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ABSTRACT 
The recent increase in the ubiquity and connectivity of computing 
devices allows forming large-scale distributed systems that 
respond to and influence activities in their environment. 
Engineering of such systems is very complex because of their 
inherent dynamicity, open-endedness, and autonomicity. In this 
paper we propose a new class of component systems (Ensemble-
Based Component Systems – EBCS) which bind autonomic 
components with cyclic execution via dynamic component 
ensembles controlling data exchange. EBCS combine the key 
ideas of agents, ensemble-oriented systems, and control systems 
into software engineering concepts based on autonomic 
components. In particular, we present an instantiation of EBCS – 
the DEECo component model. In addition to DEECo main 
concepts, we also describe its computation model and mapping to 
Java. Lastly, we outline the basic principles of the EBCS/DEECo 
development process. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – distributed applications; D.2.6 [Software 
Engineering]: Programming Environments – integrated 
environments; D.2.9 [Software Engineering]: Management – life 
cycle; D.2.11 [Software Engineering]: Software Architectures. 

Keywords 
Component model; emergent architecture; component ensembles; 
autonomic systems; development process; runtime framework 

1. INTRODUCTION 
The significant increase in the ubiquity and connectivity of 
computing devices has opened new possibilities for addressing 
social and environmental challenges (e.g., ambient assisted living, 
smart city infrastructures, emergency coordination, environmental 
monitoring) by providing hardware and infrastructures necessary 
for building large-scale Resilient Distributed Systems (RDS) that 
respond to and influence activities in the real world. As RDS have 
to cope with very dynamic and open-ended environments, they 
exhibit a high degree of adaptivity and autonomicity.  

Although developing RDS has become relatively feasible from the 
perspective of hardware and network infrastructures, there still 
remain significant challenges in developing software for RDS. In 
particular, the problem is to feature the appropriate computation 
models and development processes which would address the 
requirements of scalability, distribution, and well-defined 
architecture, while, at the same time, would deal with the 
requirements of dynamicity, open-endedness, robustness, and 
autonomicity. 

1.1 Towards EBCS 
In this paper, we advocate using components for engineering 
RDS. The use of components has been proven efficient for the 
design and development of large-scale systems with well-defined 
architectures. However, due to the dynamic and autonomic nature 
of RDS, traditional approaches to component architectures [38] as 
well as existing component models [6][7][30][31][32] do not 
scale. Therefore, inspired by the work in the field of formal 
coordination languages [14], in this paper we address this issue by 
identifying a new class of component-based systems – Ensemble-
Based Component Systems (EBCS) – specifically tailored for 
designing RDS. Moreover, we present the DEECo (Distributed 
Emergent Ensembles of Components) component model [8][25] 
as our instantiation of EBCS.  

The characteristic of EBCS is that the “traditional” explicit 
component architecture is replaced by the composition of 
components into so-called ensembles [14][20], each of which is an 
implicit, inherently dynamic group of components mutually 
cooperating to achieve a particular goal. To cope with the 
dynamism, the components in EBCS become autonomic entities, 
building on agent-oriented concepts [39], while featuring 
execution model based on feedback loops (e.g., MAPE-K [23], 
soft real-time control systems [33]) in order to achieve (self-) 
adaptive and resilient operation. 

In this view, the EBCS can be defined as “Distributed systems 
composed of components that feature autonomic and (self-) 
adaptive behaviors and are organized into emergent ensembles to 
achieve cooperation.” 

EBCS thus naturally combine relevant concepts from a number of 
research areas (Figure 1). Namely:  

From component-based software engineering [11] EBCS adopt 
the software engineering concepts of the system architecture 
based on components (which themselves are seen as well-
encapsulated, reusable, and substitutable entities) and the 
component-based development process.  
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From agent-oriented computing [39] EBCS derive the 
autonomous aspects, where the individuals maintain only a partial 
view on the whole system in order to guide their decisions – the 
belief, and self-* behavior [10]. This way, the overall behavior of 
EBCS is an emergent result of the behaviors of the individual 
components, enabling thus for efficient decentralized execution.  

Building on the ensemble-oriented systems [14][20] EBCS rely on 
the attribute-based communication, which models the 
communication as best-effort and localized to dynamically 
changing ensembles of components; as opposed to existing agent-
based systems [4] which at the deployment level resemble 
service-oriented architectures employing explicit communication 
channels. This helps to effectively cope with the assumption that 
the deployment (and thus also architecture) of RDS changes very 
dynamically. 

From control system engineering [33] EBCS adopt the idea of 
achieving robustness by employing (soft real-time) control 
feedback loops [23] that maintain the operational normalcy of a 
component. Here, operational normalcy refers to the property of 
being within certain limits that define the range of normal 
functioning of the component. The required level of robustness is 
achieved by adjusting the periods of the loops. As extreme 
dynamism is assumed, the core attribute of EBCS is employing 
the concept of feedback loops both at the level of individual 
components and ensembles. Thus, an EBCS-based system can be 
understood as a distributed system of conditionally interacting 
feedback loops. 
As a result, EBCS provide the following key features important 
for development of RDS: 

• System architecture (represented by components and 
their bindings) emerges at runtime. The system 
architecture is however not arbitrary – it complies with 
explicit interaction patterns of ensembles specified at 
design time. 

• Components maintain a belief about the rest of the 
system and the environment. The belief is managed 
outside the component behavior by the underlying 
runtime framework. 

• Component execution is performed in isolation based 
solely on the component’s belief. This strengthens the 
autonomicity of components (e.g., in the context of 
unreliable communication and/or rapid architecture 
changes).  

1.2 Goals and Structure of the Text 
The goal of the paper is to describe our instance of EBCS – the 
DEECo (Distributed Emergent Ensembles of Components) 
component model [8][25] and its framework – and to share with 
the reader our experience with its application. 

In particular, after describing a running example (Section 2), we 
present: (i) the core DEECo concepts along with its abstract 
execution model (Section 3), (ii) a Java-based DEECo framework, 
which allows engineering DEECo components and ensembles in a 
Java environment (Section 4), and (iii) an outline of a design 
process, which drives the architectural design of EBCS (DEECo-
based systems in particular) from high-level requirements  
(Section 5).  Finally, we share with the reader our experience with 
an industrial case study (Section 6). After presenting a survey of 
related work (Section 7), the paper concludes with a summary and 
a brief overview of our intentions in future work (Section 8). 

2. RUNNING EXAMPLE 
We illustrate the main concepts of EBCS/DEECo with the help of 
the electrical vehicle navigation case study featured by the 
ASCENS project [37]. We describe the fundamentals of the case 
study in this section and articulate the running example that we 
use in the rest of the paper.  

The objective of the e-mobility case study is to coordinate the 
planning of journeys in compliance with parking and charging 
strategies in a highly dynamic and heterogeneous traffic 
environment, where information is distributed. The case study 
consists of drivers, navigating around a city in their electric 
vehicles (e-vehicles). Drivers have to reach particular Points Of 
Interest (POIs) within time constraints, specified as the expected 
POI arrival and departure times. Every driver possesses his/her 
daily meetings schedule (calendar), where POIs and their 
respective constraints are listed. Vehicles are equipped with 
sensors of basic capabilities, e.g., monitoring the battery level and 
energy consumption of the car, but also more sophisticated ones, 
e.g., monitoring the traffic level along the route. Vehicles can only 
park and recharge in designated parking spaces and charging lots, 
organized into parking/charging stations. They also communicate 
with each other and with relevant parking/charging stations, e.g. 
those that are close to their respective POIs. Such communication 
is necessary, e.g., in order for a vehicle to obtain the availability 
of the parking station and potentially reserve a place there. It is 
important that in this setting no central coordination point is 
assumed; there is no global control or global planning. Instead, 
every e-vehicle plans and executes its route individually, based on 
the data available. 

The whole system can be seen as a set of (distributed) nodes, 
which form ensembles (dynamic communication groups) in order 
to allow drivers to arrive at their POIs in time while leveraging the 
available resources in a close-to-optimal way. This is illustrated in 
Figure 2 – each vehicle forms an ensemble with available parking 
stations close to their respective POIs. Figure 2.b further shows an 
evolution of the scenario, where vehicles have moved along the 
route and a parking station has become unavailable leading to 
dynamic changes of the ensembles. 

 

Figure 1: Areas combined into Ensemble-Based Component 
Systems and their strong points. 

  
Figure 2: E-mobility: Potential ensembles and their dynamic 
changes (available parking stations close to respective POIs). 
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As our running example, we consider a simplified version of the 
case study by making the following assumptions: i) car sharing is 
not allowed, so drivers are bound to the vehicles they drive, ii) 
parking and charging stations are modeled together as Parking 
Lot/Charging Station (PLCS) elements, iii) drivers do not reserve 
a place in the PLCSs, but only obtain their availability 
information in order to plan accordingly, and iv) PLCSs are 
relevant w.r.t. a vehicle if they are within a fixed distance to one 
of the vehicle’s POIs. 

Although simplified, the running example features a number of 
important challenges targeted by EBCS. In particular, the physical 
architecture of the system constantly changes as the cars move 
around the city; cars and PLCSs maintain a partial view over the 
whole system, according to the information they obtain from 
components they interact with; trip planning and decision making 
in general is localized to the drivers (cars), as no central 
coordination is assumed.   

3. DEECo COMPONENT MODEL 
To refine the principles of EBCS into a systematic approach for 
building software for RDS, we have proposed a new component 
model called DEECo [25]. DEECo embodies the main concepts of 
EBCS, while giving them a suitable semantics in order to turn 
them into proper software engineering constructs that can be 
employed in the real-life development of RDS. 

3.1 General Concepts 
DEECo is built on top of two first-class concepts: component and 
ensemble. A component is an independent and self-sustained unit 
of development, deployment and computation. An ensemble acts 
as a dynamic binding mechanism, which links a set of 
components together and manages their interaction. A grounding 
idea in DEECo is that the only way components bind and 
communicate with one another is through ensembles. The two 
first-class DEECo concepts are in detail elaborated below. An 
integral part of the component model is also the runtime 
framework providing the necessary management services for both 
components and ensembles. 

3.1.1 Component 
A component in DEECo comprises knowledge, exposed via a set 
of interfaces, and processes, as illustrated in Figure 3.   

Knowledge reflects the state and available functionality of the 
component (lines 8-16). It is organized as a hierarchical data 
structure (resembling a tuple space [15]), which maps knowledge 
identifiers to values. Specifically, values may be either potentially 
structured data or executable functions. Technically, we use 
structured identifiers to refer to internal parts of the structured 
values (e.g., plan.isFeasible   in line 18). In this context, the term 
belief refers to the part of a component’s knowledge that 
represents a copy of knowledge of another component, and is thus 
treated with a certain level of uncertainty as it might become 
obsolete or invalid. 

A component’s knowledge is exposed to the other components 
and environment via a set of interfaces (lines 7, 29). An interface 
(e.g., lines 1-2) thus represents a partial view on the component’s 
knowledge.  Specifically, interfaces of a single component can 
overlap and multiple components can provide the same interface, 
thus allowing for polymorphism of components.  

Component processes are essentially soft real-time tasks that 
manipulate the knowledge of the component. A process is 
characterized as a function (lines 19-21) associated with a list of 
input and output knowledge fields (line 18). Operation of the 

process is managed by the runtime framework and consists of 
atomically retrieving all input knowledge fields, computing the 
process function, and atomically writing all output knowledge 
fields. A process may have side effects in terms of sensing and 
actuating, however, it is not supposed to explicitly communicate 
with other components or other processes of the same component 
in any other way than via knowledge. 

Being active entities of computation implementing feedback 
loops, component processes are subject to cyclic scheduling, 
which is again managed by the runtime framework. A process can 
be scheduled either periodically (line 27), i.e., repeatedly executed 
once within a given period, or as triggered (line 22), i.e., executed 
when a trigger condition is met. For brevity, we assume the 
change of input knowledge value as the only trigger condition. 

Referring to the e-mobility running example, the components 
(each occurring in multiple instances) are the Vehicle and the PLCS 
(Figure 3). A Vehicle maintains a belief over the availability of the 
relevant PLCSs (availabilities, line 12). It uses a Planner library to 
(re-) compute its journey plan according to the availability belief 
and its calendar (line 17) every time the availability belief or plan 
feasibility changes (line 22). The Vehicle also periodically checks 
if its plan remains feasible, with respect to its battery level and its 
current position (line 23). A PLCS just keeps track of its available 
timeslots for vehicle parking and charging (lines 33-37).  

3.1.2 Ensemble 
An ensemble embodies a dynamic binding among a set of 
components and thus determines their composition and 
interaction. In DEECo, composition is flat, expressed implicitly 

1. interface	
  AvailabilityAggregator:  
2. calendar,  availabilities  
3.   
4. interface	
  AvailabilityAwareParkingLot:  
5. position,  availability  
6.   
7. component	
  Vehicle  features	
  AvailabilityAggregator:  
8. knowledge:  
9. batteryLevel  =  90%,  
10. position  =  GPS(…),  
11. calendar  =  [  POI(WORKPLACE,	
  9AM-­‐1PM),  POI(MALL,	
  2PM-­‐3PM),  …  ],  
12. availabilities  =  [  ],  
13. plan  =  {    
14. route  =  ROUTE(…),    
15. isFeasible  =  TRUE  
16. }  
17. process	
  computePlan:  
18. in  plan.isFeasible,  in  availabilities,	
  in	
  calendar,  inout	
  plan.route  
19. function:  
20. if  (!plan.isFeasible)  
21. plan.route  ←  Planner.computePlan(calendar,  availabilities)  
22. scheduling:  triggered(  changed(plan.isFeasible)  ∨  changed(availabilities)  )  
23. process	
  checkPlanFeasibility:  
24. in  plan.route,  in  batteryLevel,  in  position,	
  out  plan.isFeasible  
25. function:  
26. plan.isFeasible  ←  Planner.isFeasible(plan.route,  batteryLevel,  position)  
27. scheduling:  periodic(  5000ms  )  
28.   
29. component	
  PLCS  features	
  AvailabilityAwareParkingLot:  
30. knowledge:  
31. position  =  GPS(…)  ,  
32. availability  =  …  
33. process	
  observeAvailability:  
34. out	
  availability  
35. function:  
36. availability←  Sensors.getCurrentAvailability()  
37. scheduling:  periodic(  2000ms	
    )  
  
Figure 3: Examples of DEECo component definitions in a DSL. 



via a dynamic involvement in an ensemble. Among the 
components involved in an ensemble, one always plays the role of 
the ensemble’s coordinator while others play the role of the 
members. This is determined dynamically (the task of the runtime 
framework) according to the membership condition of the 
ensemble. As to interaction, the individual components in an 
ensemble are not capable of explicit communication with the 
others. Instead, the interaction among the components forming the 
ensemble takes the form of knowledge exchange, carried out 
implicitly (by the runtime framework, Section 4.2). 
Specifically, definition of an ensemble (Figure 4) consists of: 

• Membership condition. Definition of a membership condition 
includes the definition of the interface specific for the 
coordinator role – coordinator interface (line 2), as well as 
the interface specific for the member role (and thus featured 
by each member component) – member interface (line 3), 
and the definition of a membership predicate (lines 4-7). 
A membership predicate declaratively expresses the 
condition under which two components represent a 
coordinator-member pair of the associated ensemble. The 
predicate is defined upon the knowledge exposed via the 
coordinator/member interfaces and is evaluated by the 
runtime framework when necessary. In general, as illustrated 
in Figure 5, a single component can be member/coordinator 
of multiple ensembles, so that ensembles form overlapping 
composition layers upon the components. 

• Knowledge exchange. Knowledge exchange embodies the 
interaction between the coordinator and all the members of 
the ensemble (lines 8-9); i.e., it is a one-to-many interaction 
(in contrast to the one-to-one form of the membership 
predicate). Being limited to coordinator-member interaction, 
knowledge exchange allows the coordinator to apply various 
interaction policies. In principle, knowledge exchange is 
carried out by the runtime framework; thus, it is up to the 
runtime framework when/how often it is performed. 
Similarly to component processes, knowledge exchange can 
be carried out either periodically or when triggered (line 10).  

Based on the ensemble definition, a new ensemble is dynamically 
formed for each group of components that together satisfy the 
membership condition.  

In summary, each component operates only upon its own local 
knowledge, which gets implicitly updated by the runtime 
framework (via knowledge exchange) whenever the component is 
part of an ensemble. This supports component encapsulation and 
independence. Further details are elaborated in [2]. 
The sole ensemble of the running example is the 
UpdateAvailabilityInformation ensemble listed in Figure 4. Its 
purpose is to aggregate the availability information of the 
members, i.e. PLCSs,  on the side of the coordinator, i.e., Vehicle 
(line 9). The ensemble is formed only when a PLCS is close 
enough to at least one of the POIs of the Vehicle (line 6) and there 

is an available slot in the PLCS, which can accommodate the 
respective POI arrival and departure time (line 7).  

3.2 Computational Model 
To allow for formal reasoning about DEECo applications, we 
have defined the operational semantics of DEECo, which models 
a DEECo application as a label transition system (LTS) with 
knowledge manipulation actions on transitions. The semantics 
further associates time with the LTS run and defines periodic and 
triggered processes and ensembles in terms of time constraints 
over traces generated by the LTS. 

We also define a subset relation over a set of traces of observable 
changes in the components’ knowledge. This allows us to build 
different implementations of DEECo (such as the tuple-space 
based implementation described in Section 4 and a messaging-
based implementation following the protocol outlined in [2]) 
while accommodating for and benefiting from the specifics of the 
communication middleware used. 
Due to space constraints we do not include the definition of the 
semantics in this paper, rather we refer the reader to the technical 
report [2], which describes it in full extent. 

4.  DEECo REALIZATION IN JAVA 
In order to bring DEECo abstractions to the practical use during 
the development of real-life RDS we provide a framework called 
jDEECo [13], which is a Java-based realization of DEECo 
component model. jDEECo delivers the necessary programming 
abstractions and the runtime environment to deploy and run 
DEECo-based applications.   

In this section, we describe how jDEECo maps definitions of 
DEECo components and ensembles to Java language primitives. 
In particular, we follow the developer’s perspective and show how 
the running example gets implemented using the jDEECo 
constructs. Further, we briefly discuss interesting aspects of the 
jDEECo runtime framework and supporting tools and the in-
memory representation of the DEECo concepts.  

4.1 Mapping of DEECo Concepts to Java 
By building on Java annotations, the mapping of DEECo concepts 
relies on standard Java language primitives and does not require 
any language extensions or external tools.  

4.1.1 Component 
A component definition has the form of a Java class (Figure 6). 
Such a class is marked by the @DEECoComponent annotation and 
extends the ComponentKnowledge class.  The initial knowledge 

1. ensemble	
  UpdateAvailabilityInformation:  
2. coordinator:  AvailabilityAggregator  
3. member:  AvailabilityAwareParkingLot  
4. membership:  
5. ∃  poi  ∈  coordinator.calendar:  
6. distance(member.position,  poi.position)  ≤  TRESHOLD  &&  
7. isAvailable(poi,  member.availability)  
8. knowledge	
  exchange:  
9. coordinator.availabilities  ←  {    (m.id,  m.availability)  |  m  ∈  members  }  
10. scheduling:  periodic(  5000ms  )    

Figure 4: An example of an ensemble definition in a DSL. 
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structure of the component is captured by means of the public, 
non-static fields of the class (lines 4-8). The id knowledge field, 
which is used for unique identification of a component, is 
inherited from the ComponentKnowledge class. As knowledge 
can be hierarchically structured, these fields represent the first 
level of this hierarchy, where each can take the form of a 
knowledge tree (recursively), map, or list. As for the knowledge 
tree form, the non-leaf nodes of this tree need to be instances of a 
class inheriting from Knowledge (lines 36-39). The non-structured 
knowledge values are represented as serializeable Java objects. At 
runtime, this initial knowledge structure is initialized either via 
static initializers or via the constructor of the class (lines 10-12). 

For convenience, the set of supported interfaces is implicit; i.e., all 
interfaces that structurally match the component’s knowledge are 
assumed to be featured by the component (similar to duck typing 
in dynamic languages). 

The component processes are defined as public static methods of 
the class, annotated with @DEECoProcess (e.g., lines 14-22). The 
requirement of the static modifier stems from the semantics of 
component process execution (Section 3.1.1). In particular, except 
for reading the input knowledge and writing the output knowledge 
(which is anyway managed by the runtime framework), 
a component process executes in isolation, without access to the 
knowledge. Thus, declaring the method as static prevents it from 
directly accessing the initial knowledge represented by the class 
fields (which are non-static). 
The input and output knowledge of the process is represented by 
the methods’ parameters. The parameters are marked with one of 

the annotations @DEECoIn, @DEECoOut or @DEECoInOut, in 
order to distinguish between input and output knowledge fields of 
the process (e.g., lines 16-19). Each annotation also includes an 
identifier of the knowledge field that the associated method 
parameter represents. As the input/output knowledge can consist 
of a knowledge field that is an internal node of a knowledge tree, 
the identifier of such a knowledge field is a dot-separated 
representation of the path to the node in the tree (e.g., line 16). 
When a non-structured knowledge field constitutes an inout/out 
knowledge of a process, the associated method parameter is for 
technical reasons (related to Java immutable types) passed inside 
an OutWrapper object (e.g., line 30). 

Periodic scheduling of a process is defined via the 
@DEECoPeriodicScheduling annotation of the process’s method, 
which takes the period expressed in milliseconds in its parameter 
(line 25). Triggered scheduling is defined via @DEECoTriggered 
annotation of the method’s parameter, change of which should 
trigger the execution of the process (lines 16-17). 

4.1.2 Ensemble 
The ensemble definition takes also the form of a Java class. In 
particular, the class is marked with the @DEECoEnsemble 
annotation and extends the Ensemble class (Figure 7). 

Both the membership predicate and the knowledge exchange are 
defined as specifically-annotated static methods of this class. 
While the method representing the membership predicate is 
annotated by @DEECoEnsembleMembership (line 5), the method 
representing knowledge exchange is annotated by 
@DEECoEnsembleKnowledgeExchange (line 19). Note that in the 
prototype implementation of jDEECo we assume for simplicity 
knowledge exchange between the coordinator and a single 
member (applied for each member separately); this is a 
simplification of the one-to-many knowledge exchange (one 
coordinator vs. many members) as introduced in Section 3.1.2. 
Thus, in the Java implementation of the 
UpdateAvailabilityInformation knowledge exchange we use a 
timestamp to distinguish current elements of the availabilities 

1. @DEECoComponent 
2. public	
  class	
  Vehicle  extends	
  ComponentKnowledge  {  
3.   
4. public  List<CalendarEvent>  calendar;  
5. public	
  Plan  plan;  
6. public	
  EnergyLevel  batteryLevel;  
7. public	
  Map<ID,  Availability>  availabilities;  
8. public	
  Position  position;  
9.   
10. public  Vehicle()  {  
11. //  initialize  the  initial  knowledge  structure  reflected  by  the  class  fields  
12. }  
13.   
14. @DEECoProcess  
15. public	
  static	
  void	
  computePlan(  
16. @DEECoIn("plan.isFeasible")  @DEECoTriggered  Boolean  isPlanFeasible,  
17. @DEECoIn("availabilities  ")  @DEECoTriggered  Map<…>  availabilities,  
18. @DEECoIn("calendar")  List<CalendarEvent>  calendar,  
19. @DEECoInOut("plan.route")  Route  plannedRoute  
20. )  {  
21. //  re-­‐compute  the  vehicle’s  plan  if  it’s  infeasible  
22. }  
23.   
24. @DEECoProcess  
25. @DEECoPeriodicScheduling(5000)  
26. public	
  static	
  void	
  checkPlanFeasibility(  
27. @DEECoIn("plan.route")  Route  plannedRoute,  
28. @DEECoIn("batteryLevel")  EnergyLevel  batteryLevel,  
29. @DEECoIn("position")  Position  position,  
30. @DEECoOut("plan.isFeasible")  OutWrapper<Boolean>  isPlanFeasible  
31. )  {  
32. //  determine  feasibility  of  the  plan    
33. }  
34. ...  
35. }  
36. public	
  class  Plan  extends  Knowledge  {  
37. public  Route  route;  
38. public	
  Boolean  isFeasible;  
39. }  

Figure 6: Example of a component definition in Java. 

1. @DEECoEnsemble  
2. @DEECoPeriodicScheduling(4000)  
3. public	
  class	
  UpdateAvailabilityInformation  extends	
  Ensemble  {  
4.   
5. @DEECoEnsembleMembership  
6. public	
  static	
  boolean	
  membership  (  
7. @DEECoIn("coord.calendar  ")  List<CalendarEvent>  calendar,  
8. @DEECoIn("member.position  ")  Position  plcsPosition,  
9. @DEECoIn("member.availability  ")  Availability  availability  
10. )  {    
11. for  (CalendarEvent  ce  :  eventsCalendar)  {  
12. if  (isClose(ce.poi.position,  plcsPosition,  DISTANCE_THRESHOLD)      
13. 	
  	
  	
  	
  	
  &&  isAvailable(ce.poi,  availability))  
14. return  true;  
15. }  
16. return  false;  
17. }  
18.   
19. @DEECoEnsembleKnowledgeExchange  
20. public	
  static	
  void	
  knowledgeExchange  (  
21. @DEECoIn("coord.calendar")  List<CalendarEvent>  calendar,  
22. @DEECoInOut("coord.  availabilities")  Map<…>  availabilities,  
23. @DEECoIn("member.id]")  ID  memberID,  
24. @DEECoIn("member.position")  Position  plcsPosition,  
25. @DEECoIn("member.availability")  Availability  availability  
26.   )  {  
27. availabilities.put  (memberID,  availability.clone(currentTimestamp()));  
28. }  
29. }  

Figure 7: Example of an ensemble definition in Java. 



collection (line 27), instead of refreshing the whole collection 
(Figure 4, line 9). 

In contrast to the conceptual description of an ensemble 
(Section 3.1.2), Java definition of an ensemble does not comprise 
explicit definition of the member and coordinator interfaces. 
Instead, these interfaces are defined implicitly as a union of the 
knowledge fields represented by parameters of the methods 
representing the membership predicate and knowledge exchange. 
Since these parameters are annotated in the same way as 
parameters of component processes, the parameters relevant to the 
member/coordinator interface are distinguished by identifier 
prefixes (i.e., identifiers of knowledge of a coordinator/member 
interface are prefixed with “coord”/“member”). 

Scheduling of the knowledge exchange is defined similarly to 
component processes. The only difference is that the 
@DEECoPeriodicScheduling is applied to the whole class defining 
the ensemble, while the @DEECoTriggered is applied to a 
particular parameter of the membership method. 

4.2 Runtime framework 
The jDEECo runtime framework is primarily responsible for 
scheduling component processes, forming ensembles, and 
performing knowledge exchange. It also allows for distribution of 
components.  

As illustrated in Figure 8, it is internally composed of the 
management part and the knowledge repository. The management 
part is further composed of two modules. One is responsible for 
scheduling and execution of component processes and knowledge 
exchange of ensembles. The other is responsible for managing 
access to the knowledge repository. Exploiting the fact that all 
modules of the runtime framework implementation are loosely 
coupled, we are able to introduce implementation variants for 
each of them. As a result, different variants can be selected in 
order to reflect specific requirements imposed to the platform.  

The role of the knowledge repository is to store the component’s 
knowledge (e.g., CK1 – knowledge of component C1 – in 
Figure 8). Its responsibility is also to provide component 
processes and knowledge exchange of ensembles with access to 
this knowledge. In fact, we provide a local and a distributed 
implementation of the knowledge repository; the former is 
employed for simulation and verification of the code (Section 4.3) 
while the latter is used in case the runtime framework needs to run 
in a distributed setting (i.e., the distribution is achieved at the level 
of knowledge repository). Specifically, the distributed 
implementation of the knowledge repository allows each 
component to run in a different Java virtual machine (as illustrated 

in Figure 8). The distribution is achieved by employing the 
JavaSpaces1 middleware. JavaSpaces is a reification of the 
LINDA [15] paradigm, which aligns well with the way DEECo 
represents knowledge. For the time being, jDEECo relies on the 
ApacheRiver2 implementation of JavaSpaces.  

As to the scheduling module, each component process (e.g., C1P1 
– process P1 of component C1 – in Figure 8) is executed by the 
runtime framework within a regular Java thread. Thus, threads 
executing triggered processes are blocked till their triggering 
condition holds true, while threads executing periodic processes 
are blocked after completion till the beginning of their next 
period. Concerning knowledge exchange of ensembles (e.g., E1 in 
Figure 8), the scheduling and execution is similar to component 
processes. In addition, the membership predicate is evaluated 
before each run of the knowledge exchange, so that it is applied 
only to valid coordinator-member pairs of components. 

Further, to enable dynamic deployment of DEECo-based 
applications, Java classes with component/ensemble definitions 
can be provided to the runtime framework both during 
deployment and runtime. 

4.3 Tool support 
In addition to providing the runtime framework, jDEECo supports 
the development of DEECo-based applications via the ASCENS 
tool workbench (called SDE3), featuring modeling and analysis 
tools for RDS.  

Since SDE is based on Eclipse, the integration with jDEECo 
includes deploying jDEECo as an Eclipse plugin and providing 
additional Eclipse-specific features. Most importantly, these 
include the possibility of packaging and deploying DEECo 
components and ensembles as OSGi [17] bundles. This is 
complemented by a graphical packaging tool and a discovery 
mechanism based on OSGi service discovery. 

Furthermore, the tool palette is enhanced by the integration of 
jDEECo and Java PathFinder4 [18] which supports verification of 
properties related to knowledge. Currently, we are focusing on 
verification of reachability properties, encoded via assertions and 
exceptions in the component/ensemble code. Technically, we 
perform model-checking on a compound consisting of code of 
components and ensembles, and of the jDEECo runtime 
framework. The latter is included to represent the DEECo 
computational model. To minimize model-checking complexity, 
we perform the verification on a special configuration of the 
jDEECo runtime framework (its JPF-optimized variant); in 
particular, this concerns the local knowledge repository and 
scheduling module.  

5. SOFTWARE ENGINEERING PROCESS 
INTEGRATION 
To build EBCS-based systems (DEECo-based applications in 
particular) and reason about their properties in a systematic way, a 
high-level view of the target system is required. Such view should 
trace the (latent) system architecture, which will naturally 
comprise a number of DEECo components and ensembles, back 
to system requirements. 

                                                                    
1 http://river.apache.org/doc/specs/html/js-spec.html 
2 http://river.apache.org 
3 http://sde.pst.ifi.lmu.de/trac/sde/ 
4 http://babelfish.arc.nasa.gov/trac/jpf/ 

 
Figure 8: jDEECo runtime framework architecture. 
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To enable that, we have proposed a requirements-driven method 
for designing EBCS, called Invariant Refinement Method – IRM 
(elaborated in [9][24]). In this section, we augment the description 
of the DEECo component model and its jDEECo runtime 
framework implementation with a comprehensive development 
process based on IRM. In particular, for convenience we first 
provide a brief summary of IRM and then focus specifically on its 
integration with traditional Component-Based Development 
(CBD) process, as well as its strong points w.r.t. system evolution.  

5.1 Basic Concepts of IRM  
IRM is based on the systematic decomposition and refinement of 
system specification, ending up with system architecture – 
components and ensembles. It builds on the idea of iterative 
refinement of system goals, employed in goal-oriented 
requirements engineering. Contrary to classic goal-oriented 
approaches though, like KAOS [27] and Tropos/i* [5], IRM is 
tailored to the domain of EBCS. In particular, EBCS feature 
emergent system architectures, which cannot be systematically 
derived from system requirements using classic approaches [16]. 

The main goal of IRM is the identification of EBCS concepts of 
components and ensembles based on system requirements. This 
subsequently brings correct-by-construction guarantees of 
compliance with system requirements, and the possibility of 
automated preparation of EBCS artifacts (component skeletons, 
ensemble code) in the programming language of choice.   
IRM comprises system level design, ensemble level and 
component level design, followed directly by implementation.  
System level.  As a starting point of the design process, IRM 
focuses on the invariants to be preserved and the system 
constituents (components) responsible for preserving them.  
Invariants are descriptive statements of what should hold in the 
system at every time instant (not only at some point in the future) 
and reflect the system normalcy, i.e., the property of being within 
the bounds of normal operation. For example, the “The 
availability of relevant PLCSs is kept updated” invariant 
expresses that vehicles should keep having up-to-date availability 
information regarding the PLCSs close to their POIs. A 
component in IRM is a design construct encapsulating knowledge 
(its domain-specific data) that is referred from invariants; i.e., the 
component takes a role in the invariants.  

After identifying the invariants reflecting the top-level system 
goals/requirements, the design process continues by their 
refinement into sets of sub-invariants, forming a tree structure. 
The invariant refinement has the typical semantics used in 
software engineering, where the composition of the children 
exhibits all the behavior expected from the parent and potentially 
some more. An example of a possible decomposition of our 
running example is depicted in Figure 10.a.  

The iterative refinement process ends when all invariants are 
directly mappable to DEECo component processes and 
ensembles. In particular, an invariant needs no further refinement 
when a) it involves a single component and can be ensured by 
local manipulation of the component’s knowledge (via a 
component process) – local invariant  (e.g., (7) in Figure 10.a) – 
or b) the invariant involves exactly two components and can be 
ensured by mapping one component’s knowledge part(s) to the 
other (via knowledge exchange of an ensemble) – exchange 
invariant (e.g., (6) in Figure 10.a). 

Ensemble level. At this level, ensembles are identified and fully 
specified. For each exchange invariant, an ensemble is introduced. 
In particular, the coordinator and member interfaces are directly 

derived from the roles the components take in the respective 
invariant. The rest of the ensemble definition (membership 
predicate, knowledge exchange function) needs to be extracted 
from the invariant manually. For example, the “The availability of 
relevant PLCSs is kept updated” exchange invariant ((6) in 
Figure 10.a) can be refined into the UpdateAvailabilityInformation 
ensemble listed in Figure 4.  
Component level. At this level, the components are concretized.  
The component at this level necessarily comprises the knowledge 
identified at the system level. The component processes are also 
specified; these are derived from the local invariants the 
component takes a role in. For example, the Vehicle component 
from Figure 10.a can be concretized into the Vehicle component 
of Figure 3, comprising knowledge and processes determined at 
the system level. 

5.2 Integration with CBD Process 
Overall, the development process for EBCS as described above, 
and IRM in particular, introduces specific aspects into the 
traditional Component-Based Development (CBD) process.  Thus, 
in this section we elaborate on these specifics in the context of 
general CBD process and provide a concrete example for the 
waterfall-based CBD process as proposed in [12].  

CBD process builds on separation of system development process 
from component development process [11]. The traditional system 
development process includes the phases of Requirements, 
Analysis, Design, Implementation, Test, Release, and 
Maintenance. The component development process includes 
phases of Design, Implementation, Test, Delivery, and 
Maintenance. Several component development processes may be 
on course simultaneously, making it possible to develop several 
components at the same time. 

By employing IRM in design, we couple component development 
(exemplified on the reference CBD process of [12] in Figure 9) 
with ensemble development. To do so, we extend several phases 
of CBD to accommodate IRM (Table 1). Since the extensions do 
not rely on any specifics of CBD (they only assume requirements 
analysis and architectural/system design, traditional parts of 
development processes in general), we believe that they are 
applicable to any development process which involves 
components (e.g., agile variations of CBD). 

 
Figure 9: Example of IRM integration into the reference CBD 

process of [12]. 
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5.3 System Evolution 
Since EBCS are inherently open-ended and evolving systems, the 
aforementioned development process has to accommodate 
additional requirements that arise after the initial development 
cycle has been completed. A new requirement can arise when a 
new or modified functionality is required from the system. IRM 
provides an easy and effective way to deal with such evolution by 
introducing new invariants into corresponding branches of the 
IRM tree. 

For illustration, we consider an evolution scenario where the 
Traffic Information Provider component is added to the system, to 
represent the traffic monitoring stations scattered around roads. 
These stations provide information to the vehicles about traffic 
congestions in their vicinity. Recall that the e-mobility system 
from the running example has been originally designed and 
implemented without considering traffic level information 
(Figure 10.a).  In this case, the IRM design captures just the 
necessity to keep the vehicle’s plan updated ((4) in Figure 10.a) 
and to check whether the current plan remains feasible with 
respect to measured energy level ((5) in Figure 10.a).  

To address the evolution, the IRM tree is modified as follows 
(Figure 10.b): i) the new component is added, ii) the invariant (5) 
is modified to account for the traffic level, iii) three new 
invariants (i.e., (9), (10), (11)) are added. Out of these, one is an 
exchange invariant (10) and one is a local invariant (11), 
prescribing the addition of a new ensemble and a new process to 
the Vehicle component. 

To account for such kind of system evolution, the whole 
development process needs to follow an iterative approach, where, 
by integrating newly identified requirements, software is 
incrementally built, tested, and released.  

6. EXPERIENCE 
We have evaluated the DEECo approach (together with IRM) by 
developing a prototype of the e-mobility case study within the 
ASCENS project. As this case study has been conceived in 
cooperation with Volkswagen, the detailed designs and 
implementation are proprietary. For a concise description of the 
case study we refer the reader to [36]. Along with the case study, 
we have also implemented a number of example applications and 
a tutorial, which are all available at the jDEECo GitHub site [13]. 
Our experience shows that DEECo concepts well combine the 
encapsulation and modularity brought by components with the 
needs of autonomic behavior and highly dynamic architecture. 
IRM process well complements the DEECo concepts in providing 
an overall system-level view that can be easily translated to 
components and ensembles. The mapping to Java (by jDEECo) 
proved to be relatively straightforward. 

Our experience also indicated that although there is a strong 
conceptual difference between a component and an ensemble (in 
the sense that a component is state-full while an ensemble is 
stateless), the developers of the case-study had problems with 
differentiating between responsibilities of a component process 
and knowledge exchange. In particular, they incorrectly tended to 
reduce autonomy of components by pushing some of their 
functionality to ensembles (by employing complex knowledge 
transformations in the knowledge exchange). As a remedy, we 
adopted the following rule as a design guideline: The knowledge 
exchange should be ideally 1:1 knowledge assignment; complex 
knowledge transformations may be employed only in well-
justified cases (typically when integrating third-party 
components). 
Finally, our experiments with verification of jDEECo applications 
via JPF (performed on the example applications) indicate that the 
relatively strict DEECo computational model can be effectively 
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By applying the IRM method, the requirements are captured 
in terms of invariants and elaborated by iterative refinement. 
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The system architecture, in terms of (DEECo) ensembles and 
components, is identified. The analysis is both structural 
(which architectural entities should be present in the system) 
and behavioral (what should be their behavior, e.g., in terms 
of process & ensemble scheduling). It is important to 
distinguish between the components’ internal and external 
interfaces. An external interface comprises a part of the 
knowledge that can be exchanged (read or written) by 
ensembles. This knowledge must not be violated during 
implementation, as this would harm the system-wide 
contractual design. On the contrary, an internal interface 
comprises a part of the knowledge that must be present in the 
component, for the purpose of an internal computation.  
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Components & ensembles are designed in detail. This step 
can include elaboration of representation of the knowledge 
belonging to internal interfaces. 
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Components & ensembles are tested in isolation. The leaf 
invariants of the IRM tree can serve as a specification for unit 
testing. 
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System-wide tests are performed. The non-leaf invariants of 
the IRM tree can serve as a specification for integration 
testing. 

Table 1: IRM injection points into the CBD process. 
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Figure 10: Capturing system evolution in IRM. 
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exploited for increasing the performance of explicit model 
checking. 

7. RELATED WORK 
Since EBCS are a relatively new class of systems, we are 
currently not aware of any other approach that would be directly 
related to IRM and DEECo. However, as EBCS is a software 
engineering concept for developing Resilient Distributed Systems 
(RDS), in this section we survey approaches that deal with 
specific aspects of RDS.  

At the computational level, control engineering methodologies 
have been identified as a promising solution to implement self-
adaptive software systems [10] in a variety of application domains 
and with different performance requirements and control 
objectives [33]. In the domain of distributed systems, 
decentralized solutions based on feedback loops, ranging from 
cloud performance management [41] to embedded real-time 
systems [40], have been proposed to keep the system in the 
required steady state, while avoiding scalability issues and single 
points of failure. EBCS employ similar idea of cyclic execution of 
component processes and ensembles to maintain the operational 
normalcy of the system. At the architectural level, attempts have 
been made to instantiate the generic MAPE-K loop [23] to feature 
adaptation at a larger scale. Self-managing architectures [26], 
component-based approaches [3][34], and solutions that apply 
architectural models at runtime [29] are examples of this. The 
common denominator of these approaches is that they rely on 
explicit bindings among the system components, which get re-
organized in response to runtime stimuli. EBCS, on the other 
hand, do not consider explicit architecture, but let the architecture 
“emerge” during runtime, fitting better the dynamic, constantly–
changing system landscapes. 
Agent-oriented approaches provide useful notions (e.g., goals, 
plans), models (e.g., Belief-Desire-Intention [35]) and algorithms 
(e.g., DCOPs [21]) for reasoning in complex dynamic systems. In 
a distributed setting, multi-agent analysis is based on the 
conceptual autonomy and social ability of the parts constituting 
the system. A problem is that current agent implementation 
platforms [4] and methodologies [5] rely on guaranteed 
communication and explicit bindings among the agents, which 
typically take the form of messaging. In this view, EBCS/DEECo 
stands as an agent engineering platform, which handles the 
communication in an implicit and automatic way, making it 
possible for agents to operate in opportunistic environments where 
no guarantees are available.  

The concept of service-component ensembles has been recently 
proposed in order to allow for communication over unreliable 
communication channels and at massive scale [20]. Ensembles 
rely on attribute-based communication [14] to model a best-effort, 
dynamic coordination of components. An attempt to formally 
define this concept can be found in [19]. 

At the requirements phase, well-established methods and models 
exist for capturing and analyzing early requirements in terms of 
goals delegated to system agents. However, these models either 
do not map effectively to the later development phases [27], or do 
not support mapping to emergent architectures [5], which are 
typical in EBCS. Recent attempts in the area of EBCS have 
centered around a model termed Statement of the Affairs (SOTA), 
which provides the means to capture and analyze the early 
requirements of different component cooperation schemes, along 
with the architectural patterns that satisfy them by 
construction [1]. IRM stands as the intermediate method which 

guides the transition from early (high-level) requirements to 
system architecture in terms of components and ensembles. 

8. CONCLUSIONS AND FUTURE WORK 
In this paper, we have focused on Resilient Distributed Systems 
(RDS). We have argued that classic component-based approaches 
in design do not scale well in the area of RDS – mainly because 
RDS exhibit very high degree of dynamicity, adaptivity, and 
autonomy. 

For component-based development of RDS, we have introduced 
EBCS (Ensemble-Based Component Systems), a new class of 
component-based systems, which combine concepts from agent-
oriented, ensemble-oriented and control systems. In particular, we 
have presented an instance of EBCS – the DEECo component 
model and its framework. 

Overall, DEECo provides a comprehensive software engineering 
solution comprising (i) component and ensemble paradigms with 
well-defined formal semantics,  (ii) mapping to Java, (iii) 
distributed Java-based runtime framework (jDEECo), (iv) 
integration with analysis tools (SDE, JPF), (v) design method 
(IRM) for deriving components and ensembles from high-level 
requirements, and (vi) integration of the design method to 
traditional component-based development processes. We have 
successfully evaluated DEECo along with IRM on the e-mobility 
case-study of the ASCENS project. 

The experience with DEECo (and consequently EBCS) puts 
forward several research directions. In particular we would like to 
evaluate the robustness of DEECo in environments with highly 
unreliable communication and heterogeneous network 
infrastructure (e.g., MANETs [28]). Although this will most likely 
require employing some communication middleware for such 
networks (e.g., EgoSpaces [22]) at the implementation level, it is 
well aligned with the general DEECo computational model. Also, 
we are currently investigating the possibility of using formalized 
IRM invariants as the basis for monitoring the correctness and 
performance of a DEECo-based system and for guiding 
component adaptations. Furthermore, we intend to develop a 
metamodel of DEECo and employ model-driven-engineering 
techniques for elaborating the jDEECo implementation. 
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