
DEECo – an Ensemble-Based Component System

Tomas Bures1,2

bures@d3s.mff.cuni.cz
Ilias Gerostathopoulos1

iliasg@d3s.mff.cuni.cz
Petr Hnetynka1

hnetynka@d3s.mff.cuni.cz

Jaroslav Keznikl1,2

keznikl@d3s.mff.cuni.cz
Michal Kit1

kit@d3s.mff.cuni.cz
Frantisek Plasil1

plasil@d3s.mff.cuni.cz

1Charles University in Prague
Faculty of Mathematics and Physics

Prague, Czech Republic

2Institute of Computer Science
Academy of Sciences of the Czech Republic

Prague, Czech Republic

ABSTRACT
The recent increase in the ubiquity and connectivity of computing
devices allows forming large-scale distributed systems that
respond to and influence activities in their environment.
Engineering of such systems is very complex because of their
inherent dynamicity, open-endedness, and autonomicity. In this
paper we propose a new class of component systems (Ensemble-
Based Component Systems – EBCS) which bind autonomic
components with cyclic execution via dynamic component
ensembles controlling data exchange. EBCS combine the key
ideas of agents, ensemble-oriented systems, and control systems
into software engineering concepts based on autonomic
components. In particular, we present an instantiation of EBCS –
the DEECo component model. In addition to DEECo main
concepts, we also describe its computation model and mapping to
Java. Lastly, we outline the basic principles of the EBCS/DEECo
development process.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – distributed applications; D.2.6 [Software
Engineering]: Programming Environments – integrated
environments; D.2.9 [Software Engineering]: Management – life
cycle; D.2.11 [Software Engineering]: Software Architectures.

Keywords
Component model; emergent architecture; component ensembles;
autonomic systems; development process; runtime framework

1. INTRODUCTION
The significant increase in the ubiquity and connectivity of
computing devices has opened new possibilities for addressing
social and environmental challenges (e.g., ambient assisted living,
smart city infrastructures, emergency coordination, environmental
monitoring) by providing hardware and infrastructures necessary
for building large-scale Resilient Distributed Systems (RDS) that
respond to and influence activities in the real world. As RDS have
to cope with very dynamic and open-ended environments, they
exhibit a high degree of adaptivity and autonomicity.

Although developing RDS has become relatively feasible from the
perspective of hardware and network infrastructures, there still
remain significant challenges in developing software for RDS. In
particular, the problem is to feature the appropriate computation
models and development processes which would address the
requirements of scalability, distribution, and well-defined
architecture, while, at the same time, would deal with the
requirements of dynamicity, open-endedness, robustness, and
autonomicity.

1.1 Towards EBCS
In this paper, we advocate using components for engineering
RDS. The use of components has been proven efficient for the
design and development of large-scale systems with well-defined
architectures. However, due to the dynamic and autonomic nature
of RDS, traditional approaches to component architectures [38] as
well as existing component models [6][7][30][31][32] do not
scale. Therefore, inspired by the work in the field of formal
coordination languages [14], in this paper we address this issue by
identifying a new class of component-based systems – Ensemble-
Based Component Systems (EBCS) – specifically tailored for
designing RDS. Moreover, we present the DEECo (Distributed
Emergent Ensembles of Components) component model [8][25]
as our instantiation of EBCS.

The characteristic of EBCS is that the “traditional” explicit
component architecture is replaced by the composition of
components into so-called ensembles [14][20], each of which is an
implicit, inherently dynamic group of components mutually
cooperating to achieve a particular goal. To cope with the
dynamism, the components in EBCS become autonomic entities,
building on agent-oriented concepts [39], while featuring
execution model based on feedback loops (e.g., MAPE-K [23],
soft real-time control systems [33]) in order to achieve (self-)
adaptive and resilient operation.

In this view, the EBCS can be defined as “Distributed systems
composed of components that feature autonomic and (self-)
adaptive behaviors and are organized into emergent ensembles to
achieve cooperation.”

EBCS thus naturally combine relevant concepts from a number of
research areas (Figure 1). Namely:

From component-based software engineering [11] EBCS adopt
the software engineering concepts of the system architecture
based on components (which themselves are seen as well-
encapsulated, reusable, and substitutable entities) and the
component-based development process.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CBSE’13, June 17–21, 2013, Vancouver, BC, Canada.
Copyright © ACM 978-1-4503-2122-8/13/06...$15.00.

From agent-oriented computing [39] EBCS derive the
autonomous aspects, where the individuals maintain only a partial
view on the whole system in order to guide their decisions – the
belief, and self-* behavior [10]. This way, the overall behavior of
EBCS is an emergent result of the behaviors of the individual
components, enabling thus for efficient decentralized execution.

Building on the ensemble-oriented systems [14][20] EBCS rely on
the attribute-based communication, which models the
communication as best-effort and localized to dynamically
changing ensembles of components; as opposed to existing agent-
based systems [4] which at the deployment level resemble
service-oriented architectures employing explicit communication
channels. This helps to effectively cope with the assumption that
the deployment (and thus also architecture) of RDS changes very
dynamically.

From control system engineering [33] EBCS adopt the idea of
achieving robustness by employing (soft real-time) control
feedback loops [23] that maintain the operational normalcy of a
component. Here, operational normalcy refers to the property of
being within certain limits that define the range of normal
functioning of the component. The required level of robustness is
achieved by adjusting the periods of the loops. As extreme
dynamism is assumed, the core attribute of EBCS is employing
the concept of feedback loops both at the level of individual
components and ensembles. Thus, an EBCS-based system can be
understood as a distributed system of conditionally interacting
feedback loops.
As a result, EBCS provide the following key features important
for development of RDS:

• System architecture (represented by components and
their bindings) emerges at runtime. The system
architecture is however not arbitrary – it complies with
explicit interaction patterns of ensembles specified at
design time.

• Components maintain a belief about the rest of the
system and the environment. The belief is managed
outside the component behavior by the underlying
runtime framework.

• Component execution is performed in isolation based
solely on the component’s belief. This strengthens the
autonomicity of components (e.g., in the context of
unreliable communication and/or rapid architecture
changes).

1.2 Goals and Structure of the Text
The goal of the paper is to describe our instance of EBCS – the
DEECo (Distributed Emergent Ensembles of Components)
component model [8][25] and its framework – and to share with
the reader our experience with its application.

In particular, after describing a running example (Section 2), we
present: (i) the core DEECo concepts along with its abstract
execution model (Section 3), (ii) a Java-based DEECo framework,
which allows engineering DEECo components and ensembles in a
Java environment (Section 4), and (iii) an outline of a design
process, which drives the architectural design of EBCS (DEECo-
based systems in particular) from high-level requirements
(Section 5). Finally, we share with the reader our experience with
an industrial case study (Section 6). After presenting a survey of
related work (Section 7), the paper concludes with a summary and
a brief overview of our intentions in future work (Section 8).

2. RUNNING EXAMPLE
We illustrate the main concepts of EBCS/DEECo with the help of
the electrical vehicle navigation case study featured by the
ASCENS project [37]. We describe the fundamentals of the case
study in this section and articulate the running example that we
use in the rest of the paper.

The objective of the e-mobility case study is to coordinate the
planning of journeys in compliance with parking and charging
strategies in a highly dynamic and heterogeneous traffic
environment, where information is distributed. The case study
consists of drivers, navigating around a city in their electric
vehicles (e-vehicles). Drivers have to reach particular Points Of
Interest (POIs) within time constraints, specified as the expected
POI arrival and departure times. Every driver possesses his/her
daily meetings schedule (calendar), where POIs and their
respective constraints are listed. Vehicles are equipped with
sensors of basic capabilities, e.g., monitoring the battery level and
energy consumption of the car, but also more sophisticated ones,
e.g., monitoring the traffic level along the route. Vehicles can only
park and recharge in designated parking spaces and charging lots,
organized into parking/charging stations. They also communicate
with each other and with relevant parking/charging stations, e.g.
those that are close to their respective POIs. Such communication
is necessary, e.g., in order for a vehicle to obtain the availability
of the parking station and potentially reserve a place there. It is
important that in this setting no central coordination point is
assumed; there is no global control or global planning. Instead,
every e-vehicle plans and executes its route individually, based on
the data available.

The whole system can be seen as a set of (distributed) nodes,
which form ensembles (dynamic communication groups) in order
to allow drivers to arrive at their POIs in time while leveraging the
available resources in a close-to-optimal way. This is illustrated in
Figure 2 – each vehicle forms an ensemble with available parking
stations close to their respective POIs. Figure 2.b further shows an
evolution of the scenario, where vehicles have moved along the
route and a parking station has become unavailable leading to
dynamic changes of the ensembles.

Figure 1: Areas combined into Ensemble-Based Component
Systems and their strong points.

Figure 2: E-mobility: Potential ensembles and their dynamic
changes (available parking stations close to respective POIs).

Component-­‐based	
 engineering
	
 	
 (software	
 engineering	
 concepts)

Agent-­‐oriented	
 Computing
(autonomy)

Control	
 system	
 engineering
(operational	
 normalcy)

Ensemble-­‐oriented	
 systems
(attribute-­‐based	
 communication)

EBCS

As our running example, we consider a simplified version of the
case study by making the following assumptions: i) car sharing is
not allowed, so drivers are bound to the vehicles they drive, ii)
parking and charging stations are modeled together as Parking
Lot/Charging Station (PLCS) elements, iii) drivers do not reserve
a place in the PLCSs, but only obtain their availability
information in order to plan accordingly, and iv) PLCSs are
relevant w.r.t. a vehicle if they are within a fixed distance to one
of the vehicle’s POIs.

Although simplified, the running example features a number of
important challenges targeted by EBCS. In particular, the physical
architecture of the system constantly changes as the cars move
around the city; cars and PLCSs maintain a partial view over the
whole system, according to the information they obtain from
components they interact with; trip planning and decision making
in general is localized to the drivers (cars), as no central
coordination is assumed.

3. DEECo COMPONENT MODEL
To refine the principles of EBCS into a systematic approach for
building software for RDS, we have proposed a new component
model called DEECo [25]. DEECo embodies the main concepts of
EBCS, while giving them a suitable semantics in order to turn
them into proper software engineering constructs that can be
employed in the real-life development of RDS.

3.1 General Concepts
DEECo is built on top of two first-class concepts: component and
ensemble. A component is an independent and self-sustained unit
of development, deployment and computation. An ensemble acts
as a dynamic binding mechanism, which links a set of
components together and manages their interaction. A grounding
idea in DEECo is that the only way components bind and
communicate with one another is through ensembles. The two
first-class DEECo concepts are in detail elaborated below. An
integral part of the component model is also the runtime
framework providing the necessary management services for both
components and ensembles.

3.1.1 Component
A component in DEECo comprises knowledge, exposed via a set
of interfaces, and processes, as illustrated in Figure 3.

Knowledge reflects the state and available functionality of the
component (lines 8-16). It is organized as a hierarchical data
structure (resembling a tuple space [15]), which maps knowledge
identifiers to values. Specifically, values may be either potentially
structured data or executable functions. Technically, we use
structured identifiers to refer to internal parts of the structured
values (e.g., plan.isFeasible in line 18). In this context, the term
belief refers to the part of a component’s knowledge that
represents a copy of knowledge of another component, and is thus
treated with a certain level of uncertainty as it might become
obsolete or invalid.

A component’s knowledge is exposed to the other components
and environment via a set of interfaces (lines 7, 29). An interface
(e.g., lines 1-2) thus represents a partial view on the component’s
knowledge. Specifically, interfaces of a single component can
overlap and multiple components can provide the same interface,
thus allowing for polymorphism of components.

Component processes are essentially soft real-time tasks that
manipulate the knowledge of the component. A process is
characterized as a function (lines 19-21) associated with a list of
input and output knowledge fields (line 18). Operation of the

process is managed by the runtime framework and consists of
atomically retrieving all input knowledge fields, computing the
process function, and atomically writing all output knowledge
fields. A process may have side effects in terms of sensing and
actuating, however, it is not supposed to explicitly communicate
with other components or other processes of the same component
in any other way than via knowledge.

Being active entities of computation implementing feedback
loops, component processes are subject to cyclic scheduling,
which is again managed by the runtime framework. A process can
be scheduled either periodically (line 27), i.e., repeatedly executed
once within a given period, or as triggered (line 22), i.e., executed
when a trigger condition is met. For brevity, we assume the
change of input knowledge value as the only trigger condition.

Referring to the e-mobility running example, the components
(each occurring in multiple instances) are the Vehicle and the PLCS
(Figure 3). A Vehicle maintains a belief over the availability of the
relevant PLCSs (availabilities, line 12). It uses a Planner library to
(re-) compute its journey plan according to the availability belief
and its calendar (line 17) every time the availability belief or plan
feasibility changes (line 22). The Vehicle also periodically checks
if its plan remains feasible, with respect to its battery level and its
current position (line 23). A PLCS just keeps track of its available
timeslots for vehicle parking and charging (lines 33-37).

3.1.2 Ensemble
An ensemble embodies a dynamic binding among a set of
components and thus determines their composition and
interaction. In DEECo, composition is flat, expressed implicitly

1. interface	
 AvailabilityAggregator:
2. calendar, availabilities
3.
4. interface	
 AvailabilityAwareParkingLot:
5. position, availability
6.
7. component	
 Vehicle features	
 AvailabilityAggregator:
8. knowledge:
9. batteryLevel = 90%,
10. position = GPS(…),
11. calendar = [POI(WORKPLACE,	
 9AM-­‐1PM), POI(MALL,	
 2PM-­‐3PM), …],
12. availabilities = [],
13. plan = {
14. route = ROUTE(…),
15. isFeasible = TRUE
16. }
17. process	
 computePlan:
18. in plan.isFeasible, in availabilities,	
 in	
 calendar, inout	
 plan.route
19. function:
20. if (!plan.isFeasible)
21. plan.route ← Planner.computePlan(calendar, availabilities)
22. scheduling: triggered(changed(plan.isFeasible) ∨ changed(availabilities))
23. process	
 checkPlanFeasibility:
24. in plan.route, in batteryLevel, in position,	
 out plan.isFeasible
25. function:
26. plan.isFeasible ← Planner.isFeasible(plan.route, batteryLevel, position)
27. scheduling: periodic(5000ms)
28.
29. component	
 PLCS features	
 AvailabilityAwareParkingLot:
30. knowledge:
31. position = GPS(…) ,
32. availability = …
33. process	
 observeAvailability:
34. out	
 availability
35. function:
36. availability← Sensors.getCurrentAvailability()
37. scheduling: periodic(2000ms	
)

Figure 3: Examples of DEECo component definitions in a DSL.

via a dynamic involvement in an ensemble. Among the
components involved in an ensemble, one always plays the role of
the ensemble’s coordinator while others play the role of the
members. This is determined dynamically (the task of the runtime
framework) according to the membership condition of the
ensemble. As to interaction, the individual components in an
ensemble are not capable of explicit communication with the
others. Instead, the interaction among the components forming the
ensemble takes the form of knowledge exchange, carried out
implicitly (by the runtime framework, Section 4.2).
Specifically, definition of an ensemble (Figure 4) consists of:

• Membership condition. Definition of a membership condition
includes the definition of the interface specific for the
coordinator role – coordinator interface (line 2), as well as
the interface specific for the member role (and thus featured
by each member component) – member interface (line 3),
and the definition of a membership predicate (lines 4-7).
A membership predicate declaratively expresses the
condition under which two components represent a
coordinator-member pair of the associated ensemble. The
predicate is defined upon the knowledge exposed via the
coordinator/member interfaces and is evaluated by the
runtime framework when necessary. In general, as illustrated
in Figure 5, a single component can be member/coordinator
of multiple ensembles, so that ensembles form overlapping
composition layers upon the components.

• Knowledge exchange. Knowledge exchange embodies the
interaction between the coordinator and all the members of
the ensemble (lines 8-9); i.e., it is a one-to-many interaction
(in contrast to the one-to-one form of the membership
predicate). Being limited to coordinator-member interaction,
knowledge exchange allows the coordinator to apply various
interaction policies. In principle, knowledge exchange is
carried out by the runtime framework; thus, it is up to the
runtime framework when/how often it is performed.
Similarly to component processes, knowledge exchange can
be carried out either periodically or when triggered (line 10).

Based on the ensemble definition, a new ensemble is dynamically
formed for each group of components that together satisfy the
membership condition.

In summary, each component operates only upon its own local
knowledge, which gets implicitly updated by the runtime
framework (via knowledge exchange) whenever the component is
part of an ensemble. This supports component encapsulation and
independence. Further details are elaborated in [2].
The sole ensemble of the running example is the
UpdateAvailabilityInformation ensemble listed in Figure 4. Its
purpose is to aggregate the availability information of the
members, i.e. PLCSs, on the side of the coordinator, i.e., Vehicle
(line 9). The ensemble is formed only when a PLCS is close
enough to at least one of the POIs of the Vehicle (line 6) and there

is an available slot in the PLCS, which can accommodate the
respective POI arrival and departure time (line 7).

3.2 Computational Model
To allow for formal reasoning about DEECo applications, we
have defined the operational semantics of DEECo, which models
a DEECo application as a label transition system (LTS) with
knowledge manipulation actions on transitions. The semantics
further associates time with the LTS run and defines periodic and
triggered processes and ensembles in terms of time constraints
over traces generated by the LTS.

We also define a subset relation over a set of traces of observable
changes in the components’ knowledge. This allows us to build
different implementations of DEECo (such as the tuple-space
based implementation described in Section 4 and a messaging-
based implementation following the protocol outlined in [2])
while accommodating for and benefiting from the specifics of the
communication middleware used.
Due to space constraints we do not include the definition of the
semantics in this paper, rather we refer the reader to the technical
report [2], which describes it in full extent.

4. DEECo REALIZATION IN JAVA
In order to bring DEECo abstractions to the practical use during
the development of real-life RDS we provide a framework called
jDEECo [13], which is a Java-based realization of DEECo
component model. jDEECo delivers the necessary programming
abstractions and the runtime environment to deploy and run
DEECo-based applications.

In this section, we describe how jDEECo maps definitions of
DEECo components and ensembles to Java language primitives.
In particular, we follow the developer’s perspective and show how
the running example gets implemented using the jDEECo
constructs. Further, we briefly discuss interesting aspects of the
jDEECo runtime framework and supporting tools and the in-
memory representation of the DEECo concepts.

4.1 Mapping of DEECo Concepts to Java
By building on Java annotations, the mapping of DEECo concepts
relies on standard Java language primitives and does not require
any language extensions or external tools.

4.1.1 Component
A component definition has the form of a Java class (Figure 6).
Such a class is marked by the @DEECoComponent annotation and
extends the ComponentKnowledge class. The initial knowledge

1. ensemble	
 UpdateAvailabilityInformation:
2. coordinator: AvailabilityAggregator
3. member: AvailabilityAwareParkingLot
4. membership:
5. ∃ poi ∈ coordinator.calendar:
6. distance(member.position, poi.position) ≤ TRESHOLD &&
7. isAvailable(poi, member.availability)
8. knowledge	
 exchange:
9. coordinator.availabilities ← { (m.id, m.availability) | m ∈ members }
10. scheduling: periodic(5000ms)

Figure 4: An example of an ensemble definition in a DSL.

Figure 5: Composition of components into multiple

overlapping ensembles in DEECo.

Component	

level

Component 1
Component 2

Component 4
Component 3

Coordinator

Member
Member

Ensemble	
 1

Ensemble	
 2Member

Member

Coordinator

structure of the component is captured by means of the public,
non-static fields of the class (lines 4-8). The id knowledge field,
which is used for unique identification of a component, is
inherited from the ComponentKnowledge class. As knowledge
can be hierarchically structured, these fields represent the first
level of this hierarchy, where each can take the form of a
knowledge tree (recursively), map, or list. As for the knowledge
tree form, the non-leaf nodes of this tree need to be instances of a
class inheriting from Knowledge (lines 36-39). The non-structured
knowledge values are represented as serializeable Java objects. At
runtime, this initial knowledge structure is initialized either via
static initializers or via the constructor of the class (lines 10-12).

For convenience, the set of supported interfaces is implicit; i.e., all
interfaces that structurally match the component’s knowledge are
assumed to be featured by the component (similar to duck typing
in dynamic languages).

The component processes are defined as public static methods of
the class, annotated with @DEECoProcess (e.g., lines 14-22). The
requirement of the static modifier stems from the semantics of
component process execution (Section 3.1.1). In particular, except
for reading the input knowledge and writing the output knowledge
(which is anyway managed by the runtime framework),
a component process executes in isolation, without access to the
knowledge. Thus, declaring the method as static prevents it from
directly accessing the initial knowledge represented by the class
fields (which are non-static).
The input and output knowledge of the process is represented by
the methods’ parameters. The parameters are marked with one of

the annotations @DEECoIn, @DEECoOut or @DEECoInOut, in
order to distinguish between input and output knowledge fields of
the process (e.g., lines 16-19). Each annotation also includes an
identifier of the knowledge field that the associated method
parameter represents. As the input/output knowledge can consist
of a knowledge field that is an internal node of a knowledge tree,
the identifier of such a knowledge field is a dot-separated
representation of the path to the node in the tree (e.g., line 16).
When a non-structured knowledge field constitutes an inout/out
knowledge of a process, the associated method parameter is for
technical reasons (related to Java immutable types) passed inside
an OutWrapper object (e.g., line 30).

Periodic scheduling of a process is defined via the
@DEECoPeriodicScheduling annotation of the process’s method,
which takes the period expressed in milliseconds in its parameter
(line 25). Triggered scheduling is defined via @DEECoTriggered
annotation of the method’s parameter, change of which should
trigger the execution of the process (lines 16-17).

4.1.2 Ensemble
The ensemble definition takes also the form of a Java class. In
particular, the class is marked with the @DEECoEnsemble
annotation and extends the Ensemble class (Figure 7).

Both the membership predicate and the knowledge exchange are
defined as specifically-annotated static methods of this class.
While the method representing the membership predicate is
annotated by @DEECoEnsembleMembership (line 5), the method
representing knowledge exchange is annotated by
@DEECoEnsembleKnowledgeExchange (line 19). Note that in the
prototype implementation of jDEECo we assume for simplicity
knowledge exchange between the coordinator and a single
member (applied for each member separately); this is a
simplification of the one-to-many knowledge exchange (one
coordinator vs. many members) as introduced in Section 3.1.2.
Thus, in the Java implementation of the
UpdateAvailabilityInformation knowledge exchange we use a
timestamp to distinguish current elements of the availabilities

1. @DEECoComponent
2. public	
 class	
 Vehicle extends	
 ComponentKnowledge {
3.
4. public List<CalendarEvent> calendar;
5. public	
 Plan plan;
6. public	
 EnergyLevel batteryLevel;
7. public	
 Map<ID, Availability> availabilities;
8. public	
 Position position;
9.
10. public Vehicle() {
11. // initialize the initial knowledge structure reflected by the class fields
12. }
13.
14. @DEECoProcess
15. public	
 static	
 void	
 computePlan(
16. @DEECoIn("plan.isFeasible") @DEECoTriggered Boolean isPlanFeasible,
17. @DEECoIn("availabilities ") @DEECoTriggered Map<…> availabilities,
18. @DEECoIn("calendar") List<CalendarEvent> calendar,
19. @DEECoInOut("plan.route") Route plannedRoute
20.) {
21. // re-­‐compute the vehicle’s plan if it’s infeasible
22. }
23.
24. @DEECoProcess
25. @DEECoPeriodicScheduling(5000)
26. public	
 static	
 void	
 checkPlanFeasibility(
27. @DEECoIn("plan.route") Route plannedRoute,
28. @DEECoIn("batteryLevel") EnergyLevel batteryLevel,
29. @DEECoIn("position") Position position,
30. @DEECoOut("plan.isFeasible") OutWrapper<Boolean> isPlanFeasible
31.) {
32. // determine feasibility of the plan
33. }
34. ...
35. }
36. public	
 class Plan extends Knowledge {
37. public Route route;
38. public	
 Boolean isFeasible;
39. }

Figure 6: Example of a component definition in Java.

1. @DEECoEnsemble
2. @DEECoPeriodicScheduling(4000)
3. public	
 class	
 UpdateAvailabilityInformation extends	
 Ensemble {
4.
5. @DEECoEnsembleMembership
6. public	
 static	
 boolean	
 membership (
7. @DEECoIn("coord.calendar ") List<CalendarEvent> calendar,
8. @DEECoIn("member.position ") Position plcsPosition,
9. @DEECoIn("member.availability ") Availability availability
10.) {
11. for (CalendarEvent ce : eventsCalendar) {
12. if (isClose(ce.poi.position, plcsPosition, DISTANCE_THRESHOLD)
13. 	
 	
 	
 	
 	
 && isAvailable(ce.poi, availability))
14. return true;
15. }
16. return false;
17. }
18.
19. @DEECoEnsembleKnowledgeExchange
20. public	
 static	
 void	
 knowledgeExchange (
21. @DEECoIn("coord.calendar") List<CalendarEvent> calendar,
22. @DEECoInOut("coord. availabilities") Map<…> availabilities,
23. @DEECoIn("member.id]") ID memberID,
24. @DEECoIn("member.position") Position plcsPosition,
25. @DEECoIn("member.availability") Availability availability
26.) {
27. availabilities.put (memberID, availability.clone(currentTimestamp()));
28. }
29. }

Figure 7: Example of an ensemble definition in Java.

collection (line 27), instead of refreshing the whole collection
(Figure 4, line 9).

In contrast to the conceptual description of an ensemble
(Section 3.1.2), Java definition of an ensemble does not comprise
explicit definition of the member and coordinator interfaces.
Instead, these interfaces are defined implicitly as a union of the
knowledge fields represented by parameters of the methods
representing the membership predicate and knowledge exchange.
Since these parameters are annotated in the same way as
parameters of component processes, the parameters relevant to the
member/coordinator interface are distinguished by identifier
prefixes (i.e., identifiers of knowledge of a coordinator/member
interface are prefixed with “coord”/“member”).

Scheduling of the knowledge exchange is defined similarly to
component processes. The only difference is that the
@DEECoPeriodicScheduling is applied to the whole class defining
the ensemble, while the @DEECoTriggered is applied to a
particular parameter of the membership method.

4.2 Runtime framework
The jDEECo runtime framework is primarily responsible for
scheduling component processes, forming ensembles, and
performing knowledge exchange. It also allows for distribution of
components.

As illustrated in Figure 8, it is internally composed of the
management part and the knowledge repository. The management
part is further composed of two modules. One is responsible for
scheduling and execution of component processes and knowledge
exchange of ensembles. The other is responsible for managing
access to the knowledge repository. Exploiting the fact that all
modules of the runtime framework implementation are loosely
coupled, we are able to introduce implementation variants for
each of them. As a result, different variants can be selected in
order to reflect specific requirements imposed to the platform.

The role of the knowledge repository is to store the component’s
knowledge (e.g., CK1 – knowledge of component C1 – in
Figure 8). Its responsibility is also to provide component
processes and knowledge exchange of ensembles with access to
this knowledge. In fact, we provide a local and a distributed
implementation of the knowledge repository; the former is
employed for simulation and verification of the code (Section 4.3)
while the latter is used in case the runtime framework needs to run
in a distributed setting (i.e., the distribution is achieved at the level
of knowledge repository). Specifically, the distributed
implementation of the knowledge repository allows each
component to run in a different Java virtual machine (as illustrated

in Figure 8). The distribution is achieved by employing the
JavaSpaces1 middleware. JavaSpaces is a reification of the
LINDA [15] paradigm, which aligns well with the way DEECo
represents knowledge. For the time being, jDEECo relies on the
ApacheRiver2 implementation of JavaSpaces.

As to the scheduling module, each component process (e.g., C1P1
– process P1 of component C1 – in Figure 8) is executed by the
runtime framework within a regular Java thread. Thus, threads
executing triggered processes are blocked till their triggering
condition holds true, while threads executing periodic processes
are blocked after completion till the beginning of their next
period. Concerning knowledge exchange of ensembles (e.g., E1 in
Figure 8), the scheduling and execution is similar to component
processes. In addition, the membership predicate is evaluated
before each run of the knowledge exchange, so that it is applied
only to valid coordinator-member pairs of components.

Further, to enable dynamic deployment of DEECo-based
applications, Java classes with component/ensemble definitions
can be provided to the runtime framework both during
deployment and runtime.

4.3 Tool support
In addition to providing the runtime framework, jDEECo supports
the development of DEECo-based applications via the ASCENS
tool workbench (called SDE3), featuring modeling and analysis
tools for RDS.

Since SDE is based on Eclipse, the integration with jDEECo
includes deploying jDEECo as an Eclipse plugin and providing
additional Eclipse-specific features. Most importantly, these
include the possibility of packaging and deploying DEECo
components and ensembles as OSGi [17] bundles. This is
complemented by a graphical packaging tool and a discovery
mechanism based on OSGi service discovery.

Furthermore, the tool palette is enhanced by the integration of
jDEECo and Java PathFinder4 [18] which supports verification of
properties related to knowledge. Currently, we are focusing on
verification of reachability properties, encoded via assertions and
exceptions in the component/ensemble code. Technically, we
perform model-checking on a compound consisting of code of
components and ensembles, and of the jDEECo runtime
framework. The latter is included to represent the DEECo
computational model. To minimize model-checking complexity,
we perform the verification on a special configuration of the
jDEECo runtime framework (its JPF-optimized variant); in
particular, this concerns the local knowledge repository and
scheduling module.

5. SOFTWARE ENGINEERING PROCESS
INTEGRATION
To build EBCS-based systems (DEECo-based applications in
particular) and reason about their properties in a systematic way, a
high-level view of the target system is required. Such view should
trace the (latent) system architecture, which will naturally
comprise a number of DEECo components and ensembles, back
to system requirements.

1 http://river.apache.org/doc/specs/html/js-spec.html
2 http://river.apache.org
3 http://sde.pst.ifi.lmu.de/trac/sde/
4 http://babelfish.arc.nasa.gov/trac/jpf/

Figure 8: jDEECo runtime framework architecture.

jDEECo InstancejDEECo Instance

Scheduling . . .

CK1

C1P1

CK2

C2P1 . . . E1 C3P1 . . .

CK4

C4P1 . . .

Component
processes &
Ensemble
knowledge
exchange

Knowledge
Repository

C4P2

Knowledge
access . . .

Scheduling

Knowledge
access

Scheduling

Knowledge
access

Java VM Java VM . . . Java VM

jDEECo Instance

CK3

Management

Runtime framework

To enable that, we have proposed a requirements-driven method
for designing EBCS, called Invariant Refinement Method – IRM
(elaborated in [9][24]). In this section, we augment the description
of the DEECo component model and its jDEECo runtime
framework implementation with a comprehensive development
process based on IRM. In particular, for convenience we first
provide a brief summary of IRM and then focus specifically on its
integration with traditional Component-Based Development
(CBD) process, as well as its strong points w.r.t. system evolution.

5.1 Basic Concepts of IRM
IRM is based on the systematic decomposition and refinement of
system specification, ending up with system architecture –
components and ensembles. It builds on the idea of iterative
refinement of system goals, employed in goal-oriented
requirements engineering. Contrary to classic goal-oriented
approaches though, like KAOS [27] and Tropos/i* [5], IRM is
tailored to the domain of EBCS. In particular, EBCS feature
emergent system architectures, which cannot be systematically
derived from system requirements using classic approaches [16].

The main goal of IRM is the identification of EBCS concepts of
components and ensembles based on system requirements. This
subsequently brings correct-by-construction guarantees of
compliance with system requirements, and the possibility of
automated preparation of EBCS artifacts (component skeletons,
ensemble code) in the programming language of choice.
IRM comprises system level design, ensemble level and
component level design, followed directly by implementation.
System level. As a starting point of the design process, IRM
focuses on the invariants to be preserved and the system
constituents (components) responsible for preserving them.
Invariants are descriptive statements of what should hold in the
system at every time instant (not only at some point in the future)
and reflect the system normalcy, i.e., the property of being within
the bounds of normal operation. For example, the “The
availability of relevant PLCSs is kept updated” invariant
expresses that vehicles should keep having up-to-date availability
information regarding the PLCSs close to their POIs. A
component in IRM is a design construct encapsulating knowledge
(its domain-specific data) that is referred from invariants; i.e., the
component takes a role in the invariants.

After identifying the invariants reflecting the top-level system
goals/requirements, the design process continues by their
refinement into sets of sub-invariants, forming a tree structure.
The invariant refinement has the typical semantics used in
software engineering, where the composition of the children
exhibits all the behavior expected from the parent and potentially
some more. An example of a possible decomposition of our
running example is depicted in Figure 10.a.

The iterative refinement process ends when all invariants are
directly mappable to DEECo component processes and
ensembles. In particular, an invariant needs no further refinement
when a) it involves a single component and can be ensured by
local manipulation of the component’s knowledge (via a
component process) – local invariant (e.g., (7) in Figure 10.a) –
or b) the invariant involves exactly two components and can be
ensured by mapping one component’s knowledge part(s) to the
other (via knowledge exchange of an ensemble) – exchange
invariant (e.g., (6) in Figure 10.a).

Ensemble level. At this level, ensembles are identified and fully
specified. For each exchange invariant, an ensemble is introduced.
In particular, the coordinator and member interfaces are directly

derived from the roles the components take in the respective
invariant. The rest of the ensemble definition (membership
predicate, knowledge exchange function) needs to be extracted
from the invariant manually. For example, the “The availability of
relevant PLCSs is kept updated” exchange invariant ((6) in
Figure 10.a) can be refined into the UpdateAvailabilityInformation
ensemble listed in Figure 4.
Component level. At this level, the components are concretized.
The component at this level necessarily comprises the knowledge
identified at the system level. The component processes are also
specified; these are derived from the local invariants the
component takes a role in. For example, the Vehicle component
from Figure 10.a can be concretized into the Vehicle component
of Figure 3, comprising knowledge and processes determined at
the system level.

5.2 Integration with CBD Process
Overall, the development process for EBCS as described above,
and IRM in particular, introduces specific aspects into the
traditional Component-Based Development (CBD) process. Thus,
in this section we elaborate on these specifics in the context of
general CBD process and provide a concrete example for the
waterfall-based CBD process as proposed in [12].

CBD process builds on separation of system development process
from component development process [11]. The traditional system
development process includes the phases of Requirements,
Analysis, Design, Implementation, Test, Release, and
Maintenance. The component development process includes
phases of Design, Implementation, Test, Delivery, and
Maintenance. Several component development processes may be
on course simultaneously, making it possible to develop several
components at the same time.

By employing IRM in design, we couple component development
(exemplified on the reference CBD process of [12] in Figure 9)
with ensemble development. To do so, we extend several phases
of CBD to accommodate IRM (Table 1). Since the extensions do
not rely on any specifics of CBD (they only assume requirements
analysis and architectural/system design, traditional parts of
development processes in general), we believe that they are
applicable to any development process which involves
components (e.g., agile variations of CBD).

Figure 9: Example of IRM integration into the reference CBD

process of [12].

MaintenanceMaintenance

Component &
Ensemble

Development

System
Development

Requirements
Elicitation 1

Design 3

Design 4

Implementation 5

Test 6

Delivery 7

Integration 8

Release 10

Requirements
Analysis 2

Test 9

Maintenance 11

Maintenance 11

not changed slightly modified modified

5.3 System Evolution
Since EBCS are inherently open-ended and evolving systems, the
aforementioned development process has to accommodate
additional requirements that arise after the initial development
cycle has been completed. A new requirement can arise when a
new or modified functionality is required from the system. IRM
provides an easy and effective way to deal with such evolution by
introducing new invariants into corresponding branches of the
IRM tree.

For illustration, we consider an evolution scenario where the
Traffic Information Provider component is added to the system, to
represent the traffic monitoring stations scattered around roads.
These stations provide information to the vehicles about traffic
congestions in their vicinity. Recall that the e-mobility system
from the running example has been originally designed and
implemented without considering traffic level information
(Figure 10.a). In this case, the IRM design captures just the
necessity to keep the vehicle’s plan updated ((4) in Figure 10.a)
and to check whether the current plan remains feasible with
respect to measured energy level ((5) in Figure 10.a).

To address the evolution, the IRM tree is modified as follows
(Figure 10.b): i) the new component is added, ii) the invariant (5)
is modified to account for the traffic level, iii) three new
invariants (i.e., (9), (10), (11)) are added. Out of these, one is an
exchange invariant (10) and one is a local invariant (11),
prescribing the addition of a new ensemble and a new process to
the Vehicle component.

To account for such kind of system evolution, the whole
development process needs to follow an iterative approach, where,
by integrating newly identified requirements, software is
incrementally built, tested, and released.

6. EXPERIENCE
We have evaluated the DEECo approach (together with IRM) by
developing a prototype of the e-mobility case study within the
ASCENS project. As this case study has been conceived in
cooperation with Volkswagen, the detailed designs and
implementation are proprietary. For a concise description of the
case study we refer the reader to [36]. Along with the case study,
we have also implemented a number of example applications and
a tutorial, which are all available at the jDEECo GitHub site [13].
Our experience shows that DEECo concepts well combine the
encapsulation and modularity brought by components with the
needs of autonomic behavior and highly dynamic architecture.
IRM process well complements the DEECo concepts in providing
an overall system-level view that can be easily translated to
components and ensembles. The mapping to Java (by jDEECo)
proved to be relatively straightforward.

Our experience also indicated that although there is a strong
conceptual difference between a component and an ensemble (in
the sense that a component is state-full while an ensemble is
stateless), the developers of the case-study had problems with
differentiating between responsibilities of a component process
and knowledge exchange. In particular, they incorrectly tended to
reduce autonomy of components by pushing some of their
functionality to ensembles (by employing complex knowledge
transformations in the knowledge exchange). As a remedy, we
adopted the following rule as a design guideline: The knowledge
exchange should be ideally 1:1 knowledge assignment; complex
knowledge transformations may be employed only in well-
justified cases (typically when integrating third-party
components).
Finally, our experiments with verification of jDEECo applications
via JPF (performed on the example applications) indicate that the
relatively strict DEECo computational model can be effectively

R
eq

.
A

na
ly

si
s

[2
]

By applying the IRM method, the requirements are captured
in terms of invariants and elaborated by iterative refinement.

Sy
st

em
 D

es
ig

n
[3

]

The system architecture, in terms of (DEECo) ensembles and
components, is identified. The analysis is both structural
(which architectural entities should be present in the system)
and behavioral (what should be their behavior, e.g., in terms
of process & ensemble scheduling). It is important to
distinguish between the components’ internal and external
interfaces. An external interface comprises a part of the
knowledge that can be exchanged (read or written) by
ensembles. This knowledge must not be violated during
implementation, as this would harm the system-wide
contractual design. On the contrary, an internal interface
comprises a part of the knowledge that must be present in the
component, for the purpose of an internal computation.

C
om

p.

D
es

ig
n

[4
]

Components & ensembles are designed in detail. This step
can include elaboration of representation of the knowledge
belonging to internal interfaces.

C
om

p.

Te
st

in
g

[6

]

Components & ensembles are tested in isolation. The leaf
invariants of the IRM tree can serve as a specification for unit
testing.

Sy
st

em

Te
st

in
g

[9
]

System-wide tests are performed. The non-leaf invariants of
the IRM tree can serve as a specification for integration
testing.

Table 1: IRM injection points into the CBD process.

(a)

(b)

Figure 10: Capturing system evolution in IRM.

(2) Vehicle has an up-­‐to-­‐
date and feasible plan

(1) Vehicle meets its
calendar

 (4) Plan is kept updated

(3) Driver follows the route
 of the plan

L

(6) Availability of relevant
PLCSs is kept updated

X

(5) Plan feasibility w.r.t.
battery level is checked

(7) Plan is kept computed
w.r.t. availability & feasibility

L

(8) Battery sufficiency
w.r.t plan is checked

L

1{ plannedRoute}

Vehicle

calendar
position
plannedRoute
planFeasibility
availabilities
batteryLevel

PLCS

position
availability

1{ batteryLevel,
planFeasibility}

1{ plannedRoute,
planFeasibility,
availabilities,
position}

*{position, availability}

1{calendar, availabilities}

(2) Vehicle has an up-­‐to-­‐
date and feasible plan

 (4) Plan is kept updated (5) Plan feasibility w.r.t. battery
level, traffic	
 level is checked

(8) Battery sufficiency
w.r.t plan is checked

L

(11) Time constraints
w.r.t. traffic level are checked

L

(9) Traffic level assuptions
w.r.t. plan are checked

(10) Traffic level
information is kept updated

X

Traffic Information
Provider

trafficLevel *{trafficLevel}

1{trafficLevel}

1{ trafficLevel,
planFeasibility}

Vehicle

calendar
position
plannedRoute
planFeasibility
availabilities
batteryLevel
trafficLevel

agent invariant AND-­‐
decomposition

x{k} role with
knowledge k

exchange
invariant

Xlocal
invariant

L

Parking/Charging
Station

position
availability

exploited for increasing the performance of explicit model
checking.

7. RELATED WORK
Since EBCS are a relatively new class of systems, we are
currently not aware of any other approach that would be directly
related to IRM and DEECo. However, as EBCS is a software
engineering concept for developing Resilient Distributed Systems
(RDS), in this section we survey approaches that deal with
specific aspects of RDS.

At the computational level, control engineering methodologies
have been identified as a promising solution to implement self-
adaptive software systems [10] in a variety of application domains
and with different performance requirements and control
objectives [33]. In the domain of distributed systems,
decentralized solutions based on feedback loops, ranging from
cloud performance management [41] to embedded real-time
systems [40], have been proposed to keep the system in the
required steady state, while avoiding scalability issues and single
points of failure. EBCS employ similar idea of cyclic execution of
component processes and ensembles to maintain the operational
normalcy of the system. At the architectural level, attempts have
been made to instantiate the generic MAPE-K loop [23] to feature
adaptation at a larger scale. Self-managing architectures [26],
component-based approaches [3][34], and solutions that apply
architectural models at runtime [29] are examples of this. The
common denominator of these approaches is that they rely on
explicit bindings among the system components, which get re-
organized in response to runtime stimuli. EBCS, on the other
hand, do not consider explicit architecture, but let the architecture
“emerge” during runtime, fitting better the dynamic, constantly–
changing system landscapes.
Agent-oriented approaches provide useful notions (e.g., goals,
plans), models (e.g., Belief-Desire-Intention [35]) and algorithms
(e.g., DCOPs [21]) for reasoning in complex dynamic systems. In
a distributed setting, multi-agent analysis is based on the
conceptual autonomy and social ability of the parts constituting
the system. A problem is that current agent implementation
platforms [4] and methodologies [5] rely on guaranteed
communication and explicit bindings among the agents, which
typically take the form of messaging. In this view, EBCS/DEECo
stands as an agent engineering platform, which handles the
communication in an implicit and automatic way, making it
possible for agents to operate in opportunistic environments where
no guarantees are available.

The concept of service-component ensembles has been recently
proposed in order to allow for communication over unreliable
communication channels and at massive scale [20]. Ensembles
rely on attribute-based communication [14] to model a best-effort,
dynamic coordination of components. An attempt to formally
define this concept can be found in [19].

At the requirements phase, well-established methods and models
exist for capturing and analyzing early requirements in terms of
goals delegated to system agents. However, these models either
do not map effectively to the later development phases [27], or do
not support mapping to emergent architectures [5], which are
typical in EBCS. Recent attempts in the area of EBCS have
centered around a model termed Statement of the Affairs (SOTA),
which provides the means to capture and analyze the early
requirements of different component cooperation schemes, along
with the architectural patterns that satisfy them by
construction [1]. IRM stands as the intermediate method which

guides the transition from early (high-level) requirements to
system architecture in terms of components and ensembles.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have focused on Resilient Distributed Systems
(RDS). We have argued that classic component-based approaches
in design do not scale well in the area of RDS – mainly because
RDS exhibit very high degree of dynamicity, adaptivity, and
autonomy.

For component-based development of RDS, we have introduced
EBCS (Ensemble-Based Component Systems), a new class of
component-based systems, which combine concepts from agent-
oriented, ensemble-oriented and control systems. In particular, we
have presented an instance of EBCS – the DEECo component
model and its framework.

Overall, DEECo provides a comprehensive software engineering
solution comprising (i) component and ensemble paradigms with
well-defined formal semantics, (ii) mapping to Java, (iii)
distributed Java-based runtime framework (jDEECo), (iv)
integration with analysis tools (SDE, JPF), (v) design method
(IRM) for deriving components and ensembles from high-level
requirements, and (vi) integration of the design method to
traditional component-based development processes. We have
successfully evaluated DEECo along with IRM on the e-mobility
case-study of the ASCENS project.

The experience with DEECo (and consequently EBCS) puts
forward several research directions. In particular we would like to
evaluate the robustness of DEECo in environments with highly
unreliable communication and heterogeneous network
infrastructure (e.g., MANETs [28]). Although this will most likely
require employing some communication middleware for such
networks (e.g., EgoSpaces [22]) at the implementation level, it is
well aligned with the general DEECo computational model. Also,
we are currently investigating the possibility of using formalized
IRM invariants as the basis for monitoring the correctness and
performance of a DEECo-based system and for guiding
component adaptations. Furthermore, we intend to develop a
metamodel of DEECo and employ model-driven-engineering
techniques for elaborating the jDEECo implementation.

9. ACKNOWLEDGMENTS
The authors would like to thank Pavel Parizek and Pavel Jancik
for their input concerning JPF. This work was partially supported
by the EU project ASCENS 257414 and the Grant Agency of the
Czech Republic project P202/11/0312. The work was also
partially supported by Charles University institutional funding
SVV-2013-267312.

10. REFERENCES
[1] D. B. Abeywickrama, N. Bicocchi, and F. Zambonelli.

SOTA: Towards a General Model for Self-Adaptive
Systems. In Proc. of WETICE ’12, 2012.

[2] R. Al Ali, T. Bures, I. Gerostathopoulos, P. Hnetynka, J.
Keznikl, M. Kit, and F. Plasil. DEECo computational model
– I. Technical Report no. D3S-TR-2013-01. D3S, Charles
University in Prague. Available at: http://d3s.mff.cuni.cz-
/publications, 2013.

[3] L. Baresi, S. Guinea, and G. Tamburrelli. Towards
decentralized self-adaptive component-based systems. In
Proc. of SEAMS ’08, 2008.

[4] F. Bellifemine, G. Caire, and D. Greenwood. Developing
Multi-Agent Systems with JADE. John Wiley, 2007.

[5] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and
A. Perini. Tropos: An Agent-Oriented Software
Development Methodology. Autonomous Agents and Multi-
Agent Systems. 8, 3, 2004.

[6] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.
Stefani. The Fractal component model and its support in
Java. Software: Practice & Experience. 36, 2006.

[7] T. Bures, P. Hnetynka, and F. Plasil. SOFA 2.0  : Balancing
Advanced Features in a Hierarchical Component Model. In
Proc. of SERA ’06, 2006.

[8] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M.
Kit, and F. Plasil. Autonomous components in dynamic
environments. Awareness Magazine. Online:
http://www.awareness-mag.eu, 2012

[9] T. Bures, I. Gerostathopoulos, V. Horky, J. Keznikl, J.
Kofron, M. Loreti, and F. Plasil. Language Extensions for
Implementation-Level Conformance Checking. ASCENS
Deliverable 1.5. Available at: http://www.ascens-
ist.eu/deliverables, 2012.

[10] B. Cheng et al. Software Engineering for Self-Adaptive
Systems: A Research Roadmap. Software Engineering for
Self-Adaptive Systems. Springer–Verlag, 2009.

[11] I. Crnkovic. Building Reliable Component-Based Software
Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[12] I. Crnkovic, M. Chaudron, and S. Larsson. Component-based
development process and component lifecycle. Software
Engineering Advances, 44, 2006.

[13] D3S, Charles University in Prague. jDEECo website.
Accessed April 17, 2013.
https://github.com/d3scomp/JDEECo, 2013.

[14] R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese. A
Language-based Approach to Autonomic Computing. In
Proc. of FMCO ’11, 2012.

[15] D. Gelernter. Generative communication in Linda. Toplas. 7,
1, 1985.

[16] I. Gerostathopoulos, T. Bures, and P. Hnetynka. Position
Paper: Toward s a Requirements-Driven Design of
Ensemble-Based Component Systems. In Proc. of
HotTopiCS Workshop, ICPE ’13, 2013.

[17] R. Hall, K. Pauls, S. McCulloch, and D. Savage. OSGi in
Action: Creating Modular Applications in Java. Manning
Pubs Co Series. Manning Publications, 2011.

[18] K. Havelund, and T. Pressburger. Model Checking Java
Programs Using Java PathFinder. Software Tools for
Technology Trasfer. 2, 4, 2000.

[19] M. Holz, and M. Wirsing. Towards a System Model for
Ensembles. Formal modeling. 2012.

[20] M. Holzl, A. Rauschmayer, and M. Wirsing. Engineering of
software-intensive systems: State of the art and research
challenges. In Software-Intensive Systems and New
Computing Paradigms. Ser. LNCS, Springer Berlin,
Heidelberg, vol. 5380, 2008.

[21] M. Jain, M. Taylor, M. Tambe, and M. Yokoo. DCOPs meet
the real world: Exploring unknown reward matrices with
applications to mobile sensor networks. In Proc. of
IJCAI ’09, 2009.

[22] C. Julien, and G.-C. Roman. EgoSpaces: Facilitating Rapid
Development of Context-Aware Mobile Applications. IEEE
Transactions on Software Engineering, 32, 5, 2006.

[23] J. Kephart, and D. Chess. The Vision of Autonomic
Computing. Computer. 36, 1, 2003.

[24] J. Keznikl, T. Bures, F. Plasil, I. Gerostathopoulos, P.
Hnetynka, and N. Hoch. Design of Ensemble-Based
Component Systems by Invariant Refinement. In Proc. of
CBSE 2013, ACM, 2013.

[25] J. Keznikl, T. Bures, F. Plasil, and M. Kit. Towards
Dependable Emergent Ensembles of Components: The
DEECo Component Model. In Proc. of WICSA/ECSA 2012,
IEEE CS, 2012.

[26] J. Kramer, and J. Magee. Self-managed systems: an
architectural challenge. In Proc. of FOSE ’07, 2007.

[27] A. Lamsweerde. Requirements engineering: from craft to
discipline. In Proc. of SIGSOFT ’08/FSE-16, 2008.

[28] M. Mauve, A. Widmer and H. Hartenstein. A Survey on
Position-Based Routing in Mobile Ad Hoc Networks. IEEE
Network, 15, 6, 2001.

[29] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A.
Solberg. Models at Runtime to Support Dynamic Adaptation.
IEEE Computer. 42, 10, 2009.

[30] OMG. Unified Modeling Language 2.0: Superstructure.
Available online: http://www.omg.org/spec/UML/2.0/, 2005.

[31] OMG. CORBA Component Model Specification v4.0.
Available online: http://www.omg.org/spec/CCM/4.0/, 2006.

[32] OSGi Alliance. OSGi service platform core specification,
release 4. Available online: http://www.osgi.org/Spec-
ifications/HomePage, 2012.

[33] T. Patikirikorala, A. Coman, H. Jun, and W. Liuping . A
systematic survey on the design of self-adaptive software
systems using control engineering approaches. In Proc. of
SEAMS ’12, 2012.

[34] C. Peper, and D. Schneider. Component engineering for
adaptive ad-hoc systems. In Proc. of SEAMS ’08, 2008.

[35] A. Rao, and M.P. Georgeff. BDI agents: From theory to
practice. In Proc. of ICMAS ’95, 1995.

[36] N. Serbedzija et al. Ensemble Model Syntheses with Robot,
Cloud Computing and e-Mobility. ASCENS Deliverable 7.2.
Available at: http://www.ascens-ist.eu/deliverables, 2012.

[37] N. Serbedzija, S. Reiter, M. Ahrens, J. Velasco, C. Pinciroli,
N. Hoch, and B.Werther. Requirement Specification and
Scenario Description of the ASCENS Case Studies. ASCENS
Deliverable 7.1. Available at: http://www.ascens-
ist.eu/deliverables, 2011.

[38] M. Shaw, and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline, Prentice-Hall, Englewood Cliffs,
NJ, 1996.

[39] Y. Shoham, and K. Leyton-Brown. Multiagent Systems:
Algorithmic, GameTheoretic, and Logical Foundations,
Cambridge University Press, 2008.

[40] J. A. Stankovic, T. He, T. Abdelzaher, M. Marley, G. Tao, S.
Son, and C. Lu. Feedback control scheduling in distributed
real-time systems. In Proc. of RTSS ’01, 2002.

[41] R. Wang, and N. Kandasamy. A distributed control
framework for performance management of virtualized
computing environments. In Proc. of ICAC ’10, 2009.

