2000, York, UK,
October 2-6, 2000, in Proceedings LNCS 1939, Springer 2000

[3] Cockburn, A.: Writing Effective Use Cases, Addison-Wesley Pub Co, |SBN: 0201702258, 1% edition, January 2000

19

[4] Cockburn, A.: Harnessing Convection Currentsof Information, Invited Talk, OOPSLA 2001, October 14-18 2001,
Tampa Convention Center, Tampa Bay, FL

[5] D’Souza, D. Components with Catalysis, www.catalysis.org, 2001

[6] Genova, G., Llorens, J., Quintana, V.: Digging into Use Case Relationships, UML 2002, September 30 - October
4, 2002, Dresden, Germany

[7] Graham, |.: Object-Oriented Methods: Principles and Practice, Addison-Wesley Pub Co, ISBN: 020161913X, 3
edition December 2000

[8] Grieskamp, W., Lepper, M., Schulte, W., Tillmann, N.: Testable Use Cases in the Abstract State Machine
Language, APAQS01, December 10 - 11, 2001, Hong Kong

[9] Hausmann,J. H., Hecke, R., Taentzer, G.: Detection of Conflicting Functional RequirementsinaUse Case-Driven
Approach, ICSE 2002, Orlando, Florida, USA, May 19-25, 2002

[10] Hurlbut R. R.: A Survey of Approaches For Describing and Formalizing Use Cases, Expertech, Ltd., Document:
XPT-TR-97-03

[11] Jacobson, I., Christerson, M.: A Growing Consensus on Use Cases, JOOP 8(1): 15-19 (1995)

[12] Jacobson, I.: Formalizing Use-Case Modeling., JOOP 8(3): 10-14 (1995)

[13] Jacobson, I., Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-Wesley Pub Co;
ISBN: 0201544350; 1st edition (June 30, 1992)

[14] Larman, C.: Applying UML and Patterns: An I ntroduction to Object-Oriented Analysisand Design and the Unified
Process, Prentice Hall PTR, 1SBN: 0130925691, 2™ edition, July 2001

[15] Nierstrasz, O., Arévalo, G., Ducasse, S., Wuyts, R., Black, A., Miller, P, Zeidler, C., Genssler, T., Born, R. van
den: A Component Model for Field Devices. IFIP/ACM Conferenceon Component Deployment, Berlin, Germany,
June 2002, pp. 200-209.

[16] OMG: Unified Modeling Language (UML), version 1.4, formal/2001-09-67, http://www.omg.org/uml/

[17] Plasil, F., Balek, D., Janecek, R.: SOFA/DCUP Architecture for Component Trading and Dynamic Updating,
Proceedings of the ICCDS '98, Annapolis, IEEE Computer Soc. Press, 1998, pp. 43-52.

[18] Plasil, F., Visnovsky, S., Besta, M.: Bounding Behavior via Protocols, Proceedings of TOOLS USA ‘99, Santa
Barbara, CA, Aug. 1999.

[19] Plasil F., Visnovsky, S.: Behavior Protocols for Software Components. Transactions on Software Engineering,
|EEE, vol 28, no 11, Nov 2002

[20] Schneider, G., Winters, J. P.: Applying Use Cases: A Practica Guide, Addison-Wesley Pub Co, ISBN:
0201708531, 2™ edition, March 2001

[21] SOFA Behavior Protocol Verifier, the SOFA project, http://nenya.ms.mff.cuni.cz/projects/sofaltool s/

[22] Stevens, P.: OnUseCasesand Their Relationshipsin the Unified Modelling Languagein Proceedings, FASE 2001
(Part of ETAPS 2001), Genova, Italy April 2-6, 2001, Springer LNCS 2029, I1SBN 3-540-41863-6

[23] Zimmerman, M. K., Lundgvist, K., Leveson, N.: Investigating the Readability of State-Based Formal Requirements
Specification Languages, ICSE 2002, Orlando, Florida, USA, May 19-25, 2002

20

Appendix A: Marketplace Use Case M odel and Pro-case M odel

Thisappendix providesacomplete set of use casesfor the sample Marketpl ace application
used in the paper. For the nested entity Marketplace Information System (M) and for each
of the nested entities it consists of (Computer System CS, Clerk CL and Supervisor SU),
a complete use case model and a pro-case model is provided (see Fig. 3).

For each of the entities, first, all use cases of the entity are listed; below each use case,
the corresponding pro-caseisincluded. Then, theuse casemodel isexpressed, by explicitly
naming the use casesto beincluded in the assembled behavior. Finally, the pro-case model
is provided, as a single use case expression, being a frame pro-case. To illustrate the
semanticsof the expression, an expanded form of the frame pro-caseis provided (obtained
by substituting all primitive use case expressions with pro-cases in the frame pro-case).

21

A.l. Marketplace Information System

Use Case: #1 Seller submits an offer
Scope: Marketplace
SuD: Marketplace Information System
Level: Primary Task
Primary Actor: Seller
Supporting Actor: Trade Comission
Main success scenario specification:
Seller submits information describing an item
System validates the description.
Seller adjusts/enters price and enters contact and billing information.
System validates the seller’ s contact information.
System verifies the seller’ s history to permit the seller to operate
System validates the whole offer with the Trade Commission
System lists the offer in published offers.
System responds with an uniquely identified authorization number.
Extensions:
2a Item not valid
2al Use case aborted
5a Seller’shistory inappropriate
5al Use case aborted
6a Trade commission rejects the offer
6al Use case aborted
Sub-variations:
2b Price assessment available
2b1l System providesthe seller with a price assessment.

N WDNE

Pro-case #1

?sic.submititem { tValidateltem ; (NULL + tPriceAssessmentAvailable;
Isellernotify.putPriceAssessment + tinvaliditem) } ;
(?sic.submitPrice { tValidateSeller ; tVerifySelerHistory ;
("tradecom.validate; (tListOffer ; !sellernotify.putAuthNr +
tTradeComValidateFailed) + tVerifyFailed)
} + tinvaliditem)

22

Use Case: #2 Buyer searchesfor an offer
Scope: Marketplace
SuD: Marketplace Information System
Level: Primary Task
Primary Actor: Buyer
Main success scenario specification:
1. Buyer enters basic search criteria.
2. System responds with the list of matches.
3. Buyer requests the complete listing of a selected offer.
4. System responds with the requested information.
Extensions:
2a No matches found
2al Use case aborted
Sub-variations:
2b The amount of matchesistoo high
2b1 Buyer narrows the search results with additional criteria
2b2 Resume with step 2

Pro-case #2

?tobuyer .sear ch ; obuyer.narrowSearch* ; (?tobuyer.requestDetails +
tNoMatchesFound)

23

Use Case: #3 Buyer buys a selected item

Scope: Marketplace

SuD: Marketplace Information System

Level: Primary Task

Primary Actor: Buyer

Supporting Actor: Seller, Credit Verification Agency
Main success scenario specification:

1
2.
3.
4,
5.
6

7.
8.

Buyer chooses to accept a selected offer.

System validates the offer.

User enters billing information, select a payment method and provides the payment
details.

System validates the buyer’ s information with the Credit Verification Agency.
System performs the sale.

System informs the seller that the offer has been accepted and provides the shipping
information.

System transfers the payment to the sellers account.

System responds to the buyer with an uniquely identified authorization number.

Extensions:
2a Offer isnot valid

2al Usecaseis aborted

Sub-variations:

Pro-case #3

?bic.initBuyOffer { tValidateOffer + tOfferinvalid } ;

(

?bic.doBuyOffer {!agency.validate; tperformSale; !sellernotify.shipltem;
tTransfer Payment }

+ tOfferinvalid)

24

Use Case: #4 Seller cancels an offer
Scope: Marketplace
SuD: Marketplace Information System
Level: Primary Task
Primary Actor: Seller
Supporting Actor:
Main success scenario specification:
1. Seller locates apreviously submitted offer.
2. Sdler requests the system to cancel the offer.
3. System responds with arequest for the seller to prove identity.
4. Seller responds with the authorization number obtained when the offer was
submitted.
5. System validates the request and seller’ sidentity..
6. System removesthe offer.
Extensions:
4a Seller cannot provide the authorization number
4al Use caseis aborted
5a Authorization number is not valid
5al Retry with step 3
Sub-variations:

Pro-case #4

?toseller.locateOffer ; ?toseller.requestCancel Offer

{ lsellernotify.getAck ; tValidateAck ;
(cInvalidAck ; !sellernotify.provideAck ; tValidateAck) * ;
(tRemoveOffer + tinvalidAck)

}

25

Use Case: #5 Seller checkson the status of an offer
Scope: Marketplace
SuD: Marketplace Information System
Level: Primary Task
Primary Actor: Seller
Supporting Actor:
Main success scenario specification:
1. Seller locates apreviously submitted offer.
2. Sdller requests the system to provide status of the offer.
3. System responds with arequest for the seller to prove identity.
4. Seller responds with the authorization number returned when the offer was
submitted.
5. System validates the request and seller’ sidentity..
6. System returns the status of the offer.
Extensions:
4a Seller cannot provide the authorization number
4al Use caseis aborted
5a Authorization number is not valid
5al Retry with step 3
Sub-variations:

Pro-case #5

?toseller.locateOffer ; ?toseller.requestStatus

{ lsellernotify.getAck ; tValidateAck ;
(cInvalidAck ; !sellernotify.provideAck ; tValidateAck) * ;
(tGetOffer Status + tlnvalidAck)

}

26

Use Case: #6 Seller updates an offer
Scope: Marketplace
SuD: Marketplace Information System
Level: Primary Task
Primary Actor: Seller
Supporting Actor:
Main success scenario specification:
1. Seller locates apreviously submitted offer.
2. Seller requests the system to update the offer, providing new details (e.g., price).
3. System responds with arequest for the seller to prove identity.
4. Seller responds with the authorization number returned when the offer was
submitted.
5. System validates the request and seller’ sidentity..
6. System updates the offer.
Extensions:
4a Seller cannot provide the authorization number
4al Use caseis aborted
5a Authorization number is not valid
5al Retry with step 3
Sub-variations:

Pro-case #6

?toseller.locateOffer ; ?toseller.updateOffer

{ lsellernotify.getAck ; tValidateAck ;
(cInvalidAck ; !sellernotify.provideAck ; tValidateAck) * ;
(tUpdateOffer + tlnvalidAck)

}

27

Use Case: #7 Buyer makes a purchase

Scope: Marketplace

SuD: Marketplace Information System

Level: Primary Task

Primary Actor: Buyer

Supporting Actor: Seller, Credit Verification Agency

Main success scenario specification:

1. Buyer searchesfor an offer (#2)

2. Buyer buys a selected item (#3)

Extensions:

la The Buyer did not find any matching offer
lal Use case aborted

Sub-variations:

1b The Buyer decides not to accept the offer.
1b1 Use case ends here.

Pro-case #7

Transforming this use case (which includes use cases #2 and #3), we initially get a use
case expression referring to basic pro-cases #2 and #3.

? buyer .searchForOffer[#2] ; (buyer.buyOffer[#3] + tNoMatchesFound + NULL)

We expand the use case expression by substituting the pro-cases for the special
symbols; this way, we get:

?tobuyer .sear ch ; obuyer.narrowSearch* ; (?tobuyer.requestDetails +
tNoMatchesFound)
(?bic.initBuyOffer { tValidateOffer + tOfferlnvalid} ;
(
?bic.doBuyOffer {!agency.validate; tperformSale; !sellernotify.shipltem;
tTransfer Payment }
+ tOfferinvalid) + NULL + tNoMatchesFound)

28

Use Case Mode

For the entity Marketplace Information System (M), the use case model UMM consists of
the use cases #1, #4, #5, #6 and #7.

Frame Pro-case
We represent the behavior of M with a single use case expression
PEM, = (PCY, + PCM, + PCM; + PCM;) * || (PCM,) *

By substituting the primitive use case expressions with the pro-cases, we get thefollowing
frame pro-case:

29

(

?sic.submititem { tValidateltem ; (NULL + tPriceAssessmentAvailable;;
Isellernotify.putPriceAssessment + tinvaliditem) } ;
(?sic.submitPrice { tValidateSeller ; tVerifySelerHistory ;
('tradecom.validate ; (tListOffer ; Isellernotify.putAuthNr +
tTradeComVaidateFailed) + tVerifyFailed)
} + tinvaliditem)
+
?toseller.locateOffer ; ?toseller.requestCancel Offer
{ lsellernotify.getAck ; tValidateAck ;
(cInvalidAck ; !sellernotify.provideAck ; tValidateAck) * ;
(tRemoveOffer + tinvalidAck)
}

+
?toseller.locateOffer ; ?toseller.requestStatus
{ lsellernotify.getAck ; tValidateAck ;
(cInvalidAck ; !sellernotify.provideAck ; tValidateAck) * ;
(tGetOffer Status + tlnvalidAck)
}

+

?toseller.locateOffer ; ?toseller.updateOffer

{ lsellernotify.getAck ; tValidateAck ;
(cInvalidAck ; !sellernotify.provideAck ; tValidateAck) * ;
(tUpdateOffer + tlnvalidAck)

}

)~k

|

(

?tobuyer.search ; “2tobuyer.narrowSearch* ; (?tobuyer.requestDetails +
tNoMatchesFound)
(?bic.initBuyOffer { tValidateOffer + tOfferlnvalid} ;
(
?bic.doBuyOffer { !agency.validate ; tperformSale; !sellernotify.shipltem ;
tTransfer Payment }
+ tOfferinvalid) + NULL + tNoMatchesFound)

)*

30

A.2. Computer System

Use Case: CS#1 Clerk submits an offer on behalf of a Seller
Scope: Marketplace Information System
SuD: Computer System
Level: Primary Task
Primary Actor: Clerk (ultimate: Seller)
Supporting Actor: Trade Commission, Super visor
Main success scenario specification:
Clerk submits information describing an item
System validates the description.
Clerk adjustg/enters price and enters seller’ s contact and billing information.
System validates the seller’ s contact information.
System asks the Supervisor to validate the seller.
Supervisor permits the seller to operate on the marketplace.
System validates the whole offer with the Trade Commission
System lists the offer in published offers.
. System responds with an uniquely identified acknowledgment.
Extensions:
2a Validation performed by the system fails
2al Use case aborted
Sub-variations:
2b Price assessment available
2b1l System providesthe seller with a price assessment.
7a Trade commission rejects the offer
7al Use case aborted

CoNoO~WDNE

Pro-case CS#1

?2csyssell.submititem { tValidateltem ; (NULL + tPriceAssessmentAvailable ;
Isellernotify.putPriceAssessment)

B

(

?2csyssell.submitPrice { tValidateSeller; !syssu.verifySeller ; ?susys.permitSeller ;
Itradecom.validate ; (tListOffer ; Isellernotify.putAuthNr +
tVerifyFailed)

}

+ tlnvaliditem)

31

Use Case: CS#2 Buyer searchesfor an offer
Scope: Marketplace Information System
SuD: Computer System
Level: Primary Task
Primary Actor: Buyer
Main success scenario specification:
1. Buyer enters basic search criterie
2. System responds with the list of matches.
3. Buyer requests the complete listing of a selected offer.
4. System responds with the requested information.
Extensions:
2a No matches found
2al Use case aborted
Sub-variations:
2b The amount of matchesistoo high
2b1 Buyer narrows the search results with additional criteria
2b2 Resume with step 2

Pro-case CS#2

?tobuyer.search ; “2tobuyer.narrowSearch* ; (?tobuyer.requestDetails +

tNoMatchesFound)

32

Use Case: CS#3 Clerk buys a selected item on behalf of a Buyer

Scope: Marketplace Information System

SuD: Computer System

Level: Primary Task

Primary Actor: Clerk (ultimate: Buyer)

Supporting Actor: Seller, Credit Verification Agency

Main success scenario specification:

1. Clerk iscontacted by a buyer who has decided to accept a selected offer.

2. System validates the offer.

3. Systemrequestshilling and shipping information, payment method and payment detail
information.

4. Clerk entershilling information, select apayment method and provides the necessary
details.

5. System validates thisinformation with a Credit Verification Agency.

6. System performsthe trade.

7. System informs the seller that the offer has been accepted and provides the shipping
information.

8. System transfers the payment to the sellers account.

9. System responds to the buyer with an uniquely identified authorization number.

Extensions:

2a Offer isnot valid
2al Usecaseis aborted

Sub-variations:

Pro-case CS#3

?csysbuy.initBuyOffer { tValidateOffer + tinvaidOffer } ;

(
?2csysbuy.doBuyOffer {!agency.validate; tPerformSale; !seller notify.shipltem

; TTransfer Payment }
+ tlnvalidOffer)

33

Use Case: CS#4 Seller cancels an offer
Scope: Marketplace Information System
SuD: Computer System
Level: Primary Task
Primary Actor: Seller
Supporting Actor:
Main success scenario specification:
Seller locates a previously submitted offer.
Seller requests the system to cancel the offer.
System responds with arequest for the seller to prove identity.
Seller responds with the authorization number returned when the offer was submitted.
System validates the request and seller’ sidentity..
System removes the offer.
Extensions:
4a Seller cannot provide the authorization number
4al Use caseis aborted
5a Authorization number is not valid
5al Retry with step 3
Sub-variations:

oukcwdrE

Pro-case CS#4

?toseller.locateOffer ; ?toseller.requestCancel Offer

{ lselernotify.getAck ; tValidateAck ;
(cInvalidAck ; !sellernotify.provideAck ; tValidateAck) * ;
(tRemoveOffer + tinvalidAck)

}

Use Case: CSH5 Seller checks on the status of an offer
Scope: Marketplace Information System
SuD: Computer System
Level: Primary Task
Primary Actor: Seller
Supporting Actor:
Main success scenario specification:
Seller locates a previously submitted offer.
Seller requests the system to provide status of the offer.
System responds with arequest for the seller to prove identity.
Seller responds with the authorization number returned when the offer was submitted.
System validates the request and seller’ sidentity..
System returns the status of the offer.
Extensions:
4a Seller cannot provide the authorization number
4al Use caseis aborted
5a Authorization number is not valid
5al Retry with step 3
Sub-variations:

oukcwdrE

Pro-case CS#5

?toseller.locateOffer ; ?toseller.requestStatus

{ lselernotify.getAck ; tValidateAck ;
(cInvalidAck ; !sellernotify.provideAck ; tValidateAck) * ;
(tGetOffer Status + tlnvalidAck)

}

35

Use Case: CSH6 Seller updates an offer
Scope: Marketplace Information System
SuD: Computer System
Level: Primary Task
Primary Actor: Seller
Supporting Actor:
Main success scenario specification:
Seller locates a previously submitted offer.
Seller requests the system to update the offer, providing new details (e.g., price).
System responds with arequest for the seller to prove identity.
Seller responds with the authorization number returned when the offer was submitted.
System validates the request and seller’ sidentity..
System updates the offer.
Extensions:
4a Seller cannot provide the authorization number
4al Use caseis aborted
5a Authorization number is not valid
5al Retry with step 3
Sub-variations:

oukcwdrE

Pro-case CSH6

?toseller.locateOffer ; ?toseller.updateOffer

{ lselernotify.getAck ; tValidateAck ;
(cInvalidAck ; !sellernotify.provideAck ; tValidateAck) * ;
(tUpdateOffer + tlnvalidAck)

}

36

Use Case: CSH#7 Buyer makes a purchase
Scope: Marketplace Information System
SuD: Computer System
Level: Primary Task
Primary Actor: Buyer
Supporting Actor: Clerk, Seller (, Credit Verification Agency)
Main success scenario specification:
1. Buyer searchesfor an offer (#2/F)
2. Buyer contacts a clerk to buys the selected item (#3/P)
Extensions:
la The Buyer did not find any matching offer
lal Use case aborted
Sub-variations:
1b The Buyer decides not to accept the offer.
1b1 Use case ends here.

Pro-case CSH7

Transforming this use case (which includes use cases CS#2 and CS#3), we initially get a
use case expression referring to basic pro-cases CS#2 and CS#3.

buyer.searchForOffer[CS#2] ; (clerk.buyOffer[CS#3] + tNoMatchesFound + NULL)

We expand the use case expression by substituting the pro-cases for the specia symbols;
thisway, we get:

?tobuyer.search ; “2tobuyer.narrowSearch* ; (7?tobuyer.requestDetails +
tNoMatchesFound)
(?csysbuy.initBuyOffer { tValidateOffer + tlnvalidOffer } ;
(
?csysbuy.doBuyOffer {!agency.validate; tPerformSale; !sellernotify.shipltem
; TTransfer Payment }
+ tlnvalidOffer) + NULL + tNoMatchesFound)

37

Use Case: CS#8 Supervisor makes an internal audit
Scope: Marketplace Information System
SuD: Computer System
Level: Primary Task
Primary Actor: Super visor
Supporting Actor:
Main success scenario specification:
1. Supervisor searches the database of offersfor sensitive keywords in item description
2. Supervisor displays the description of the item.
3. Supervisor removes the item from the database of currently visible offers.
Extensions:
la Supervisor did not find any match
lal Use caseterminates
2a Supervisor did not find any offending items.
2al Use case terminates
2b Supervisor requests details of another item
2b1l Repesat step 2
Sub-variations:

Pro-case CS#8

?susys.search ; (?susys.requestDetails; ?susys.requestDetails* ; (?susys.removeOffer
+ tltemValid) + tNoltemFound)

38

Use Case Mode

For the entity Computer System (CS), the use case model UM consists of the use cases
CSH1, CSH4, CSH5, CSH6, CSHT and CSHS.

Frame Pro-case

We represent the behavior of M with a single use case expression. We employ the parallel
composition operator to reflect parallel execution of both the use cases #7 and #8.

PESS, = (PC®S, + PC, + PCES, + PCS,) * || (PCSS,) * |(PC%;)*

By substituting the primitive use case expressions with the pro-cases, we get thefollowing
frame pro-case:

39

(

?2csyssell.submititem { tValidateltem ; (NULL + tPriceAssessmentAvailable ;
Isellernotify.putPriceAssessment)

}

(

?2csyssell.submitPrice { tValidateSeller; !'syssu.verifySeller ; ?susys.permitSeller ;
Itradecom.validate ; (tListOffer ; !sellernotify.putAuthNr +
tVerifyFailed)

} + zinvaiditem)

+

?toseller.locateOffer ; ?toseller.requestCancel Offer

{ lsellernotify.getAck ; tValidateAck ;
(cInvalidAck ; !sellernotify.provideAck ; tValidateAck) * ;
(tRemoveOffer + tinvalidAck)

}

+
?toseller.locateOffer ; ?toseller.requestStatus
{ lsellernotify.getAck ; tValidateAck ;
(cInvalidAck ; !sellernotify.provideAck ; tValidateAck) * ;
(tGetOffer Status + tlnvalidAck)
}

+

?toseller.locateOffer ; ?toseller.updateOffer

{ lsellernotify.getAck ; tValidateAck ;
(cInvalidAck ; !sellernotify.provideAck ; tValidateAck) * ;
(tUpdateOffer + tlnvalidAck)

}

) *

[

(

?susys.search ; (?susys.requestDetails; ?susys.requestDetails* ; (?susys.removeOffer
+NULL) + NULL)

) *

[

(

?tobuyer.search ; “?tobuyer.narrowSearch* ; (?tobuyer.requestDetails +
tNoMatchesFound)
(?csysbuy.initBuyOffer { tValidateOffer + tlnvalidOffer } ;
(
?csysbuy.doBuyOffer {!agency.validate; tPerformSale; Isdlernotify.shipltem
; TTransfer Payment }
+ tlnvalidOffer) + NULL + tNoMatchesFound)
) *

40

A.3. Clerk

Use Case: CL#1 Sdller to Clerk
Scope: Marketplace Information System
SuD: Clerk
Level: Primary Task
Primary Actor: Seller
Supporting Actor: Computer System
Main success scenario specification:
Seller submits item description to the clerk.
Clerk submits the description to the system.
Clerk reports the system response to the seller.
Seller submits the price, billing and contact information to the clerk.
Clerk enters the price, billing and contact information to the system.
. Clerk reports the system response to the seller.
Extensions:
2a Validation performed by the system fails
2al Use case aborted
Sub-variations:

oukcwdrE

Pro-case CL#1

?sic.submititem { !csyssell.submititem } ; (?sic.submitPrice { !csyssell.submitPrice
} + tinvaliditem)

41

Use Case: CL#2 Buyer to Clerk

Scope: Marketplace Information System

SuD: Clerk

Level: Primary Task

Primary Actor: Buyer

Supporting Actor: Computer System

Main success scenario specification:

1. Buyer submitsto the clerk areference to a selected offer.

2. Clerk submits the reference to the system.

3. Clerk reports the system response to the seller and requests billing and shipping
information, payment method and payment details.

4. Buyer submits to the clerk the requested billing and shipping information, payment
method and payment details.

5. Clerk enters the billing and shipping information, payment method and payment
details.

6. Clerk reports the system response (with the unique acknowledgment) to the buyer.

Extensions:

3a System failed to validate the offer
3al Use case aborted

Sub-variations:

Pro-case CL#2

?bic.initBuyOffer { !csysbuy.initBuyOffer } ; (?bic.doBuyOffer {
Icsysbuy.doBuyOffer } + tinvalidOffer)

42

Use Case M odél
For the entity Clerk (CL), the use case model UM - consists of the use cases CL#1, CL#2.
Frame Pro-case

We represent the behavior of M with a single use case expression employing parallel
composition:

PECLR =(PCCLl) *I(PCCLz) *

By substituting the primitive use case expressionswith the pro-cases, we get thefollowing
frame pro-case:

(

?sic.submitltem { !'csyssell.submitlitem } ; (?sic.submitPrice { !csyssell.submitPrice
} + tinvaiditem)

)*

[

(

?bic.initBuyOffer { !csysbuy.initBuyOffer } ; (?bic.doBuyOffer {
Icsysbuy.doBuyOffer } + tinvalidOffer)

)*

A.4. Supervisor

Use Case: SU#1 Supervisor validates a seller

Scope: Marketplace Information System

SuD: Supervisor

Level: Primary Task

Primary Actor: Computer System

Supporting Actor:

Main success scenario specification:

1. Computer system asksthe supervisor to decide on permitting aseller to operate on the
marketplace.

2. System validatesthe seller and signals the system to permit the seller to operate.

Extensions:

Sub-variations:

Pro-case SU#1

?system.verifySeller{ tValidateSeller; !system.permitSeller};

Use Case: SU#2 Supervisor performsinternal audit

Scope: Marketplace Information System

SuD: Supervisor

Level: Primary Task

Primary Actor: Computer System

Supporting Actor:

Main success scenario specification:

1. Supervisor requests the computer system to search the database of offersfor sensitive
keywords in item description

2. Supervisor requests from the computer system detailed descriptions of an item found.

3. Supervisor requests the computer system to remove the item from the database of
currently visible offers.

Extensions:

la No matching item found
lal Use caseterminates

2a Theitem doesis not an offending item.
2al Use case terminates

2b Supervisor requests details of another item
2b1l Repesat step 2

Sub-variations:

Pro-case SU#2

Isusys.search ; (!'susys.requestDetails; !susys.requestDetails* ;
('susys.removeOffer + tltemValid) + tNoltemFound)

45

Use Case Mode

For the entity Supervisor (SU), the use case model UM consists of the use cases SU#1,
SU#2.

Frame Pro-case

We represent the behavior of M with a single use case expression employing parallel
composition:

PESUR:(PCSUl)* Il (PCSUz)*

By substituting the primitive use case expressions with the pro-cases, we get thefollowing
frame pro-case:

(

?system.verifySeller{ tValidateSeller; 'system.permitSeller};

) *

[

(

Isusys.search ; (!'susys.requestDetails; !susys.requestDetails* ;
('susys.removeOffer + tltemValid) + tNoltemFound)

)*

46

