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ABSTRACT the work on resilient distributed systems (RDS) based on
The challenge of developing dynamicadlyolving resilient ensemblefl5] of autonomousadaptive[16] components. In this

distributed systems that are composed of autonomous componentSONtext, an ensemble is seen adymamically formed group of
has been partially addressed by introducing the concept ofdutonomous components —which encapsulates knowledge,
component ensembles. Nevertheless, systematic design ofnteraction, and goals specific to thup.

complex ensembibased systems is still a pressing issue. This The ASCENS project employs three case studies from different
stems from the fact that contemporary design methods do notdomains, of which weargetthe emobility case study within the
scale in terms of the number and complexity of ensembles andscope of this paper. This case study aims at resource optimization,
components, and do not efficiently cope with the dynamism such as travel time, energy consumption, and parkitgand
involved. To address this issuele presenta novel method B charging station usagef electricpowered vehicleslts objective
Invariant Refinement Method (IRM® for designing ensemble is to coordinate planning of journeys in compliance with parking
based component systems by building onf@sled requirements  and charging strategies in the higllynamic, complex, and
elaboration, while integrating component architecture design andheterogeneous traffic environment, where information is
software control system design. distributed.

Categories and Subject Descriptors Currently, widely accepted semantics of the ensemble concept is
C.2.4 [Computer-Communication Networks]: Distributed ?ti" an open issue. I[p][19], we have contributed to this by
Systems distributed applications C.3 [Speciatpurpose and introducing theconce_:pt ofEnsembleéBased Component Systems
Application-based Systemis reattime and embedded systems (EBCS) and  specifically the DEECo component model

- o . . Dependable Emergent Ensembles of Componentsir
D.2.2 [Software Engineering]: Design Tools andrechniquesb ( L .
misceIEaneous D.g.ll [Sg]oftwarg Engineering]:So?tware contibution to the EBCS family Although the concept of

ArchitecturesDpatterns ensemble inEBCS effectively addresses the distribution and
dynamism ofRDS at a middleware level, the design of complex,
Keywords ensemblebased systems remains a significant challenge. Our
early exriments ingtate thattraditional software engineering
methods cannot be directly employdd], sincethey cannot cope
with the dynamisminvolved and do not cover all the rgced
1. INTRODUCTION design stepsSpecifically, t appears that the design of ensemble
based systems requires a synergy of -goi@inted requirements
refinement, architecture design, and (éb@e) process
scheduling.In response to this problem, this paggpposes a
novel methodb Invariant Refinement Method (IRMP for
systematical derivation of an EB@fased RDS architecture from
ﬂighlevel requirementsin particular, IRM builds on gradual
refinement of invariants that aremployed as a concept for
reflectingbothrequirements andrchitecturaklements

Component ensemble refinement requirements engineering
system design

Addressingthe challenge of developing larggeale distributed
autmomic and adaptive systenf®6], the EU FP7 project
ASCENSJ[15] strives for modeling and designing such systems of
service compoents and service component ensembles. For-large
scale adaptive systems, the ASCENS case studies indicate th
need to deal with large amounts of distributed information both
highly dynamically and intelligently, while ensuring resilience to

changes in therwironment. This has been partially targeted by
The rest of this paper is structured as follows: SeQienplains

the specifics of EBCS in the conteXtthe emobility case study
Permission to make digital or hard copies of all or part of this work - in DEECo. Sectior8 elaborates orthe lesons learned from the
personal or classroom use is granted without fee provided that copie: case studyand articulates the problem statemefectio 4

not made or distributed for profit or commercial advantage and t o - .
copies bear this notice and thel citation on the first page. To copy presentsanoverall description ofRM, while Section5 elaborates

otherwise, or republish, to post on servers or to redistribute to li on guidelines for efinement by presentinigvariantpatterns The
requires prior specific permission and/or a fee. evaluation and discussion is provided in Sec#orand related
CBSEOQ13, JuneBZ1, 2013, Vancouver, BC, Canada. work in Section?. Section8 concludes the paper and identifies

Copyright © ACM978-1-450321228/13/06...$15.00. future research directions.
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SYSTEMS: A CASE STUDY

To illustrate the challenges in RDS developmerg exploit the € e )

mobility case study mentioned iSectionl. Electric vehicles e Lo SHBNSTW()! \SensorsigetCurrentAvailability()!

vehicle$ compete for enobility resources, such as parking lots «  .(4$2-11"3.,$%!*2!(=000ms !

and charging stationsnfrastructure in order to achieve optimal : E!

journeys with respect to the drlyersO d_ally activitakefdar3. A " $+51 $)FBLH(, "HHS"(I0h_+AS(-0.

calendar consists of a set pbints of interes{POls), together L (BRI Y S () R 4§

with timing constraints specifying the expected POI arrival and | +g+5g041"3us()" 58+, 6$+7:0%3-(!

departure times. For brevity,eanassume that each driver is bound  +$+5%%.41,.!

to his/herown private vehicle and that parking lots are the only @ @ 3!8-Hel(*%2!"#*%/$i,01$+.!

infrastructure entities. An-eehicle uses a planner in order to ' ! ! distancel+$+58%68-4i(-018-18-4i(i-0N! HIKLMNIO!
create its individual journewlan, stemming from the driverOs /*01$23$)..§6(4 85 o
calendar and including parlg/cha’lrging periods when necessary. : ‘(4$(2*_*;/|0--23! @ﬁ?‘féﬁ,f’“‘.“‘(?,i“ﬁﬁﬁ H3HST reducel S ESSSSTLOM
The system is fully decentralizell every evehicle plans and Y

executes its route individually. Figure 2: Example of a DEECo component and ensemble

definition in a DSL.

Having outlined the application domain of EBCS, in the rest of

this section we first elaborate on the context of EBCS aed th  agequatescheduling of periodic tasks recurrently maintaining the
illustrate the basic concepts amexample fronthe case study. operationalnormalcy of the systemHere operational normalcy

2.1 From Agent and Cortrol -based Systems expresseshe property ofbeing within certain limits that define
) the range of normal functionimaf the systemThe required level

to EnsembleBased Component SyStemS of robustness is achieved by adjusting the periods of the tasks.
In principle, EBCS[5] combinethe advantages otomponent
based software engineerinf®][10], ensembleoriented
systemq14][15], agentbased computinfL8][24], and (soft)realt
time embedded software control systdi#fig25] in highly
dynamic, openended environments that lack reliable
communication channe(§igurel).

As extreme dynamism is involvedsomponentsshould be also
capable of continuous sedflaptation, following the concepf
feedback loop[17]. An ensemblebased system can be thus
understood as a dynamic system of conditionally interacting
feedbacKoops.

In this context, componenta EBCS are perceived as software
engineering means for implementing resilieagentsthat deal
with ensembleoriented, beseffort communication and outdated
belief.

Exploitation of the conceptsfrom agentoriented computing
allows for composing systems from number of autonomous
entities so that the overall behavior of the system is an emergent
result of behaviors of the entitie$n partiaular, the autonomous
entitiesare designed to operate onlith a partial view ofthe 2.2 lllustration of the Concepts on theCase
whole system; i.e., BDhodel[21] where agents maintaintelief Study

about the rest of the systemgoidetheir autonomous decisions. .
The case study has be@émplementedn our DEECo component

A disadvantage of the agentiented computing concepg the model D an instanceof EBCS Here, acomponent comprises
software_eng_ineering level ists strong dependence on reliable knowledge(i.e., the data of the component), exposed via a set of
communication channelgs e.g., in the case of JADE platform  jyterfaces andprocesseseach of them being essentially a thread
[3]). which is, however, not achievable in the target application operating upon the knowledge of the componentFigure2

domain due to the extreme dynamism. Instéz8ICSrely on the illustrates several artifacts we have developed for the case study.
concept ofattributebased communicatiofi2] (i.e., the target of  |n particular, it shows a specification of the/ehicle0123
communication is determined accorglito the valuesof attributes component, featuring thavailabilityAggregator interface and the
rather than by a direct identifier) which modes the computePlan process. The latter is responsible for the computation
communication as best effort and localized to dynamically of the vehicle®glan, which is based on the vehicleOs calendar
changing group®ensemble®of components (calendar) and the availability information dhe relevant parking

The EBCS communication model however impliethat the lots (availabilityList) and is executed whenever one of these inputs
componerg® belief igssentiallyalways outdatedTo efficiently changes.

cope with outdated belief, EBCS employ concepts of (soft} real
time software control systems, whichachieve robustness by



For the purpose of separation of concerns and effective handling Lo =
of dynamism and communication errorBEECo introduces ,"
ensemblea firstclass conceptenapsulatingdynamic grouping
of components and the interaction within the group. an A
ensemble a component plays the role of the ensembleOs .
coordinator or one of the members. This is determined S et
dynamically (the task of the runtime framewoaccording tahe /
membershipcondition specified upon the intertsxexpectedfor 13/8567620(S 8B808S/:.;S
K i . *1<7/-0.471$</7-$94<& (+ *1>$
the coordinatorand members Specifically, the membership " 8808(120/5%,307060@)
condition determineswhich components fornthe coordinator ’
member pas of an ensemble The separation of concerns is
broughtto such extent, that individual components are not capable
of explicit communication with other components. Instedd, t
interaction among the components forming an ensemble takes the
form of knowledge exchangecarried out implicitly (by the
runtime framewdr). For exampleFigure2 shows a specification
of the UpdateAvailabilityinformation ensemble, an instance of
which is to be created for everpordinator, i.e., evergomponent
that features the interfacavailabilityAggregator (such as the
component/ehicle0123). The members of sucin ensemble are
all the components featuringvailabilityAwareParkingLot that are
in the proximity (TRESHOLD) to one of the POIls othe
coordinating evehicle This effectively includes all the parking
lots thatare relevant to journey planning tfe coordinating e
vehicle. The knowledge exchanggcheduled periodically every
5000ms, ensures that the coordinatingvehicle obtains the
current availability information of all the member parking lots.
This periodicity guarantees that the ObeliefO of-theniele about  pyilding on goalbased requirements elaborat{@a), IRM is
theavailability of parking lot components is current enough. based onsystematic,gradual refinement (i.e., elaboration)of
In summary, a component operates only upon its own local invariants that reflect goals and requirementsf the systerto-
knowledge, which is implicitly updated via knowledge exchange be[l]. In this context, weare concerned withgoals and
whenever the component is part of an ensemble (technically this isequirementsirom the global perspective of the systemgther
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Figure 3: Top-level design of the case study

compliarce of design decisions with tlewerall system goaland
requirementsis explicitly capturedand (if possible) formally
verified. As a resulttracinga lowlevel design decision back to
its rationalein the system goals anquirementsvould allow for
designvalidationand verification

4. DESIGNING ENSEMBLES VIA
INVARIANT REFINEMENT

To address ik challengewe proposéRM (Invariant Refinement
Method P a novel design method specifically focusedEBCS

handled by the underlying runtime framework).

3. PROBLEM STATEMENT

The lessonfrom implementing the case study is that it is
problematic to determine a proper EBCS architecture (i.e.,
componentscomponent processesd ensemble)f the system
from the overall goals and requiremenitis getsmore difficult
when we takeinto accaunt the extent to whichknowledgecan
become outdateqdue to delays in knowledge exchangend
parallel execution of component proce$sawd its impacbn the
overall system behavior

This problem stems from theconceptualgap between the high
level system goals and relatively ldewvel architecturalconcepts
of EBCS A broad, highlevel view of the goalsis critical when
reasoning about global properties af complex (distributed)
systemas a whte; e.g., stallity-related properties including
robustness, adaptability, ndanctional properties such as tradeoff
between communication overhead amatdatedknowledge, etc.
Focus on the lovlevel conceptss equally important foa detailed
design and implementation of comporeahd ensembles.

Overall, the key objective of botthe component process and
ensemble concepts to maintain a form of operational normalcy
of the component/group of componentherefore they can be
described declarativelyn terms of the particulaioperational
normalcy they maintainin addition, we assume that the high
level system goalsan bealsodescribed declaratively.hlis both
high-level requirementsand lowlevel architecturalconcepts can
bereflectedin the sameleclarative manner

Hence the key challengewe address in this papéy to guidethe
EBCSdesignprocesdransparently from high level goals to lew
level concepts of system architecture such a way that the

thanthe perspective of the individuedbmponentsind ensembles

In principle, the invariants describe a desired state ofystem
to-be at every time instant; i.edescribethe operational normalcy
of the systemto-be, essentialfor its continuous operatiorf-or
example, the main goal of the case study is exprebgethe
invariant(1): Gl Vehicles meet their calendarO Figure3).

The objectiveof IRM is to start therefinementwith the overall
system goal and end up by determining the inmsiaeflecting
detailed design of theparticular system constituentsb
components, component processagl ensembles.

4.1 Invariants and Assumptions

A key concept of system designcismponenti.e., aparticipant of
the systerto-be (e.g.,vehicle and Parking lot in Figure3). Each
componentomprises specific knowledge, i.e., its domsjrecific
data (in Figure3 left out for brevity). The valuation of
component® knowledge evolves in timgs a result oftheir
autonomous behavidr.e., executin of the associated component
processesand knowledge exchanga principle, a invariantis a
condition on the&knowledgevaluation of a set ofomponentshat
captures the operational normalcy torbaintainedby the system
to-be (i.e., that should be preserveas knowledge valuation
evolves in timg If a componer®s knowledge isfezenced by a
invariant we say theomponentakes aole in theinvariant(e.qg.,
in theinvariant(1) from Figure3 the componentvehicle takes the
role v, while Parking lot takes the rol®).

As a special casepmponent knowledge may refldoformation
aboutthe environmentConsequentlyan invariantmay represent
an assumptionabout theenvironment i.e., a condition that is
expectedto hold during knowledge evolution and thus is not
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Figure 4: Dual, computation-activity -based view on the top
level design of the case studyom Figure 3.

intended to be maintainedexplicitly by the systento-be (in
figuresmarkedby A; e.g.,(4) in Figure3).

4.2 Invariants vs. Computation Activities

The underlying idea of IRM is that each invariartich is not an
assumptions essentially associated wighcomputationactivity b
an alstract computation producingutput knowledgegiven a
particular input knowledge In fact, tie computation activity
providesa dual view ontheinvariantbwhile theinvariantreflects
an operational normalcy, the computation activitgpresents
meansfor maintairing it. For exampleFigure4 provides the dual
view on the invariants iffigure3. The invariants thuexpresshe
relation between thénput and output knowledge of the
computationactivity. A component processs well as ensemble
knowledge exchangés aspecific formof computation activity.

This dual viewgives the convenient option to refer to invariants
for the purpose of logibased reasoningon systerrto-be
propertiesand to referto computation activities when lolevel
implementation aspectse of concern.

As an aside, we will refer to the relatidretween component
knowledge andnput/output knowledge of eomputationactivity
as knowledge flowFor exampleFigure4 shows the knowledge
flow betweenvehicle and thecomputatioractivity associated with
(3) from Figure3 (with V::plan, resp.V::position as its input, resp.,
output knowledge)

The activities associated with hidgvel systenminvariants ¢oal9

are abstractrepresering the system implemeniah at a high
level of abstractionFor such an abstracomputatioractivity, the

conjunction of the sulnvariantsentailsthe pareninvariant i.e.,
if it holdsthat

LIy ALy >,
2. Il e 1 1HS%

(entailment)
(consistency)

This definition complies with the traditional interpretation of
refinement, where the composition of the childeaibitsall the
behaviorexpected fronthe parent and (potentially) sormere

The refinementis applied recursively, starting withigh-level
invariants reflecting the overall system goals and involving a
number ofcomponerg and ending witHow-level ones involving

a single compnent oran ensembleof components Note that
since adecompositionstep may involve a design decision, it is
critical to ensure that this decisimomplies with the entailment
and consistency conditions.

During refinement only the componest that takea role in the
parent invariant may also take a role in the sirvariants.
Nevertheless,saa part of the design decisjarew knowledgean
be addednto thecomponentgaking a rolein the subinvarians
(e.g.,V::planFeasibility in Figure5).

In Figure3, the design decision is to refine tlvariant(1) into a
conjunction of three sulmvarians: (2) B having a upto-date
plan, (3) b keepingthe vehicl®s position in alignment withe
plan, and@4) Ban assumption than upto-dateplan canalways
be followed by the vehicle (i.e., the environmetiynamicsb
traffic, parking availability, etcbwill never preventthe car from
following an upto-date plan)and that it always schedules
reachingthedestination in time

The subinvarians can exhibitknowledge dependenpadue to
references to the same knowdedof a specificcomponent For
example,in Figure3 there is a knowledge dependency between
(2) and(3) due to references ta:plan.

From the dual (computatioractivity-based) perspective of
refinement a simultaneous (i.e., parallel) executimf the
computationactivities associated with the sutvariants forms
the computation activity othe parentIn a refinement with
knowledge dependencies, na adequate scheduling of these
activitiesis to be determineth the refinement.

4.4 Leaves of Refinement

The rule of thumb is that refinemeist finalizedwhen each leaf
invariant of the refinement tree isither an assumption or is
associated with a OrealO0 computatiativigc D a process or

_knowledge exchange

input knowledge constitutes the part of the componentsO

knowledge that is out of control of the systembe, while the
output knowledges fully in its control For exampleas shown in
Figure4, the input knowledge of thecomputation activity

associated with(1) from Figure3 comprisesV::calendar and

potentially some knowledge of parking dofsince it is not yet
clear at this level of abstraction, it is denotedFby), while its

output knowledgeomprises/::position.

Thus, in the dual perspective of computation activities goal of
IRM is to refine such abstract activitiesnto the very concrete
component processes aknbwledge exchange

4.3 Invariant Refinement

The core of IRM isa systematic, graduakfinementof a higher
level invariant bymeans ofits decompsition (i.e., stuctural
elaboratbn) into a conjunction of lower-level subinvarians.
Formally, decomposition of a parentinvariant !} into a
conjunction ofsubinvariants!,,!! ,I. is a refinementf the

Specifically, a invariant that is referring to a singtamponent
capturesonly the operational normalcy to be maintained by a
process of the componerBuch ainvariant is called grocess
invariant (in diagrams marked by, e.g.,(3) in Figure3).

In a general case wheseveralcomponerg take a role inan
invariant, e.g.{(5) in Figure5, the situation is more compleXo
refine ainvariant!, , referencing theomponerg ! ,,! !!, into
subinvariants!,, 1! 11, that are eventually associated with OrealO
computation activitiesieed toapply the conceptelief ofC, over
the knowledgeof C,!! ,C, : the belief! Ccf!""cm(K) is knowledge
of I, thatrepresats! , Osnapshot of a patt of the knowledge of
111, For instance, irigure5, thebelief V::availabilityList of
Vehicle over the knowledgeP::availability of Parking lots is an
example of such a knowledge napshot (denoted as
V:availabilityList | BSarn9 o p:-ayailability)).
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Thus I, formulates the operational normalcy properties of
!!CIZ""'C! , Whereas! !l !l

processes and knowledge exchangre}his section weelaborate
refine !, while substituting the
references to the knowledge daf!! ,!,

on how to bridge this abstraction gap during refinemerh

by references to partiqglar we describefive patte_:rns of invarignts we have
PhT N Note thatt S is & new knowledge introduced into |dent|f|e_d toreflect th_eway operatlon._al normalcys cap_tured at
y G four adjacentabstraction levelshat bridge this abstraction gap
!y. For example,n Figure5, (7) formulates the condition on  The contribution les in the facthat we are able toigorously
creathg the belief V::availabilityList ! | L2591 (p--gyailability), describe (and provide guidelines fprthe refinement between
whereas (8) refines (5) while substituting the references to invariants on the same/adjacent levels of abstraction by assuming
P::availability by references t¥::availabilityList.

that each invariant is an instantiationaoforrespondingnvariant
As a result,!;, becomes arexchange invarian{in diagrams pattern
marked byX, such as(7) in Figure5), sinceit correspondso

| € Thus we can (iteratively) exploit these patterns and guidelines
knowledge exchange as its OrealO computation activity.

during refinemento continuouslylower the level of abstraction
Furthermore, !,,!! !I. are mtentially process/exchange until we reach the level of architectural elementamely, these
invariants, since, in general, the numbercofnponert taking a patterns arg(from the most abstract to theast abstragt (i)
rolein!,, !! 11, is, compared té, , decreased at least by one due 9€neral invariants (ii) presenipast invariants (iii) activity
5 ) oL, ) invariants (iv) process invariantsand (v) exchange invariants
to references to the belief' ™' (such as when comparing)
and(8) in Figureb).

(as an exceptigr(iv) and (v) are at the same level of abstraction)
Figureé6 illustratesthe patterns on the case study.
4.5 From Invariants to Final Architecture

After the set of componerg is identified and refinement tree of
invariantsis completed,the design continues bgefining each
process invarianinto a component procesand each exchange
invariantinto anensembleFor exampleas illustratedn Figure2,
Vehicle is reified by Vehicle0123, while (8) from Figure5 is
refined into its computePlan process and7) from Figure5 is
refined into the UpdateAvailabilityinformation ensemble. Thus,

To give a more exact perspectivd the patterns, we use
apredicate formalization of invariantlote thatin this papethe
goal ofthe formalizationis to illustrate theconceptuatifferences
between the patternsather thanto provide their rigorous
description which is beyond the scope of this pagesr formal
pattern definition, we refahe interested reader {6]. Recall that
an invariant expresses thaperational normalcy in terms of a
condition to be maintained during knowledgeolution in time
determined by the invariant refinement, this step yields the final (Sectiord.1). Thus the formalization provides means for
architecture of the system. THetails are beyond the smof this referring to timed sequences of knowledge valuesich givesa
paper we refertheinterested reaet to [4]. complete view on the knowledge value evolutiomer time.
Specifically, since EBC®ased systems are inherently
5. BRIDGING ABSTRACTION LEVE LS asynchronous, we are interested dach a formalization that
VIA INVARIANT PATT ERNS captures the evolution in terms of asynchrony and delags
While high-level invariantscapturegeneraloperational normalgy
low-level onesb reflecting architectural element® capturethe

example, considering the knowledge evolutioiustrated in
Figure7, we are interested ia formalizationof the form Ohe
EBCSspecific aspectge.g., periodic scheduling of component

value of V:pAvailable always equals the value of P::available
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Figure 6: Patterns of invariantsin the case study.

that is not older than the periddrather than @:pAvailable
equals P::aailableO(which does noalwayshold).

Thus, we formalize the invariants as folloWsme is represented
by anonnegative real number, i.€.,! ! |.Knowledgeis a set
I =111 11,1 of knowledge elements, where the domair of
is denoted ad,. Knowledge valuatiorof an element!, is a

function! ! V; which foratime t yields a value ok; (denoted
as ! ;! An invariant is thus gredicate (in a higherorder

predicatelogic with arithmetic)over a knowledge valuatisrand

time.

Note that in general it is possible to use other forms of
formalization; e.g.reaktime LTL [2]. However,in this papetthe
choice of the formalizationis driven by tle aim of describing
invariant refinement rather than model checkinthus we
consider theproposedpredicate formalization more practidak.,
it is more suitable for formulating and provirglevanttheorems)

5.1 General Invariants

General invariants at the toplevel of abstraction capture the
operationalnormalcy in terms of relating thpast andcurrent
knowledge valuation ta future knowledge valuation

An example of this pattern is thevariant(1) from Figure3: Qull
Vehicles meet their calendarQ which can be formalized as follows
(assumingonly a single POlin the calendarwhich does not
change in timéor brevity):
Itelll'l V:calendar.deadie"#!!!
I I positiorl!! ! 1! calendar.destinatidf]

Note that the invariant does not refer to curréinte; instead, it
refers to a particular time instant in the future.

5.2 PresentpastInvariants

Lessgeneral argresertpast invarians capturing theoperational
normalcy in terms of the current and/or past knowledge
valuatiors. This reflectsthe fact (abstracted away at the level of
general invariantsthat software systems canrmipe withfuture
data but have todepend oncurrent and/or pastlata instead
Further, todeterminehow much of past data is needed, define
the lag of a presemipast invarianesthe maximal distance the
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Figure 7: Example of knowledge evolution in time when
employing (periodic) knowledge exchange.

past that is needed to formulate thgerationalnormalcy of the
invariant Similar to realtime software control systers we
assume thatthe smallerthe lag, the biggerprecision ad
robustness; lag equal to 0 denotes an idealized case tieere
beliefs of all componerg are always upto-date and their actions
are instant

An example of this pattern is thevariant(2) from Figure3: Qup-
to-date V:pplan, w.r.t. information from P, reflecting V::calendar is
availableQ which can befor parking lots!, ! !, anda lag !
formalized as follows:

O\t any time, for the current valuation of V:plan there is
avaluation ofknowledge ofl ;! !, and V:calendar not older
than the lagL such that they togethemeet the condition
expressed by thgpToDatePlan predicateO
In the predicate logic, it can be captured as follows:
T O T L T o R T O O T B A B T A (T TRTAT3 T
H$%& ()*&+ (1, [1, 11,1, [, T IMHS%&H([ vy 11 I"HS1])

Here,! equal to O reflects the case where thplan is ateach
time instantup-to-date with respect tahe currentknowledgeof
the parking lots.The bigger L themore oudlated parkinglot
knowledgevaluationis considered

For all presenpast invariantof this syntactic structure, we can
use the following shortcut expressing the abovedescribed
formalization of(2) from Figure3 (note, thatthe OppO subscript
indicates that this shortcut pertains to the prepast invariant
pattern):

HE%E& )&+ |y [1), 1 1, IVIHS%E& ([ 1"4#5%!

Such a shortcuttan bealsoexploited duringnvariant refinement
for introducing new presenpast invariarg it would serveas
aOmacroO thatransforms a time-oblivious predicate (e.g.,
"#$%&'()*&+ ) into aformalized presentpast invariantof the
abovedescribed structure

5.3 Activity Invariants

Based on the dual concept of computation activisactivity
invariant captues the operationahormalcyin terms ofthe current
valuation of theoutput knowledge of the assatedcomputation
activity and the currempast valuation of the input knowledge.
This follows the idea that computation activityin EBCS
maintains theoperationalnormalcy periodically by reading the
input knowledge, performing the computation and writing the
output knowledge.

Being relatively lowlevel, an activity invariantreflects detailed
properties ofa computation activitythat corresponds to software
computation First, it captures the requirement that the output
knowledge changes onlysa result of thecomputationactivity.
Here, we assume that no activitigsmve the same output
knowledge Moreover, an activity invariant captures read
consistency of the input knowledge.e., that each output



knowledge valuationis based onthe same ornewer input
knowledge valuatiorthan ttke previousone In an ideal case, the

processo beperiodicand (soft) realtime, the output knowledge
valuationis determined byhe release time and finish tnof the

computation is instant, relating thus the current valuation of both process ireach period7].

the input and output knowledgeSimilarly to presenipast

invarians, the maximal distance in the past needed to formulate

theoperationahormalcy isexpressed by the lagf the invariant

An example of this pattern is thevariant(s) from Figure5: Qup-
to-date V::plan, w.r.t. P::availability and V::planFeasibility, reflecting
V::calendar is available®, which can be for parking lots! !,
and lag! formalized as follows:

Orhere is @ execution of the planning activitgaintaining the
condition UpToDatePlan such that & any time thevaluation of
V::plan corresponds to the outcome of the activity appliedhen
valuation ofthe input knowledgeP::availability, V::planFeasibility,
andV::calendar not older than lag.. Moreover, eaclvaluation of
V:plan is based omewervaluation ofthe input knowledgéhan
the previousneO
In the predicate logic, it can be captured as follows:
P U0 I 1
Prrr )yt e g
L@y wrmne e v e e gl
e
P, "#'$%" " &S0 ( (1)]!
|

1, 1" $% & S%B( (V]!

IHSNE ()&t ! ::planFeasibility[! » (D)]!
L IHS%&H (! 1y ()]
I I"#$9! ]
Here, the usage ofa nondecreaing function! /!I! 1 I rather
than a particulal, ! ! captures the read consistency and the fact

that v::iplan may change only athe result of an execution of
aplanning activity.

Again,! equal to 0 reflects the case wherehiiation ofv::plan

is at each time instant u#p-date with respect to the current
valuation ofP::availability of the parking lot@ndV::planFeasibility

of the vehicleIn other words, the associated computation activity
computes infinitely fast and infinitely oftehe hgger L the
more outdatedraluation ofP::availability and V::planFeasibility is
consideredi.e., the slowdless oftenis the computationactivity
expected to execute

Similar to preset-past invariants the shortcut forthe above
described formalization @6) from Figure5is:
1) "% &S Y6
!
I 1"#"$%"&$%S$'
| I"HS%& ' S()*)H)+,-
T 1I"H#$%E&#(

5.4 Process invariants

Refining anactivity invariant athe lowest level of abstractipan

invariiant may take the form ofi processnvariantbreferring to a
single component capturing the operational normalcyo be

maintained by a (periodic) process of he component
(Section4.4).

Such an invariant captures detailed properties of the periodic
scheduling of the procesEhe difference to activitinvarians lies

in the fact that not only the output knowledge valuatioay
change as a result of performing tbemputationactivity alone
and mustbe based on curreenhough input knowledge valuation
but also that theomputatioractivity is performed exactly once in
each periodln this context, the period is an elaboration of the
activity-predicate lagSpecifically,since weassumea component

IHEY6& K&+ y 1| !

An example of this pattern is thevariant(g) from Figure5: Qup-
to-date V:plan, w.rt. V:availabilityList and V::planFeasibility,
reflecting V::calendar is available®, which can be foperiod !
formalized as follows:

Qf the current time is beforthe finish time of the process in the
current period, then th&::plan valuation is the same as the
previous period; i.e.it correspondgo the outcome of thprocess
w.r.t. the inputs V:availabilityList, V::planFeasibility, and
V::calendar at the release time of the process in tpeevious
period. Otherwise,V::plan correspond to the outcome of the
processw.r.t. the inputs at the release time in this per(dd

In the predicate logic, it can be captured as follows:
I L r@rre) <o
Prrrgl e onn (!))!
FI"#'$%"&$%$' OF(1 ! 1)L
1 1"#$%&'SONH)+ (1! 1],

PEEE) Y rHS%E (e PI"HS%&H#([ (1Y D]
P 1"#$9d! ]
| I"'$9%" 8 $%S ) §(1 )]
P 1"#$9! ]
where !t bt il e, the end of the 4th

period!! 11 and! !!'! denote the release and finish time of the
reaktime process in the-th period.

Here, L approaching) reflects the case, where thieplan is at
each time instaninfinitely close to theup-to-date plan with
respect to the curren¥::availabilityList, V:planFeasibility, and
V::calendar of the vehicle.

Again, the shortcut forthe abovedescribed formalization ofg)

from Figure5is:
1 1"#'$%"&$%S'()
! !"#$%&'$()*)#)+f“! 1"#$%| !
I 1I"H$%E&'#(

5.5 Ensemble invariants

An activity invariant mayat the lowest level of abstractidre
refinedalsointo an ensemblénvariantb captuing the operational
normalcyto be maintained byperiodic) knowledge exchange of
an ensemblamongthereferredcomponent§Section4.4).

I"HSO6&! (&t Loy

Such an invariant captures detailed properties of the periodic
scheduling of knowledge exchang&€ompared to process
invariants an exchange invarianturther accounts forthe delay
conneted with potential transfer of the knowledge over the
network (as required in distrited systems). The invariant thus
describesa compositecomputation activity consisting of the
knowledge transfer (with an upper time bound on its duration)
followed by periodic evaluation of the membership condition and
the knowledge exchangeFurther, it is assumed that such
composite activities may be partially overlappiigostly in
situations when the knowledge transfer takes longer than the
period of the knowledge ekange).

An example of this pattern is the invariafr) from Figure5:
O/::availabilityList D VOs belief over P::availability of trigrelevant
parking lots Bis up-to-dateO, which can be fgrarking lots!, ! !, ,
period! , and upper bound for knowledge traerdf formalized as
follows:



Qf the current time is before the finish time of the knowledge
exchangefor Vv in the current period, then the:availabilityList
valuation is the same as in the previous period. Otherwise,
V::availabilityList equalsthe set &P::availability for all relevant!

as available aw at the release timm this period.It takes at most

T for the knowledge of, to becomeavailable atv. Further
always the newest knowledgé pfs taken into accour®

In the predicate logidt can be captured as follows:

!
thyr e

PLrr )t ik
L()! !!(!)i!!!!!!!! Py ey
trmm e ra e e ey re)rroHn
NI (EEDIN(G)]

I I'H$% & S9! (11 I!
]

PEL ()1 HS%& (08 | | jgoprggopm(1t (1 111
I 159" 8 $%S (B
IS8 SIB (1 (11 D1]!
|
PEL(D) 1 8% (08 | | jgoprggopm(1t 01 111

I 1"#'$%"&$%$ )

where !t br it e, the end of the -th
period!! 111 and! !!'! denote he release and finish time of the
reattime knowledge exchangi the nth period Finally, ! ,!!!
denotes the time athich the value of knowledge froin that is
available aw at time! has been sent ta

Here, L approaching 0 reflects the case, where the
V::availabilityList is at each time instant infinitely closette set of

the curren®P::availability of all the relevanparking lots
The shortcut forthe abovedescribed formalization of7) from

Figure5is:
I 1" $%" &S0l
! ! !"#"$%"&$%$'()%f

I"H$96&' (% ()$*+ 1k .
I "#'$%" & $%.

5.6 Refinementamonglnvariant Patterns
Having described the invariant patterns, we will nowefly
elaborate onthe refinement betweemvariants following the
patterns on thesame/adjacentevels of abstractiorin order to
provide guidelinesfor decompositionIn particular, we listthe
expeted variantof decomposition and discusghen each of the
variants isa refinement.This can serve as guidelinesduring
decomposition at theorrespondindevels of abstractiom order
to guaranteeefinementNote thatthe claimsbeloware articulated
in an informal waywhile formal proofscan be found if6].

GenerallPresent -past. At the top level of abstraction, during
refinement of a general invariant into a conjunction of present
past invariantsit is necessary to introduce assumption invariants
(e.g., (4) in Figure3). Technically, thes assumptions are
necessary to guarantee that maintainingajperationalnormalcy
based on the current and/or past knowledge valuation will
eventually result in reaching tloperationahormalcy based on a
future knowledge valuatiorlhe correctness of this step has to be
proved for each caseparatelye.g., via a theorem proveryhich
makes it the mostemandindgrom the formal point of view.

PresentpastPresent -past. In a refinement of one presquast
invariant by means of o#hh presenpast invariants, it holds that
the combined lag of the stbvariants is lesser or equal to the

parentOs lag. The combinatiendetermined bythe knowledge
dependencies among the snkariants.

Presentpast Activity . It holdsthat the activityinvariant pattern
is a strict refinemet of the preserdpastinvariant pattern; i.e.,
Vi (1100 ]Y 1Y MO0 ] for eacht , !, and! .

g

Activity ! Activity. The refinement of one activity invariant by
means of other activity invariants is similar ttee case present
past presentpast For our predicate formalizatioit, is possible
to determinethis form of refinement solely based on ttime-
oblivious skeletons of the invariants and tbseucture of the
decomposition (i.e., without interpreting thell invariants via a
theorem prover).

Activity!Process . It holdsthat the process invariapgttern is a
refinement of the activity invariant pattern with lag equal twice
the period of the process invariant patterni.e.,
Ly [MI[Y 10 U4 [1][Y ] for each! , !, and! . This complieswith
the weltknown fact in the area of reime scheduling: in order to
achieve a particular ertd-end response time with a rdahe
periodic proceswith relative deadlinequal to periodthe period
needs tde at most half of the response tifig

Activity!lExchange.  Similarly, it holds that the exchange
invariant pattern is aefinement of the activitynvariant pattern
with lag equal twice the period tifie exchange invariant pattern
plus the time for distributed transfer of the knowledge.,

Leg 00T VALY [0 ] for eacht |, !, and! .

6. EVALUATION AND DISCUSSION
6.1 Case Study

To evduate IRM,we haveemployed itduring design of the case
study. As a final stepwe have successfully validateketresulting
EBCSDEECo architectureby implementing itin the jDEECo
component framework Since thedetailed modelsreated within

the study argroprietary we present onlp summaryand lessons
learned For a concise version of the case study, which includes
detailed design, we refer the readef28).

While having a singletop-level goal the design included2
componerg and20 invariants in totalln particular, 4of them
were exchange invariants, 8 process invariaBtqresenpast
invariants and the otheb (excluding thetop-level goal) activity
invariants

Eventually, the desigried to an EBC®EECo architecture
consistingof 4 ensembleamong the 2 componentahereone
component constituted 3 processes maintaining 6 process
invariants while the other component constituted togqess
maintaining 2 process invariants.

As a significant benefit, not only weereable tograduallydesign

a desiredarchitecturgwhich couldbein fact potentially obtained
using conventional design methods)out the invariant
decomposition tree alsmnstituted a Oproof of correctnessthe

design with respect to thep-level goal

Although IRM is in general a tegown process,he important
lesson learnedfrom the case studywas thatrefinement is
inherently too complex to be done corregthgt this way Thus

several iterationsseries of topdlown and bottorup stepshad to
be performed to get a satisfactory design.

! The current implementation of jDEECo is available at

https://github.com/d3scomp/JDEECo



6.2 Correctness by Construction

So far, we have used the predicate formalization only to illustrate
the individual invariant patternsiowever, if applied consistently
throughout the whole desigit, would be possible to formally
verify each of the refinement steps support of achieving
correctness by construction.

An obvious obstacle of verification of such a complete predicate
formdization is that the predicate logic we use is fairly complex
(continuous timeguantifiers over function symbolstc.) Thus,
verification via a theorem prover is noviable optiondue tolack

of efficiency.

Neverthelessas already indicated in Sectib.6, correctness of
particular kinds of refinement can Hecidedwithout interpreting
full invariantsvia a theorem proveilo date, we have formulated
and proved a theorem deciding correctness of activigtivity
predicate refinementn particular, wehave beerfocusing onso
called @ow decompodionO [6] where he subinvariants
constitute asimple pipe-andfilter architecture(i.e., the kind of
decompositiorused in the examplex Sectons4 and5).

6.3 Runtime Verification

Unfortunately not all forms of refinement can be verified via
application of theorems (e.ggeneral! presentpastrefinement).
Thecorrectnessf such refinementan howeverbe addressed by
runtime verification.Although this does not provide desigme
assuances, it at leastelips indetection and localization of design
errors.

An importantfeature ofRM with respectto runtime verification
is that IRM refirement hierarchy actuallpverspecifies the
systemto-be This is becausehere isan implies relationship
between the subinvariants and the parent invariant in a
refinement(recursively up to the tefevel invariant) However at
runtime it is possible toevaluate not only the lowerlevel
invariantsbut alsothe parentThis allows distinguishing different
types of errordrom unexpected behaviom particular, given an
invariant! and itsrefinement ind !, I! !!, (which means that by

definition; !t 1, I 1), we can distinguish 4 different cases:
(1) Al 1111 hold and! holds Correct operation of the
system.
(2) All 1,11 11, hold and! does not hold: Error in desigh

mostly because ofneglecting a hidden assumption in
refinementof !.

(3) At least ore !, I! !, does not hold and holds: Potential
for improvement of thelesignb refinementof ! is likely
to havemore strict assumptions than necessary.

(4) At least onel, !! !l, does not hold andl does not hold:
Incompatible envonmentbthis particular refinemerdf !
cannot be used in the current environment.

Obviouslya modification of the design may be needed wéen

of cases (2P (4) has been detectetHowever the goals of the
redesign are different. While in (2) it isrfoorrecting an obvious
error, in (3) it is to generalize the design and in (4) it is to either

that continuously interact with their environment to achieve the
desired goals.

Technically, IRM is novel in employing ensembles as a
systematic foundatiofior capturingknowledgeinterdependence
(logical and temporal) of otherwise autonomous ponents. This
allows keepingan appropriate level of abstraction and separation
of concerns when designing a component for an adaptive and
autonomous operation. In gigular, IRM benefits from recursive
stepby-step topdown decomposition with precise refinement
semantics. The refinement semantics is special in the sense that it
reflects operational and communication delays (inherent to actual
RDS implementations) bgxploiting the concepts of belief and
knowledge exchange.

7. RELATED WORK

The iterative refinement of invariants found in IRM is reminiscent
of goaloriented requirements analysis from thigeld of
requirements engineeriff@2]. In particular, the Keep All Object
Satisfied (KAOS) method20] is a weltestablished method for
capturing and analyzing system requirements in form of goals,
assumptionsand domain propertiehe idea is to decompose the
abstract higHevel goals into more concrete sgbals up to the
level where goals represent requiremehtt can behandled by
individual system agents. Since goals can be formulated in first
order linear temporal logi2], the goal model can be formally
checked for consistency and completss[20]. Pre-defined,
verified patterns caalsobe used to guide the goal decomposition
process[11]. A similar approach isemployed within Tropos
method[8], where goals, sofgoals, tasks and dependencis
modeledand analyzedrom the perspective of the autonomous
agents.However, these models either do not map effectively to
the later development phases (KAQ&) do not support mapping
to emergent architectures (Tropos), which are typical
EBCSJ13].

Recent work in requirements modelispgecifically targeting the
domain of EBCS has been carried out within the scope of the
ASCENS project and has been integrated ih&éStatement oftte
Affairs (SOTA) [1] and POEMI[15] models. The key ideaof
SOTA is to abstract the behavior of a system with a single
trajectory through a state space, which represents the set of all
possible states of the system at a single point of tife
requirements of a system in SOTA are captured in terms of.goals
A goal is an aa of the SOTA space that a system should
eventually reach, and it can be characterizedtsbgre-condition,
postcondition, and utilities Thus SOTA provides the means to
capture the early requirements of different component cooperation
schemes.IRM, on the other hand, stands as artermediate
method which guides the transition from early (hitgvel)
requirements to system architecture in terms of components and
ensembles.

8. CONCLUSION AND FUTURE WORK

In this paper, wehave presented a noveivariant Refinement
Method (IRM), targeting architectural design oResilient

in

extend the design or provide another design alternative suitableDistributed Systems (RDS) by building on the concepts of

for a given environment.

6.4 Novelty and Benefits
The strength ofRM lies in the fact that it dactsreasoning along
the lines of what needs to hold at every time instant (expressed via

EnsembleBased Component Systems (EBCSJRM s
asystematic design method which starts with the overall system
goal and ensl up by establishing a system architecture composed
of components and ensembleBuilding on goalbased
requirements elaboratiotRM integratesadditional aspects such

invariants) as opposed to what needs to be performed (actions) o architectureefinementand (soft) reatime scheduling.

what should hold in the future (goals). Thitsallows expressing
the relation of &omponent to & environment and itself, which is
particularly valuable for the design of autonomous adafiRiv&

IRM raises a number of imesting questionfor further research
In particular, they includegi) providing a formal framework.e.,
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