
Characteristics of Dynamic JVM Languages

Aibek Sarimbekov
University of Lugano

firstname.lastname@usi.ch

Andrej Podzimek
Charles University in Prague
podzimek@d3s.mff.cuni.cz

Lubomir Bulej
University of Lugano

firstname.lastname@usi.ch

Yudi Zheng
University of Lugano

firstname.lastname@usi.ch

Nathan Ricci
Tufts University

nricci01@eecs.tufts.edu

Walter Binder
University of Lugano

firstname.lastname@usi.ch

Abstract
The Java Virtual Machine (JVM) has become an execution
platform targeted by many programming languages. How-
ever, unlike with Java, a statically-typed language, the per-
formance of the JVM and its Just-In-Time (JIT) compiler
with dynamically-typed languages lags behind purpose-built
language-specific JIT compilers. In this paper, we aim to
contribute to the understanding of the workloads imposed on
the JVM by dynamic languages. We use various metrics to
characterize the dynamic behavior of a variety of programs
written in three dynamic languages (Clojure, Python, and
Ruby) executing on the JVM. We identify the differences
with respect to Java, and briefly discuss their implications.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Performance attributes; D.2.8 [Software Engineer-
ing]: Metrics—Performance measures

General Terms Languages, Measurement, Performance

Keywords workload characterization; dynamic metrics;
Java; JRuby; Clojure; Jython

1. Introduction
The introduction of scripting support and support for dynami-
cally-typed languages to the Java platform enables scripting
in Java programs and simplifies the development of dynamic
language runtimes. Consequently, developers of literally hun-
dreds of programming languages target the Java Virtual Ma-
chine (JVM) as the host for their languages—both to avoid

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VMIL ’13, October 28, 2013, Indianapolis, Indiana, USA.
Copyright © 2013 ACM 978-1-4503-2601-8/13/10. . . $15.00.
http://dx.doi.org/10.1145/2542142.2542144

developing a new runtime from scratch, and to benefit from
the JVM’s maturity, ubiquity, and performance. Today, pro-
grams written in popular dynamic1 languages such as Ruby,
Python, or Clojure (a dialect of Lisp) can be run on the JVM,
creating an ecosystem that boosts developer productivity.

However, since the JVM was originally conceived for
a statically-typed language, the performance of the JVM
and its JIT compiler with dynamically-typed languages is
often lacking, lagging behind purpose-built language-specific
JIT compilers. Making the JVM perform well with various
statically- and dynamically-typed languages clearly requires
significant effort, not only in optimizing the JVM itself, but
also, more importantly, in optimizing the bytecode-emitting
language compiler, instead of just relying on the original JIT
to gain performance [8]. This in turn requires that developers
of both the language compilers and the JVM understand the
characteristics of the JVM workloads produced by various
languages or compilation strategies.

In the case of statically-typed languages such as Java and
Scala, the execution charateristics have become rather well
understood, thanks to established metrics, benchmarks, and
studies [9, 11, 21–23]. In contrast, the execution character-
istics of various dynamically-typed JVM languages have so
far not been studied very extensively. We have previously
presented a comprehensive toolchain [20] for workload char-
acterization across JVM languages2, which was successfully
applied in studying the differences between Scala and Java
workloads [21, 22]. Recently, our toolchain was applied in a
study of execution characteristics of JVM languages by Li
et al. [16], which included Clojure, JRuby, and Jython, as
representatives of popular dynamic JVM languages.

In this paper, we report on the result of applying our
toolchain to programs written in Java and three dynamic JVM
languages—Clojure, Python, and Ruby. We adopt similar

1 We use the terms scripting, dynamic, and dynamically-typed language
interchangeably.
2 We use the term JVM language to refer to any language that targets the
JVM as execution platform.

methodology and base programs as Li et al. in their study [16],
but present complementary metrics and results, seeking to
improve understanding of the execution characteristics of the
selected dynamic JVM languages.

Hence, the original scientific contribution of this paper is
a workload characterization for selected Clojure, JRuby, and
Jython programs, based on dynamic metrics such as call-site
polymorphism, object lifetimes, object and class immutabil-
ity, memory zeroing, and object hash code usage. We present
and compare the results for functionally equivalent programs
written using the dynamic JVM languages and Java, and
briefly discuss the implications.

2. Experiment Design
2.1 Metrics
To analyze the dynamic program behavior, we collected
various dynamic metrics3 that influence performance or hint
at optimization opportunities for programs executing on the
JVM. In Section 3 we present details and briefly discuss
results for the following metrics:

Call-site Polymorphism. Hints at opportunities for opti-
mizations at polymorphic call-sites, e.g. inline caching [13]
(based on the number of receiver types), or method inlin-
ing [10] (based on the number of target methods).

Field, Object, and Class Immutability. Enables load elim-
ination [3] (replacing repeated accessess to immutable
objects with an access to a compiler-generated temporary
stored in a register), and identifies objects and side-effect-
free data structures amenable to parallelization.

Object Lifetimes. Determines garbage-collector (GC) work-
load, and aids in design and evaluation of new GC algo-
rithms, e.g. the lifetime-aware GC [15].

Unnecessary Zeroing. Hints at opportunities for eliminat-
ing unnecessary zeroing of memory for newly allocated
objects, which comes with a performance penalty [25].

Identity Hash-code Usage. Hints at opportunities for reduc-
ing header size for objects that never need to store their
identity hash code (often derived from their memory loca-
tion upon first request [1]).

The metrics were collected using our workload characteri-
zation suite [20], which relies on bytecode instrumentation,
and provides a near-complete bytecode coverage. We were
thus able to collect metrics that cover both the application
(and the dynamic language runtime) and the Java Class Li-
brary (including any proprietary JVM vendor-specific classes)
on a standard JVM.

2.2 Workloads
Any attempts at characterizing or comparing dynamic JVM
language workloads are inevitably hampered by the lack

3 They can only be obtained by running a program with a particular input.

Benchmark Description Input

binarytrees Allocate and deallocate many binary trees 16

fannkuch-
redux

Repeatedly access a tiny integer-sequence 10

fasta Generate and write random DNA sequences 150,000

k-nucleotide
Repeatedly update hashtables and k-nucleotide
strings

fasta
output

meteor-
contest

Search for solutions to a shape packing puzzle 2,098

mandelbrot
Generate a Mandelbrot set and write a portable
bitmap 1,000

nbody Perform an N-body simulation of the Jovian planets 500,000

regexdna Match DNA 8-mers and substitute nucleotides for
IUB code

fasta
output

revcomp Read DNA sequences and write their reverse-
complement

fasta
output

spectral-
norm

Calculate an eigenvalue using the power method 500

Table 1. Benchmarks from the CLBG project (implemented
in Java, Clojure, Ruby, and Python) selected for workload
characterization.

of an established benchmark suite such as DaCapo [4],
SPECjvm20084, or the Scala Benchmark suite [22]. Even
though some language-specific benchmark suites (e.g. Py-
Bench) exist, they are usually very low-level and do not allow
for direct comparison among different languages.

The closest to a benchmark suite that can be used for
a rough comparison of dynamic languages is the Computer
Language Benchmarks Game (CLBG) project5, which com-
pares performance results for various benchmarks imple-
mented in many different programming languages. Each
benchmark has a prescribed algorithm and an idiomatic im-
plementation in each supported language.

In general, the benchmarks cannot be considered represen-
tative of real-world applications, yet significant performance
differencens between Python compilers we considered indica-
tive by the developers of the Fiorano JIT compiler [8], and
benchmarks from the CLBG project have been used in the
recent study of JVM languages by Li et al. [16]. To provide
complementary results for comparable workloads, we have
decided to adopt the approach of Li et al., and based our study
(mostly, but not completely) on 10 CLBG benchmarks, listed
in Table 1 along with a brief description and inputs used.

We are aware of the general threat to validity due to the
use of micro-benchmarks. However, we argue that in the
context of our work, the threat is significantly mitigated by
the fact that we study the work a JVM needs to perform
when executing the benchmarks (rather than bare-metal
performance).

Still, to avoid relying solely on micro-benchmarks, we
complemented our workload selection with 4 real-world ap-
plication benchmarks, listed in Table 2. These unfortunately
lack the nice property of being idiomatic implementations

4 http://www.spec.org/jvm2008/,
5 http://benchmarksgame.alioth.debian.org/

http://www.spec.org/jvm2008/,
http://benchmarksgame.alioth.debian.org/

Application
(language)

Description Input

clojure-script
(Clojure) A compiler for Clojure that targets JavaScript twitterbuzz

source
eclipse
(Java) An integrated development envinronent (IDE) DaCapo

default
jython
(Python) An interpreter of Python running on the JVM DaCapo

default

opal
(Ruby) A Ruby to JavaScript compiler meteor

source

Table 2. Real-world applications selected as benchmarks to
complement the CLBG benchmarks for workload characteri-
zation.

of the same task. The eclipse and jython benchmarks come
from the DaCapo suite, while opal6 and clojure-script7 are
open-source projects from GitHub.

2.3 Measurement Context
All metrics were collected with Java 1.6, Clojure 1.5.1,
JRuby 1.7.3, and Jython 2.7 runtimes, yielding a total of
44 different language-benchmark combinations, all executed
using the OpenJDK 1.6.0 27 JRE running on Ubuntu Linux
12.0.4.2. Due to the high number of combinations and ex-
tensive duration of the experiments, we have not included
different language runtimes among independent variables.
Similarly, we have not varied the execution platform, because
the metrics are defined at the bytecode level, and can be
considered largely JVM8 and platform independent.

3. Experimental Results
3.1 Call-site Polymorphism
Specialization is considered to significantly aid performance
of dynamic languages targeting the JVM [8]. Hot polymor-
phic call-sites are good candidates for optimizations such as
inline caching [13] and method inlining [10], which special-
ize code paths to frequent receiver types or target methods.
In our study, we collected metrics that are indicative specif-
ically for method inlining, which removes costly method
invocations and increases the effective scope of subsequent
optimizations.

The results consist of two sets of histograms for each
language, derived from the number of target methods and the
number of calls made at each polymorphic call-site during
the execution of each workload. The plots in Figures 1–4
show the number of call sites binned according to the number
of targeted methods (x-axis), with an extra bin for call-sites
targeting 15 or more methods. The plots in Figures 5–8 then
show the actual number of invocations performed at those
call sites.

6 http://opalrb.org
7 https://github.com/clojure/clojurescript
8 Different vendors may provide different implementation of the Java Class
Library as well as other proprietary classes in their JVM.

101

103

105

#
C

al
lS

ite
s

binarytrees fannkuch fasta knucleotide

101

103

105

#
C

al
lS

ite
s

mandelbrot meteor nbody regexdna

5 10 15+

101

103

105

Targets

#
C

al
lS

ite
s

revcomp

5 10 15+
Targets

spectralnorm

5 10 15+
Targets

eclipse

Figure 1. The number of dynamically-dispatched call sites
targeting a given number of methods for the Java benchmarks.

We observe that polymorphic invocations in the CLBG
benchmarks for Java do not target more than 6 methods.
This is not suprising, given the microbenchmark nature of
the CLBG workloads. The situation is vastly different—and
more realistic—with the eclipse workload. Still, on average,
98.2% of the call sites (accounting for 90.8% of all method
calls) only had a single target.

In the case of dynamic JVM languages, the microbench-
mark nature of the CLBG workloads is much less pronounced
(compared to the real application workload). This suggests
that even the CLBG workloads do exhibit some of the traits
representative of a particular dynamic language.

The results for Clojure workloads show that polymorphic
invocations target 1 to 10 methods, with an average of 99.3%
of the call sites (accounting for 91.2% of method calls)
actually targeting a single method. The results for Jython
workloads show that polymorphic invocations mostly target
1 to 10 methods, with a small number of sites targeting 15
or more methods. Invocations at such sites are surprisingly
frequent, but still 98.7% of the call sites (accounting for
91.7% of method calls) target a single method.

Finally, the results for JRuby show little difference be-
tween the CLBG benchmarks and the real-world application,
and consistently show a significant number of call-sites with
15 or more targets. Interestingly, the number of calls made at
those sites is surprisingly high—comparable with the other
sites. However, on average, 98.4% of the call sites (account-
ing for 88% of method calls) target a single method.

3.2 Field, Object, and Class Immutability
To study the dynamic behavior of JVM workloads, we use
an extended notion of immutability instead of the “classic”
definition: an object field is considered immutable if it is
never written to outside the dynamic extent of that object’s

http://opalrb.org
https://github.com/clojure/clojurescript

101

103

105

#
C

al
lS

ite
s

binarytrees fannkuch fasta knucleotide

101

103

105

#
C

al
lS

ite
s

mandelbrot meteor nbody regexdna

5 10 15+

101

103

105

Targets

#
C

al
lS

ite
s

revcomp

5 10 15+
Targets

spectralnorm

5 10 15+
Targets

opal

Figure 2. The number of dynamically-dispatched call sites
targeting a given number of methods for the JRuby bench-
marks.

101

103

105

#
C

al
lS

ite
s

binarytrees fannkuch fasta knucleotide

101

103

105

#
C

al
lS

ite
s

mandelbrot meteor nbody regexdna

5 10 15+

101

103

105

Targets

#
C

al
lS

ite
s

revcomp

5 10 15+
Targets

spectralnorm

5 10 15+
Targets

clojure-script

Figure 3. The number of dynamically-dispatched call sites
targeting a given number of methods for the Clojure bench-
marks.

constructor. This notion is dynamic in the sense that it may
hold only for a particular program execution or for a specific
program input [20, 21].

Extending the notion to objects and classes, we distinguish
(1) immutable fields, assigned at most once during the entire
program execution, (2) immutable objects, consisting only of
immutable fields, and (3) immutable classes, for which only
immutable objects were observed.

The results shown in Figure 9 indicate that there is a sig-
nificant fraction of immutable fields (as per our definition)
in most of the studied workloads, without significant differ-

101

103

105

#
C

al
lS

ite
s

binarytrees fannkuch fasta knucleotide

101

103

105

#
C

al
lS

ite
s

mandelbrot meteor nbody regexdna

5 10 15+

101

103

105

Targets

#
C

al
lS

ite
s

revcomp

5 10 15+
Targets

spectralnorm

5 10 15+
Targets

jython

Figure 4. The number of dynamically-dispatched call sites
targeting a given number of methods for the Jython bench-
marks.

101

106

1011

#
C

al
ls

binarytrees fannkuch fasta knucleotide

101

106

1011

#
C

al
ls

mandelbrot meteor nbody regexdna

5 10 15+

101

106

1011

Targets

#
C

al
ls

revcomp

5 10 15+
Targets

spectralnorm

5 10 15+
Targets

eclipse

Figure 5. The number of dynamically-dispatched calls made
at call sites with a given number of targets for the Java
benchmarks.

ences between the CLBG and real-world benchmarks. Except
in the Java binarytrees CLBG workload, we observed more
than 50% of immutable fields in all benchmarks, with Jython
having the highest average number of immutable fields.

At the granularity of objects, the results in Figure 10
show varying immutability ratios across different workloads.
Apart from few exceptions, the ratios are consistenly high,
especially for the dynamic languages (mostly over 50%), with
Clojure and JRuby scoring almost 100% on five workloads
(with four common to both). This can be attributed to the

101

106

1011

#
C

al
ls

binarytrees fannkuch fasta knucleotide

101

106

1011

#
C

al
ls

mandelbrot meteor nbody regexdna

5 10 15+

101

106

1011

Targets

#
C

al
ls

revcomp

5 10 15+
Targets

spectralnorm

5 10 15+
Targets

opal

Figure 6. The number of dynamically-dispatched calls made
at call sites with a given number of targets for the JRuby
benchmarks.

101

106

1011

#
C

al
ls

binarytrees fannkuch fasta knucleotide

101

106

1011

#
C

al
ls

mandelbrot meteor nbody regexdna

5 10 15+

101

106

1011

Targets

#
C

al
ls

revcomp

5 10 15+
Targets

spectralnorm

5 10 15+
Targets

clojure-script

Figure 7. The number of dynamically-dispatched calls made
at call sites with a given number of targets for the Clojure
benchmarks.

large amount of boxing and auxiliary objects created by the
language runtimes [16].

Finally, at the granularity of classes, the results in Fig-
ure 11 show rather consistent results across different work-
loads (except for Jython), with significant differences be-
tween the languages. On average9, the ratio of immutable
classes ranges from 23.5% for JRuby, through 31.7% and
58.8% for Jython and Java, respectively, to 77.5% for Clo-
jure. These systematic differences can be attributed both to
different coding styles typical for the particular languages,

9 Calculated from the total number of classes.

101

106

1011

#
C

al
ls

binarytrees fannkuch fasta knucleotide

101

106

1011

#
C

al
ls

mandelbrot meteor nbody regexdna

5 10 15+

101

106

1011

Targets

#
C

al
ls

revcomp

5 10 15+
Targets

spectralnorm

5 10 15+
Targets

jython

Figure 8. The number of dynamically-dispatched calls made
at call sites with a given number of targets for the Jython
benchmarks.

bin
ary

tre
es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

man
de

lbr
ot

mete
or
nb

od
y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
lno

rm
ec

lip
se

0%

20%

40%

60%

80%

100%
Java

bin
ary

tre
es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

man
de

lbr
ot

mete
or
nb

od
y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
lno

rm

clo
jur

e-s
cri

pt

Clojure

bin
ary

tre
es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

man
de

lbr
ot

mete
or
nb

od
y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
lno

rmop
al

0%

20%

40%

60%

80%

100%
JRuby

bin
ary

tre
es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

man
de

lbr
ot

mete
or
nb

od
y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
lno

rm
jyt

ho
n

Jython

Figure 9. Fraction of primitive () and reference () in-
stance fields that are per-object immutable

and to the number of helper classes produced by a particular
dynamic language runtime environment.

3.3 Object Lifetimes
Object sizes and lifetimes characterize program memory
management “habits” and largely determine the GC workload.
To approximate and analyze it, we used ElephantTracks [19]

bin
ary

tre
es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

man
de

lbr
ot

mete
or
nb

od
y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
lno

rm
ec

lip
se

0%

20%

40%

60%

80%

100%
Java

bin
ary

tre
es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

man
de

lbr
ot

mete
or
nb

od
y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
lno

rm

clo
jur

e-s
cri

pt

Clojure

bin
ary

tre
es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

man
de

lbr
ot

mete
or
nb

od
y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
lno

rmop
al

0%

20%

40%

60%

80%

100%
JRuby

bin
ary

tre
es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

man
de

lbr
ot

mete
or
nb

od
y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
lno

rm
jyt

ho
n

Jython

Figure 10. Fraction of immutable objects

to collect object allocation, field update, and object death
traces, and run them through a GC simulator configured for
a generational collection scheme with a 4MiB nursery, and
4GiB old generation.10

The results are summarized in Table 3, where mark is
the number of times the GC marked an object live, cons is
the number of allocated objects, and nursery survival is the
fraction of allocated objects that survive a nursery collection.

The most striking difference is the number of objects allo-
cated by the dynamic language CLBG benchmarks compared
to their Java counterparts—in all of them, Java allocates at
least one order or magnitude less objects, and in some cases
several orders less. Again, given the microbenchmark nature
of the CLBG workloads, the results for Java are not too sur-
prising, but they indicate how inherently costly the dynamic
language features are in terms of increased GC workload.

The plots in Figures 12, 13, 14, and 15 show the evolution
of object survival rate plotted against logical time expressed
as cumulative memory allocated by a benchmark.11

The results show that even though the dynamic languages
allocate many objects, most of them die young, suggesting
that they are mainly temporaries resulting from features
specific to dynamic languages.

10 None of the microbenchmarks allocated enough memory to trigger a full
heap (old generation) collection.
11 The Java fannkuch-redux, fasta, mandlebrot, nbody, and spectralnorm
benchmarks are not shown, because they allocate less than 1MiB.

bin
ary

tre
es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

man
de

lbr
ot

mete
or
nb

od
y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
lno

rm
ec

lip
se

0%

20%

40%

60%

80%

100%
Java

bin
ary

tre
es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

man
de

lbr
ot

mete
or
nb

od
y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
lno

rm

clo
jur

e-s
cri

pt

Clojure

bin
ary

tre
es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

man
de

lbr
ot

mete
or
nb

od
y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
lno

rmop
al

0%

20%

40%

60%

80%

100%
JRuby

bin
ary

tre
es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

man
de

lbr
ot

mete
or
nb

od
y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
lno

rm
jyt

ho
n

Jython

Figure 11. Fraction of immutable classes

eclipse

binarytrees

knucleotide

meteor

regexdnarevcomp

0MiB 512MiB 1024MiB

.01 %

.1 %

1 %

10 %

100 %

Allocation

Su
rv

iv
in

g
Fr

ac
tio

n

Java Survival

Figure 12. Fraction of objects surviving more than a given
amount of allocation in the Java benchmarks

3.4 Unnecessary Zeroing
The Java language specification requires that all fields have
a default value of null, false or 0, unless explicitly initial-
ized. Our analysis detects fields assigned within the dynamic
extent of a constructor without being read before. For such
fields, explicit zeroing causes unnecessary overhead [25],
because their uninitialized value cannot be observed by the
program or the garbage collector. A real JVM may optimize
the initialization overhead away more aggressively, e.g., by
excluding unused fields where appropriate. However, unini-

Benchmark Mark Cons
Mark

Cons

Nursery
Survival

Clojure
binarytrees 4 021 096 147 910 977 0.03 2.72 %

fannkuchredux 38 900 317 062 0.12 12.27 %
fasta 122 560 2 721 195 0.05 4.50 %

knucleotide 1 158 380 18 436 145 0.06 6.28 %
mandelbrot 134 617 2 822 088 0.05 4.77 %

meteor 509 781 10 268 791 0.05 4.96 %
nbody 180 333 5 320 075 0.03 3.39 %

regexdna 197 257 586 176 0.34 33.65 %
revcomp 60 604 437 639 0.14 13.85 %

spectralnorm 563 338 5 592 427 0.10 10.07 %
clojure-script 8 658 091 30 656 512 .28 28.24 %

Java
binarytrees 1 136 479 29 581 095 0.04 3.84 %

fannkuchredux 0 2226 0.00 0.00 %
fasta 0 2329 0.00 0.00 %

knucleotide 962 320 967 492 0.99 99.47 %
mandelbrot 0 3699 0.00 0.00 %

meteor 10 467 262 816 0.04 3.98 %
nbody 0 2726 0.00 0.00 %

regexdna 1295 2698 0.48 48.00 %
revcomp 1158 2848 0.41 40.66 %

spectralnorm 0 6263 0.00 0.00 %
eclipse 171 766 557 66 569 509 2.58 30.82 %

JRuby
binarytrees 30 303 133 118 527 001 0.26 7.40 %

fannkuchredux 263 722 10 041 379 0.03 2.63 %
fasta 513 005 27 557 549 0.02 1.86 %

knucleotide 1 788 684 19 762 437 0.09 9.05 %
mandelbrot 81 977 235 200 409 954 0.41 1.81 %

meteor 5 026 466 131 510 575 0.04 1.64 %
nbody 44 632 312 154 314 308 0.29 1.90 %

regexdna 148 158 399 044 0.37 37.13 %
revcomp 109 951 635 720 0.17 17.30 %

spectralnorm 9 262 955 113 332 054 0.08 1.93 %
opal 382 540 2 632 867 0.15 14.53 %

Jython
binarytrees 73 870 086 297 905 683 0.25 3.22 %

fasta 340 799 3 111 487 0.11 10.95 %
knucleotide 12 538 292 40 411 395 0.31 31.03 %
mandelbrot 2 301 641 80 129 997 0.03 2.87 %

meteor 12 465 700 165 578 823 0.08 2.52 %
nbody 13 095 284 161 984 760 0.08 2.83 %

regexdna 58 047 534 227 296 897 0.26 3.78 %
revcomp 183 874 1 012 778 0.18 18.16 %

spectralnorm 6 131 554 140 908 487 0.04 3.29 %
jython 10 654 369 43 752 983 0.24 24.35 %

Table 3. Garbage collector workload

tialized values of unused fields must not be exposed to the
garbage collector, which is strongly related to a particular
JVM implementation. Striving to keep our metrics JVM-
independent, we do not take these additional optimizations
into account, i.e., zeroing of a field not accessed by the pro-
gram is considered necessary.

Figure 16 shows the amount of unnecessary zeroing (ac-
cording to our metric) happening in the workloads from the
different languages. For the CLBG benchmarks, Clojure ex-
hibits the highest average percentage of unnecessary zeroing
(86.8%), followed by Jython (64.2%), JRuby (40.8%) and

clojure-script

binarytrees

fannkuchredux

fasta

knucleotide

mandelbrot meteor

nbody

regexdnarevcomp

spectralnorm

0MiB 512MiB 1024MiB

.01 %

.1 %

1 %

10 %

100 %

Allocation

Su
rv

iv
in

g
Fr

ac
tio

n

Clojure Survival

Figure 13. Fraction of objects surviving more than a given
amount of allocation in the Clojure benchmarks

opal

binarytrees

fannkuchredux

fasta

knucleotide

mandelbrot
meteor
nbody

regexdnarevcomp

spectralnorm

0MiB 512MiB 1024MiB

.01 %

.1 %

1 %

10 %

100 %

Allocation

Su
rv

iv
in

g
Fr

ac
tio

n

JRuby Survival

Figure 14. Fraction of objects surviving more than a given
amount of allocation in the JRuby benchmarks

Java (39.8%). Interestingly, this language ordering appears to
correlate with the ordering imposed by the percentage of im-
mutable instance fields (shown in Figure 9) with average val-
ues of 94.5%, 91.2%, 86.8%, and 74.8%, respectively. Our
results therefore suggest that the more immutable instance
fields exist, the more unnecessary zeroing takes place.

3.5 Identity Hash-code Usage
The JVM requires every object to have a hash code. The de-
fault implementation of the hashCode method in the Object
class uses the System.identityHashCode method to ensure
that every object satisfies the JVM requirement. The com-
puted hash code is usually stored in the object header, which
increases memory and cache usage—JVMs therefore tend to
use an object’s address as its implicit identity hash code, and

jython

binarytrees

fannkuchredux
fasta

knucleotide

mandelbrot

meteor

nbody

regexdna
revcomp spectralnorm

0MiB 512MiB 1024MiB

.01 %

.1 %

1 %

10 %

100 %

Allocation

Su
rv

iv
in

g
Fr

ac
tio

n
Jython Survival

Figure 15. Fraction of objects surviving more than a given
amount of allocation in the Jython benchmarks

bi
na
ry
tre
es

fa
nn
ku
ch
fa
st
a

kn
uc
leo
tid
e

m
an
de
lbr
ot

m
et
eo
r

nb
od
y

re
ge
xd
na

re
vc
om
p

sp
ec
tra
ln
or
m

ec
lip
se

0%

20%

40%

60%

80%

100%
Java

bi
na
ry
tre
es

fa
nn
ku
ch
fa
st
a

kn
uc
leo
tid
e

m
an
de
lbr
ot

m
et
eo
r

nb
od
y

re
ge
xd
na

re
vc
om
p

sp
ec
tra
ln
or
m

clo
ju
re
-sc
rip
t

Clojure

bi
na
ry
tre
es

fa
nn
ku
ch
fa
st
a

kn
uc
leo
tid
e

m
an
de
lbr
ot

m
et
eo
r

nb
od
y

re
ge
xd
na

re
vc
om
p

sp
ec
tra
ln
or
m
op
al

0%

20%

40%

60%

80%

100%
JRuby

bi
na
ry
tre
es

fa
nn
ku
ch
fa
st
a

kn
uc
leo
tid
e

m
an
de
lbr
ot

m
et
eo
r

nb
od
y

re
ge
xd
na

re
vc
om
p

sp
ec
tra
ln
or
m
jyt
ho
n

Jython

Figure 16. Unnecessary (,) and necessary (,) zeroing
of primitive (,) and reference (,) instance fields.

store it explicitly only upon first request (to make it persistent
in presence of a copying GC).

That said, performance may be improved by allocating the
extra header slot either eagerly or lazily, depending on the
usage of identity hash codes in a workload. Since systematic
variations in hash code usage were identified between Java
and Scala workloads [21], we also analyzed hash code usage
of the workloads in our study.

bi
na
ry
tre
es

fa
nn
ku
ch
fa
st
a

kn
uc
leo
tid
e

m
an
de
lbr
ot

m
et
eo
r

nb
od
y

re
ge
xd
na

re
vc
om
p

sp
ec
tra
ln
or
m

ec
lip
se

0%

10%

20%

30%

0
0.
18

0.
17

5.
75

0.
06

0
0.
14

0.
13 0.

19
0.
07

0.
28

Java

bi
na
ry
tre
es

fa
nn
ku
ch
fa
st
a

kn
uc
leo
tid
e

m
an
de
lbr
ot

m
et
eo
r

nb
od
y

re
ge
xd
na

re
vc
om
p

sp
ec
tra
ln
or
m

clo
ju
re
-sc
rip
t

0%

2%

4%

6%

0
0.
17

0.
02

0
0.
02

0.
01

0.
01

0.
09

0.
12

0.
01

0.
66

Clojure

bi
na
ry
tre
es

fa
nn
ku
ch
fa
st
a

kn
uc
leo
tid
e

m
an
de
lbr
ot

m
et
eo
r

nb
od
y

re
ge
xd
na

re
vc
om
p

sp
ec
tra
ln
or
m
op
al

0%

1%

2%

3%

0.
13 0.
01

0.
14

0.
01

0 0 0
0.
23

0.
34

0
0.
09

JRuby

bi
na
ry
tre
es

fa
nn
ku
ch
fa
st
a

kn
uc
leo
tid
e

m
an
de
lbr
ot

m
et
eo
r

nb
od
y

re
ge
xd
na

re
vc
om
p

sp
ec
tra
ln
or
m
jyt
ho
n

0%

5%

10%

15%

20%

25%

0.
6

0.
03 0.
48

0.
34

0.
62

0.
19

0 0
0.
12

0 0.
49

Jython

Figure 17. Fraction of objects hashed using an overriden
hashCode method (), the identityHashCode method (), or
both (), along with an average number of hash operations
per object.

The results shown in Figure 17 suggest that the identity
hash code is never requested for a vast majority of objects.
Despite a comparatively frequent use of hash code in the
Java workloads, the use of identity hash code remains well
below 0.1% for most workloads. Increased usage of both
hash code and identity hash code can be observed in some
of the Clojure workloads, specifically in the clojure-script
(1.7%), fannkuch (0.79%), revcomp (0.56%), and regexdna
(0.43%) benchmarks.

Since dynamic languages appear to produce many short-
lived objects (c.f. Section 3.3), the results suggest that object
header compression with lazy identity hash code slot allo-
cation is an adequate heuristic for the dynamic language
runtimes.

4. Related Work
The research presented in this paper can be seen as a contin-
uation of our previous work [20–22] and complementary to
that of Li et al. [16], who recently published an exploratory
study characterizing workloads for five JVM languages using
both CLBG project and real-world application benchmarks.

In their study, Li et al. collected metrics for Java, Scala,
Clojure, JRuby, and Jython programs, characterizing N-gram
coverage, method size, stack depths, method and basic-block
hotness, object lifetimes and size, and use of boxed primitives.
In our study, we adopted similar approach regarding workload
selection, but opted for non-interactive real-world applica-

tions to complement our CLBG benchmark mix, and col-
lected complementary metrics to characterize similar work-
loads from a different perspective.

Numerous works exist on the topic of workload character-
ization and programming languages comparison. Hundt [14]
and Bull et al. [6] use idiomatic implementations of the same
algorithm for performance comparisons. While the former
implemented a loop recognition algorithm in Java, Scala, Go,
and C++, the latter reimplemented the Java Grande bench-
marking suite in C and Fortran. We follow a similar approach
by using idiomatic implementations from the CLBG project,
but our goals are different, as we aim to contribute to the
understanding of JVM workloads produced by dynamic JVM
languages.

Ratanaworabhan et al. [18] compare JavaScript bench-
marks with real web applications and compute different static
and dynamic platform-independent metrics, such as instruc-
tion mix, method hotness, and the number of executed instruc-
tions. The authors conclude that existing JavaScript bench-
marks are not representative of real web sites and the con-
clusions reached from measuring only the benchmarks can
be misleading. We therefore complemented our study with
real-world application benchmarks to avoid solely relying on
micro-benchmarks.

Daly et al. [9] examine optimization oportunities at the
Java-to-bytecode compiler level. The authors analyze the Java
Grande benchmark suite [7] using JVM-independent metrics.
The authors consider static and dynamic instruction mixes
and identify differences in optimizations performed by five
different Java-to-bytecode compilers.

Dufour et al. [11] define a list of sixty dynamic metrics
that characterize Java applications with respect to program
size, data structures, concurrency and synchronization, and
polymorphism. In their work, the authors present a case study
that shows the usefulness of the defined metrics for guiding
optimizations of Java programs.

Several other works also use dynamic metrics that hint
at different optimization opportunities for JVM languages.
Yermolovich et al. [26] propose to run an interpreter of
a dynamic language on top of an optimizing trace-based VM,
thus avoiding the need to create a custom JIT compiler for
a dynamic language. A similar approach is proposed by Gal
et al. [12], where the authors create a tracing JIT compiler
for the JavaScript VM running in the Firefox web browser.
Zaleski et al. [27] followed the goal of building an interpreter
that could be extended to a tracing VM. The authors use
tracing to achieve inlining, indirect jump elimination, and
other optimizations for Java. Dynamic instruction frequencies
and basic block hotness are the fundamental metrics that are
used in tracing-based compilation approaches. These metrics
are also used in the work by Williams et al. [24], where
the authors propose specializing native code to program
properties found at JIT-compilation time, thus improving
the overall program execution time.

Call site polymorhism metric is used by Mostafa et al. [17]
for possible caching of method call targets and inlining. It is
also used in the work by Brunthaler et al. [5] to speedup the
execution of dynamic languages by caching the call types.

Barany et al. [2] analyze the usage of boxed types in order
to eliminate extensive boxing behaviour and instead allocate
temporary objects on the heap.

5. Conclusions
The introduction of scripting support and support for dyna-
mically-typed languages to the Java platform made the JVM
and its runtime library an attractive target for the developers
of new dynamic programming languages. Those are typically
more expressive—trading raw performance of the statically-
typed languages for increased developer productivity—and
by targeting the JVM, their authors hope to gain the perfor-
mance and maturity of the Java platform, while enjoying the
benefits of the dynamic languages. However, the optimiza-
tions found in JVM implementations have been mostly tuned
with Java in mind, therefore the sought-after benefits do not
automatically come just from running on the JVM.

In this paper, we performed workload characterization
for 44 different workloads produced by benchmarks and
applications written in Java, Clojure, Python, and Ruby.
Using our workload characterization suite [20], we collected
and analyzed hundreds of gigabytes of data resulting from
weeks of running experiments with the aim to contribute
to the understanding of the characteristics of workloads
produced by dynamic languages executing on the JVM. Due
to the lack of a proper benchmarking suite for the dynamic
languages, we opted, like Li et al. [16] before us, to use the
benchmarks from the CLBG project augmented with several
real-world applications as the workloads for our study.

Here we summarize the findings of our study:

Call-site Polymorphism. Despite high number of polymor-
phic call-sites targeting multiple methods, a very high per-
centage of method invocations actually happens at sites
that only target a single method.

Field, Object, and Class Immutability. The dynamic lan-
guages use a significant amount of immutable (see Sec-
tion 3.2 for the extended notion) classes and objects.

Object Lifetimes. Compared to Java, the dynamic language
workloads allocate significantly more objects, but most
of them do not live for long, which suggests at many
temporaries (often resulting from unnecessary boxing and
unboxing of primitive types).

Unnecessary Zeroing. The dynamic languages (especially
Clojure and Jython) exhibit a significant amount of unnec-
essary zeroing. This correlates with the significant amount
of short-lived immutable objects allocated by the respec-
tive dynamic language workloads.

Identity Hash-code Usage. All the workloads use the iden-
tity hash code very scarcely, suggesting that object header
compression with lazy handling of identity hash code stor-
age is an appropriate heuristic for reducing object memory
and cache footprint.

We acknowledge that the corpus of dynamic JVM lan-
guage programs analyzed so far does not allow for far-
reaching conclusions, and that our findings contribute mainly
to an initial characterization of dynamic language workloads
on the JVM. In future work, we plan to focus our experi-
ments on phenomena characterized by individual metrics and
specialized in-depth analyses.

Acknowledgments
The research presented in this paper has been supported by the
Swiss National Science Foundation (project CRSII2 136225),
by a Sino-Swiss Science and Technology Cooperation
(SSSTC) Institutional Partnership (project IP04–092010), by
the European Commission (Seventh Framework Programme
grant 287746), and by the Czech Science Foundation (project
GACR P202/10/J042). This work is supported in part by the
US National Science Foundation under grant CCF 1018038.

References
[1] D. F. Bacon, S. J. Fink, and D. Grove. Space- and time-efficient

implementation of the Java object model. In Proc. ECOOP,
pages 111–132, 2002.

[2] G. Barany. Static and dynamic method unboxing for Python.
In Proc. Software Engineering (Workshops), volume 215 of
LNI, pages 43–57. GI, 2013.

[3] R. Barik and V. Sarkar. Interprocedural load elimination for
dynamic optimization of parallel programs. In Proc. PACT,
pages 41–52, 2009.

[4] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo bench-
marks: Java benchmarking development and analysis. In Proc.
OOPSLA, pages 169–190, 2006.

[5] S. Brunthaler. Inline caching meets quickening. In Proc.
ECOOP, pages 429–451, 2010.

[6] J. M. Bull, L. A. Smith, L. Pottage, and R. Freeman. Bench-
marking Java against C and Fortran for scientific applications.
In Proc. Java Grande, JGI ’01, pages 97–105, 2001.

[7] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and
R. A. Davey. A methodology for benchmarking Java Grande
applications. In Proc. Java Grande, pages 81–88, 1999.

[8] J. Castanos, D. Edelsohn, K. Ishizaki, P. Nagpurkar,
T. Nakatani, T. Ogasawara, and P. Wu. On the benefits and
pitfalls of extending a statically typed language JIT compiler
for dynamic scripting languages. In Proc. OOPSLA, pages
195–212, 2012.

[9] C. Daly, J. Horgan, J. Power, and J. Waldron. Platform
independent dynamic Java virtual machine analysis: the Java
Grande forum benchmark suite. In Proc. Java Grande, pages
106–115, 2001.

[10] D. Detlefs and O. Agesen. Inlining of virtual methods. In Proc.
ECOOP, pages 258–278, 1999.

[11] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dy-
namic metrics for Java. In Proc. OOPSLA, pages 149–168,
2003.

[12] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin,
M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Oren-
dorff, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita,
M. Chang, and M. Franz. Trace-based just-in-time type special-
ization for dynamic languages. In Proc. PLDI, pages 465–478,
2009.

[13] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
dynamically-typed object-oriented languages with polymor-
phic inline caches. In Proc. ECOOP, pages 21–38, 1991.

[14] R. Hundt. Loop Recognition in C++/Java/Go/Scala. Technical
report, Google, 2010.

[15] R. Jones and C. Ryder. Garbage collection should be lifetime
aware. In Proc. ICOOOLPS, 2006.

[16] W. H. Li, J. Singer, and D. White. JVM-Hosted Languages:
They talk the talk, but do they walk the walk? In Proc. PPPJ,
2013.

[17] N. Mostafa, C. Krintz, C. Cascaval, D. Edelsohn, P. Nagprurkar,
and P. Wu. Understanding the potential of interpreter-based
optimizations for Python. Technical report, UCSB, 2010.

[18] P. Ratanaworabhan, B. Livshits, and B. G. Zorn. JSMether:
comparing the behavior of JavaScript benchmarks with real
web applications. In Proc. WebApps, pages 27–38, 2010.

[19] N. P. Ricci, S. Z. Guyer, and J. E. B. Moss. Elephant tracks:
generating program traces with object death records. In Proc.
PPPJ, pages 139–142. ACM, 2011.

[20] A. Sarimbekov, S. Kell, L. Bulej, A. Sewe, Y. Zheng, D. Ansa-
loni, and W. Binder. A comprehensive toolchain for workload
characterization across JVM languages. In Proc. PASTE, pages
9–16, 2013.

[21] A. Sewe, M. Mezini, A. Sarimbekov, D. Ansaloni, W. Binder,
N. Ricci, and S. Z. Guyer. new Scala() instance of Java:
a comparison of the memory behaviour of Java and Scala
programs. In Proc. ISMM, pages 97–108, 2012.

[22] A. Sewe, M. Mezini, A. Sarimbekov, and W. Binder. Da Capo
con Scala: design and analysis of a Scala benchmark suite for
the Java virtual machine. In Proc. OOPSLA, pages 657–676,
2011.

[23] K. Shiv, K. Chow, Y. Wang, and D. Petrochenko.
SPECjvm2008 performance characterization. In Proc. SPEC
W. on Computer Performance Evaluation and Benchmarking,
pages 17–35, 2009.

[24] K. Williams, J. McCandless, and D. Gregg. Dynamic interpre-
tation for dynamic scripting languages. In Proc. CGO, pages
278–287, 2010.

[25] X. Yang, S. M. Blackburn, D. Frampton, J. B. Sartor, and K. S.
McKinley. Why nothing matters: the impact of zeroing. In
Proc. OOPSLA, pages 307–324, 2011.

[26] A. Yermolovich, C. Wimmer, and M. Franz. Optimization
of dynamic languages using hierarchical layering of virtual
machines. In Proc. DLS, pages 79–88, 2009.

[27] M. Zaleski, A. D. Brown, and K. Stoodley. YETI: a graduallY
Extensible Trace Interpreter. In Proc. VEE, pages 83–93, 2007.

	Introduction
	Experiment Design
	Metrics
	Workloads
	Measurement Context

	Experimental Results
	Call-site Polymorphism
	Field, Object, and Class Immutability
	Object Lifetimes
	Unnecessary Zeroing
	Identity Hash-code Usage

	Related Work
	Conclusions

