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Tato práce se sna�í pomoci softwarovému návrhá� i pochopit specifikaci chování 
komponent. P� edkládá zp� sob automatického ov�� ování platnosti obecných � asových 
vlastností vyjád� ených v lineární temporální logice spolu s dv� mi technikami redukce 
behavior protokol� . Redukce vzhledem ke kompozici odstraní ty � ásti protokolu, které 
nejsou pou�ity v dané kompozici komponent, a zd� razní tak skute� né role všech 
komponent. Redukce vzhledem k vlastnosti vypustí ty � ásti protokol� , které nejsou 
podstatné pro danou vlastnost. Takto redukovaný protokol by m� l zd� raznit � ásti, které 
zap� í� i� ují platnost dané vlastnosti. 
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Abstract: 

Behavior protocol is a formalism used for behavior specification of software 
components. In a regular-expression like syntax, admissible sequences of method 
invocations are specified abstracting from components’ internal data. While it seems to 
be a reasonable level of abstraction for checking correctness of communication of the 
software components, it can be still quite difficult for a human to read and understand. 

This thesis aims to help the software designer to understand the behavior 
specification of components more easily. An approach to automatic verification of the 
general temporal properties stated in Linear Temporal Logic is presented along with 
two techniques for reduction of behavior protocols. Reduction with respect to 
composition prunes out those parts of the protocols that are not used in the particular 
composition and clarifies the actual role of each component. Reduction with respect to 
property removes the parts of the protocols that are irrelevant to the given property. 
The behavior protocols reduced in this manner should emphasize which part of the 
protocol makes the given property satisfied. 

Keywords: behavior protocol, linear temporal logic, software components, model 
checking 



 4 

1 Introduction 

Complexity of software systems is growing permanently. In this process, two issues are 
having more attention. One of them is maintainability of software systems. A complex 
system can be hard to maintain and modify in a form of a huge monolithic code. The 
component paradigm, dividing software into functional parts with well-defined 
interfaces, is a promising approach. 

The second issue is correctness of systems. With a growing size of code and 
extensive use of parallelism, it is impossible to prove correctness by hand. Model 
checking [9] is a method for proving correctness of a system automatically. It is based 
on traversing an abstract model of the system and verifying correctness properties stated 
in a suitable formalism such as temporal logic. 

Behavior protocol [35] is a formalism used to describe abstract model of 
software components by a set of admissible sequences of method calls. Predefined 
correctness property, absence of communication errors [2] in a hierarchy of 
components, can be verified on their behavior protocols. 

This thesis aims to extend the limited set of the predefined properties that can be 
verified on behavior protocols. It incorporates common temporal properties stated in the 
Linear Temporal Logic (LTL). Second contribution of this thesis is the development of 
reduction methods that trim away the “unimportant” parts of behavior protocols 
depending on either component composition or a property being verified. 

1.1 Software components 

Software components may be perceived as an extension of the Object Oriented 
Programming (OOP) paradigm. The concept of components shares many ideas with 
OOP, like encapsulation, and may be difficult to differentiate at first glance. Component 
is usually an object, but not every object is a component. In the component systems, 
independent deployment and easy reuse is emphasized. In general, a component is a 
building block of software and is well defined via its interfaces and possibly a behavior 
specification (nothing else should be expected both by the component and its 
environment). A component should be treated as a black box by its environment, so that 
it can be easily substituted by another component with appropriate interfaces and 
behavior. On the other hand, to facilitate components’ reuse, components should make 
no assumptions of their future environment additional to the interface definition. The 
vision of programming with reusable software components is like playing with LEGO. 
It is just putting matching prefabricated pieces together. 

There are many component systems used in the software industry. To name few 
of them, Microsoft’s component systems’ family starts by OCX, ActiveX through COM 
and DCOM and ends with the .NET component model [28, 27]. Other popular 
component models are the Enterprise JavaBeans (EJB) by Sun Microsystems [45] and 
the CORBA Component Model (CCM) by Object Management Group [30]. In the rest 
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of this section, few concepts of the component models will be presented using the 
Software Appliances (SOFA) [32] component model’s terminology. 

Interface of a component is defined by its frame - set of its interfaces and a 
behavior specification. The behavior specification will be covered in Section 1.3. 
Interfaces are defined by a set of methods that can be called on them. They can be of 
two types: provided and required, which mainly specifies only a direction of method 
calls. Methods on provided interfaces are called on the component by its environment; 
they are provided to the environment. Methods on the required interface are called by 
the component on its environment; they are required by the component. 

SOFA model allows also hierarchical or composite components, which are 
composed of one or more other components. Such a component does not contain actual 
code but only a specification of its architecture, which is a set of inner components and 
bindings of their interfaces. Provided interface of an inner component can be bound to 
either required interface of another inner component or to a provided interface of the 
frame of its parent – delegation. In a similar vein, a binding between the required 
interface of an inner component and required interface of the frame of its parent is 
called subsumption. Some of the interfaces can remain unbound, but there is a danger 
that sooner or later the component will call a method on it or that it will wait for a call, 
which could result in the runtime error or a deadlock. Component, which is not 
composite, is called primitive. Fig. 1 shows an example of the composite component. 

 

Figure 1.  The composite component C consists of A and B, the internal bindings 1 
and 2, the subsumption and delegation bindings 3 and 4, respectively. 5 and 6 are 
unbound interfaces 

1.2 Model checking 

Although it is a well-known fact that some properties of programs are algorithmically 
undecidable in general (for example the halting problem), the ability to automatically 
verify at least some properties under certain constraints is crucial in order to guarantee 
correctness of software systems. Model checking is a technique to achieve this goal; it 
uses an abstract model of a system to verify correctness properties. The model can be 
created manually or automatically and can use various levels of abstraction. It is usually 
finite to ensure decidability of the verification. Unlike testing and simulation, model 
checking can really prove that a given model satisfies particular correctness properties, 
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because it is based on exploration of the whole state space of the model. However, if the 
abstraction of the model is too far from the modeled system, the properties that hold on 
the model can be violated by the system itself. 

The model of the system is usually represented as a Kripke structure or a 
Labeled Transition System (LTS), typically defined as follows: 

Definition 1. Let AP be a finite set of atomic propositions, then a Kripke structure is a 
quadruple �S, sinit, L, ��  such that: 

·  S is a finite set of states, 

·  sinit is an initial state, 

·  L: S �  AP2 is a labeling function, 

·  �  �  S� S, where � s �  S ��  s’ �  S: �s, s’ �  �  �� , is a transition relation. 

Definition 2. Labeled Transition System is a quadruple �S, sinit, Act, ��  such that: 

·  S is a finite set of states, 

·  sinit is an initial state, 

·  Act is a finite set of actions, 

·  �  �  S� Act� S is a transition relation. 

LTS is useful to describe action-based systems, where what matters are the 
performed actions. Kripke structure can represent systems, in which the internal state is 
more important then the visible actions. See the examples on Fig. 2. 

 

Figure 2.  Examples of LTS and Kripke stricture 

The correctness properties are most often specified in one (or more) of the 
following forms: 

·  Temporal logic formulas 

·  Assertions 
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·  Pre-conditions and post-conditions 

Temporal logic formulas will be covered in Section 3. They are formulas of a 
logic that is equipped with temporal operators to be able to express changes of the 
system in time. Assertions are expressions added to the specification of the model (or to 
the code). They work very like the assertions known from the programming languages, 
except for the fact that the model checkers can detect violation of assertions in any of 
the possible system’s execution paths. Methods of a system can be also annotated by 
pre-conditions and post-conditions. Here, an advantage over assertions is the fact that 
pre- and post-conditions can be used to check only parts of the software system that can 
be later combined together if the conditions match. 

The most painful attribute of model checking is its complexity. When used on 
the concurrent systems, the models usually feature state spaces exponential in the size 
of the specification. This problem is known as state explosion problem and many 
techniques are trying to cope with it. 

There are several model checking tools available. For example, the model 
checker SPIN [43] can verify models described in its specification language Promela. 
For verifying Java code, there are Java PathFinder [21] originally developed at NASA 
and Bandera [39]. The Zing model checker [3] by Microsoft can verify models specified 
again in its own specification language. 

1.3 Behavior protocols 

Behavior protocol [35] is formalism for describing behavior of a software component. 
As already said, a component is viewed as a black box that can accept method calls on 
its provided interfaces and issue calls on its required interfaces. From this perspective, it 
is reasonable to specify behavior of a component by a set of admissible sequences of 
method calls. Behavior protocol is an expression with a regular-expression like syntax 
(in addition to “+” and “*” operators, it features also operators for expressing parallel 
interleaving “|” and “||”). Roughly speaking, the language generated by a protocol 
defines the set of all valid sequences of variously interleaved method calls on all 
interfaces of the component. 

Having the behavior specification of a component in this form, it is natural to 
ask whether a communication of two or more components is in a sense correct – 
protocols are compliant. For example, if one component calls a method on the other 
one, which is not prepared to accept it, then the situation can be perceived as a 
communication error. However, the opinion, on where the border between the correct 
and the erroneous communication should be, has developed over time. Moreover, it is 
very likely to change in the future. This work is based on the definitions from [2], which 
are given in Section 2 that introduces behavior protocols more formally. 

In verifying correctness of component systems, there are two major tasks to 
accomplish. First, correctness of communication between components has to be 
verified. And second, behavior protocols of primitive components have to be checked 
for matching with their code. There is already a behavior protocol checker that can 
automatically verify correctness of composition, developed as a part of SOFA. There is 
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also an attempt to verify the primitive components against their protocols using Java 
PathFinder. See [34] for more information on this topic. 

1.4 Problem statement 

(1) As already said in Section 1.3, there is an existing implementation of the 
model checker for behavior protocols. However, by detecting communication 
errors it can verify only correctness of communication, not supporting 
verification of general temporal properties, though. The need for the latter can 
be justified as follows: In a typical case, software designer wants to reuse a 
component stored in a component repository. Having its behavior protocol, he 
or she may want to check whether the component meets the application’s 
requirements, which cannot be expressed via protocol compliance (e.g. 
whether an acceptance of a call of a will be in the future followed by a call of 
b provided a call of c is accepted in the meantime). The choice of a suitable 
formalism is crucial. It should be chosen with respect to the specifics of 
behavior protocols. 

(2) Reusable software components usually provide more functionality than is 
actually used in a concrete application. Behavior protocols of such 
components tend to be very complicated and their integration to the 
application floods the resulting architecture with an unused behavior. 
Reduction of the unused parts of the frame protocols of participating 
components, so that only the actually used part of the behavior is captured, 
could significantly simplify understanding the behavior specification. 

(3) If it was possible to check some general temporal property of a component’s 
behavior, then it would be also useful to be able to reduce the behavior 
protocol to contain only parts that are relevant with respect to that property. 
This feature should allow designer to understand a possibly complex behavior 
specification more easily. 

1.5 Goals 

From the open problems listed in Section 1.4, this thesis lays out the following goals: 

·  The first goal is to address the problem (1) – verification of a general temporal 
property. This should involve comparison of possible alternative formalisms 
for expressing the property, discussion on the choice and description of 
incorporating into behavior protocols. A prototype implementation for 
verification of the properties stated in the chosen formalism should be 
developed. 

·  As a second goal, problems two and three should be addressed. The algorithms 
for both reduction with respect to composition (2) and reduction with respect 
to property (3) should be designed and a prototype implementation should be 
created. Since the aim is to design reduction methods applicable in a checker, 
any solution with time complexity higher then complexity of the compliance 
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or property checking, respectively, is unacceptable. The checking process is 
already exponential in a size of protocols, because the state space generated by 
protocols is generally exponential. In other words, even a solution performing 
suboptimal reduction is favorable over an optimal reduction that would require 
too much time. 

1.6 Structure of this thesis 

This thesis reflects the goals as follows. In Section 2, a deeper introduction to behavior 
protocols is given for the sake of completeness. Section 3 discusses choice of a suitable 
formalism for expressing properties to be checked and presents modifications to be 
done, in order to apply the formalism to behavior protocols. Section 4 covers reduction 
of protocols with respect to both composition and property, along with all necessary 
prerequisites. Later in Section 5, the prototype implementation in a form of extension to 
the existing protocol checker [38] is described. A brief case study follows in Section 6. 
It focuses on the use of the reduction on a real application and discusses a typical 
scenario for the use of the verification of a general property and reduction with respect 
to that property. Related work is listed in Section 7 followed by an evaluation in Section 
8 discussing fulfillment of the goals. The thesis is concluded in Section 9. 
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2 Behavior protocols 

An informal idea of behavior protocols, as the expressions representing valid sequences 
of the method calls, was already sketched. This section defines behavior protocols more 
formally. The presented view is based on the consent operator and the consensual 
compliance presented in [1, 2]. 

2.1 Basics 

First of all, the syntax of the behavior protocols has to be established. 

Definition 3. Let M be a set of methods, then syntactically correct behavior protocols 
are recursively defined as follows: 

	
��� 
NULL | (	 )* 

 | (	 ; 	 ) | (	  + 	 ) | (	  | 	 ) | (	  || 	 ) 

 | !m^ | !m$ | ?m^ | ?m$ |  m^ |  m$ 

 | !m | ?m |  m 

 | !m{	 } | ?m{	 } |  m{ 	 } 
 
 for all m �  M. 

The key stone of the behavior protocol is an event, which is atomic. An event 
represents either method call request (start of the call) or response (return from the call). 
There are six basic events: !m^, !m$, ?m^, ?m$,  m^ and  m$. The active call of a 
method (!m^), passive acceptance of the call (?m^), active return from the call (!m$) 
and acceptance of the return notification (^m$). Events starting with   represent the 
inner events not visible to the environment. It is a completed communication on the 
inner interfaces. The events !m^ and ?m^ yield into  m^ and !m$ and ?m$ into  m$. 

There are four basic operators: “;”, “ *”, “ +” and “|”. Concatenation “;” 
concatenates two behavior protocols (first behavior is followed by the second). Operator 
“+” is the alternative, any of the behaviors described by the operands is considered 
valid. The finite sequencing operator “*” describes any finite number of repetitions of 
the behavior specified by the operand. It includes also no repetition, which is an empty 
protocol “NULL”. En empty protocol just specifies a component, which does nothing. 
At last, operator “|” specifies all parallel interleaving of the two protocols. 

An active method call (!m) is an abbreviation of a protocol: !m^; ?m$. That is, a 
component actively emits a start of the method event (!m^) and then passively waits for 
the event notifying the method end (?m$). In a similar vein, the abbreviation !m{	 } 
represents protocol: !m^; 	 ; ?m$, which dictates behavior specified by 	  during the 
method call m. Other abbreviations are listed in the following: 

Definition 4. Let 	  and �  be behavior protocols and m an identifier of a method, then 
the abbreviations can be expressed as follows: 
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!m
�
 (!m^; ?m$) 

?m
�
 (?m^; !m$) 

 m
�
 ( m^;  m$) 

!m{	 }
�
 (!m^; 	 ; ?m$) 

?m{	 }
�
 (?m^; 	 ; !m$) 

 m{	 }
�
 ( m^; 	 ;  m$) 

	  || �
�
 (	 ) + (	  | � ) + (� ) 

As already mentioned, each behavior protocol defines (or generates) a set of 
admissible traces - language. Only finite traces are considered, but the language is not 
necessarily finite. Two protocols are considered semantically equivalent, if they 
generate the same language. 

Definition 5. Let u, v and w be finite traces and n be the length of u, then u is an 
interleaving of v and w if there exists a function f� � 1, 2, …, n�  �  � 0, 1� , such that trace 
defined by symbols of u indexed by numbers, on which f equals to 0, is equal to v and 
trace defined by symbols of u indexed by numbers, on which f equals to 1, is equal to w. 

Definition 6. Let M be a set of methods and 	  and �  behavior protocols, then the 
language of protocol 	 , denoted as ��	� , is recursively defined as follows: 

�� NULL�
�
���� 


�� x�
�
�� x�� 
  for any
 x �  � !m^, !m$, ?m^, ?m$,  m^,  m$�
 m �  M�  

��	  + ��
�
��	�
�
���� 


��	 ; ��
�
� uv:
 u �  ��	�
�
 v �  ����� 


��	 *�
�
����
 u, uu, uuu, …:
 u �  ��	�� 


��	  | ��
�
� u:
�  v �  ��	� , w �  ���� :
 u is an interleaving of v and w� 


It can be easily seen, that the expressive power of behavior protocols is equal to 
the power of regular languages. Examples of behavior protocols and languages they 
generate follow: 

�� ?m{!a + !b}�
�
�� ?m{!a} + ?m{!b}�
�
 



 �� ?m^, !a^, ?a$, !m$��
� ?m^, !b^, ?b$, !m$�� 


�� ?a | ?b�
�
�� ?a^, !a$, ?b^, !b$��
� ?a^, ?b^, !a$, !b$��
 



 � ?a^, ?b^, !b$, !a$��
� ?b^, !b$, ?a^, !a$��
� ?b^, ?a^, !b$, !a$��
 



 � ?b^, ?a^, !a$, !b$�� 


�� ?a{!b*}�
�
�� ?a^, !a$��
� ?a^, !b^, ?b$, !a$�� 



 � ?a^, !b^, ?b$, !b^, ?b$, !a$��
�� 
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2.2 Compliance of components 

Having a composition of components annotated with their behavior protocols, 
compliance of the protocols can be studied and possible communication errors can be 
detected. In [2], three types of the communication errors are distinguished: 

·  Bad activity – this communication error occurs when a call is issued on a 
component which is according to its behavior protocol not prepared to 
accept it. For example, consider protocols: ?a; ?b and !b; !a. The former 
describes a component, that is able to accept call of the method a and 
then b. The latter describes a component that first calls b and then a. 
This result in a bad activity error on the first call of b. 

·  No activity (or deadlock) – it happens when at least one component waits 
for an event (and cannot finish), but no component is able to emit any. 
For example, protocols: ?a; !b and ?b; !a describe behavior of 
components that would result in no activity error, when composed 
together. The first component waits for the call of a and the second waits 
for the call of b. Neither one can emit an event and neither one can finish 
– ��  �  �� ?a; !b� and ��  �  �� ?b; !a�. 

·  Infinite activity (or divergence) – this error occurs when there is a 
sequence of events, such that there is no suffix that would allow all 
components to finish at the same time or that would result in no activity 
error. Consider the following exemplary protocols: (!a; ?b)* and ?a; (!b; 
?a)*. The communication of such component will never produce neither 
bad activity nor no activity error. They can call the methods a and b 
forever, but both components will never be able to finish at the same 
time – the former can finish only after a call of b or at the very beginning 
and the latter can finish only after a call of a. 

The additional consent operator �  is able to add error tokens representing all 
types of communication errors to the composition. The precise definition is given in the 
aforementioned paper [2]. For purposes of this work, only an intuitive idea should 
suffice. For behavior protocols 	  and �
 and a set of methods X, ��	  � X ��  contains 
all interleaved traces of 	  and �  synchronized on events associated with methods from 
X. The synchronization means that for each m �  X, any event of a form ?m^ or ?m$ 
will always wait for the corresponding !m^ or !m$ resulting into an internal action  m^ 
or  m$. In addition, ��	  � X ��  can also contain paths ending with an error token 
representing corresponding communication errors, if present�
 Bad activity is denoted as 
� m^ or � m$, where m depends on the event that caused the error. No activity and 
infinite activity are denoted as ��  and ���
 respectively. The set X contains methods 
that are used for communication. Those are methods of all interfaces that are bound 
between the two components. Few examples for clarifying the idea follow: 

�� ?a; !b � �a, b� !a; ?b�
�
�� a^,  a$,  b^,  b$�� 


�� ?a; !b � �a� !a; ?c�
�
�� a^,  a$, !b^, ?b$, ?c^, !c$��
 



 � a^,  a$, !b^, ?c^, ?b$, !c$��
� a^,  a$, !b^, ?c^, !c$, ?b$�� 
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 � a^,  a$, ?c^, !c$, !b^, ?b$��
� a^,  a$, ?c^, !b^, !c$, ?b$�� 



 � a^,  a$, ?c^, !b^, ?b$, !c$�� 


�� ?a; ?b � �a, b� !b; !a�
�
�� � b^�� 


�� ?a; ?b � �a, b, c� !a; ?c�
�
�� a^,  a$, �� �� 


�� 
 (!a; ?b)* � �a, b� ?a; (!b; ?a)* �
�
�� �� ��
� a^, �� ��
� a^,  a$, �� �� 



 � a^,  a$,  b^, �� ��
� a^,  a$,  b^,  b$, �� ��
�� 


Because the consent operator explicitly adds traces with the communication 
errors, it can be used to define compliance of components. There are basically two types 
of compliance: horizontal and vertical. Given a composite component from Fig. 1, the 
horizontal compliance relates to the communication on one level of the component 
hierarchy, between the components A and B. On the other hand, vertical compliance 
expresses substitutability relation between the architecture (component A and B) and 
the frame bounding the architecture (C). Both these ideas can be described using the 
consent operator. Informally, the components A and B are horizontally compliant, if 
�� protocolA � X protocolB�  does not contain any trace with an error token. The set X 
contains all methods on interfaces bound by 1 and 2. 

For definition of the vertical compliance, the inverted frame trick is used. The 
frame protocol of C is inverted; all “!” are substituted by “?” and vice versa. The 
inverted protocol can be perceived as an independent component representing the 
environment (see Fig. 3) and the consent operator can be used in the same way as in the 
case of the horizontal compliance. So the architecture of A and B is vertically compliant 
with the frame C, if ��
 protocolC

-1 � Y �protocolA � X protocolB��
 does not contain 
any trace with an error token. The set Y contains all methods on subsumed, delegated or 
unbound, interfaces. 

 

Figure 3.  An idea of the inverted frame representing the environment 

2.3 Substitutability 

For purposes of the reduction of protocols, the precise notion of a substitutability of the 
component by another one will be necessary. It may be viewed as a special case of the 
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vertical compliance, when the architecture is defined by just a single component and all 
common interfaces are bound (subsumed and delegated). 

Definition 7. Let A and B be components and �  and   their behavior protocols, then A 
is substitutable for B, if ���  � M  -1�  does not contain any trace with an error token, 
where M is a set of all methods. 

The concept of substitutability will be applied to the components and their 
protocols interchangeably. The relation of substitutability defined in this way is 
evidently reflexive (for any protocol � , ���  � M � !1�  does not contain any trace with a 
communication error). Unfortunately, the relation is not transitive. If � ,   and "  are 
behavior protocols, such that �  is substitutable for   and   is substitutable for " , then �  
is not substitutable for "  in general. It can be proved that ���  � M " !1�  cannot contain 
trace with a bad activity error; however it can still contain the no activity or infinite 
activity error. As an example, consider protocols: 

�  �  ?b,
  �  !a + ?b
 and
"  �  !a, or 

�  �  (!a; !a)*,
  �  !a; (!a; !a)* + (!a; !a)*
 and
"  �  !a; (!a; !a)* 

Protocol �  is substitutable for   and   is substitutable for " , but �  � { a, b} " !1 
contains no activity or infinite activity communication error, respectively. 

This is a known issue inherent in using the consent operator on definition of the 
vertical compliance. It represents an unfortunate inconsistency that may cause a loss of 
the communication errors in a hierarchy of components, which constitutes a false 
negative. However, targeting this issue is out of scope of this thesis, which will be based 
on the available vertical compliance and substitutability as defined above. 
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3 Expressing a property 

This section discusses the choice of a suitable formalism for expressing a general 
temporal property. The formalism has to be chosen with respect to specifics of behavior 
protocols.  First, three possible choices are introduced, two popular temporal logics: 
Linear Temporal Logic (LTL) and Computational Tree Logic (CTL) (for more 
information see the fundamental papers [37, 24, 8]) and modal Hennessy-Milner logic 
[44]. Choice of LTL and CTL is based on [9] and the fact that these temporal logics are 
used in the real-life model checkers such as Spin [43] and SMV [7]. Many case studies 
were made on applying temporal logic based model checking tools to nontrivial 
verification tasks (to name few of them [4, 13, 42]). LTL and CTL are thus regarded as 
well-tried. It also reinforces the hope that designers will sooner or later become familiar 
with these temporal logics. For this reasons, exploiting one of them sounds reasonable. 

The third possible choice presented is Hennessy-Milner logic. It is designed to 
express properties of processes in process algebras (see [5]). The main reason, for 
which it is considered, is its action nature. Both CTL and LTL are designed to specify 
properties of systems based on validity of atomic propositions in particular states. 
Transition is important only as a way to other state, no information is associated with it. 
From this point of view, behavior protocols are closer to process algebras. They are 
based on sending events. In behavior protocols, states carry no information but 
transitions are labeled by the appropriate events. 

3.1 LTL 

Linear temporal logic, sometimes also Linear-time temporal logic, is based on 
propositional logic, which is enriched by the temporal operators that allow for 
expressing changes of a system in time. 

Definition 8. Let AP be a set of atomic propositions, then syntactically correct LTL 
formulas are recursively defined as follows: 

#
��� 
 P | �$#�
 |
�#
%
#�
 |
�#
�
#�
 |
�#
�
#�
 |
�#
&
#�  

 |
� X #�
 |
� F #�
 |
� G #� 


 |
�#
 U
#�
 |
�#
 R
#� 


P
���
 true | false | p1 | p2 | … where p1, p2, … �  AP. 

From this definition, operators: true, false, $, %, X and U are the basic operators 
and operators: � , � , & , F, G and R are derived. Derived operators are only a syntactic 
sugar that makes writing LTL formulas a little bit easier. They can be expressed using 
the basic operators. 

Definition 9. Let #  and '  be LTL formulas, then the derived operators can be 
expressed as follows: 
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#
�
'
�
$�$#
%
$'� 


#
�
'
�
$#
%
' 


#
&
'
�
�#
�
'�
�
�'
�
#� 


#
 R
'
�
$�$#
 U
$'� 


F #
�
 true
 U
# 


G #
� 
$ F $#
�
 false R #� 


 

syntax name informal description 

X
#  next Formula #  will hold in the next state. 

F
#  finally/eventually Eventually #  will hold. 

G
#  globally Formula #  holds globally. 

# 
 U
 '  until Eventually '  will hold, #  holds until then. 

#
 R
'  release Need for true of '  is released by validity of # . 

Figure 4.  Informal description of temporal operator 

See Fig. 4 for names and informal meaning of the temporal operators. Proper 
formal definition of the semantics of LTL formulas is given in the definition below. 
LTL formulas are interpreted over infinite words of the alphabet (� 2AP. Any character 
of this alphabet represents a possible state of the system in a discrete time moment by 
the evaluation of the atomic prepositions. An infinite word then describes changes of 
the examined system’s state in time. 

Definition 10. Let w �  s0, s1, s2, … be an infinite word from ( )  and #  a LTL formula. 
Then satisfaction of #  by the word w (w |�  # ) is recursively defined as: 

w |�  true

 and

$ (w |�  false) 

�  p
 �  AP:
 (w |�  p
*
 p �  s0) 

w |�  $#
*
$ (w |�  # ) 

w |�  #  % '
*
 (w |�  # ) % (w |�  ' ) 

w |�  X #
*
 s1, s2, … |�  #  

w |�  #  U '
*
�  i +  0:
 (si, si+1, … |�  '
�
�  0 ,  j < i:
 sj, sj+1, … |�  # ). 

Definition 11. Let M �  �S, sinit, L, ��  be a Kripke structure and T �  ( )  a set of infinite 
paths that can be traversed in M starting in the state sinit (states are mapped to the 
characters of (  via the labeling function L). Kripke structure M satisfies a LTL formula 
#  (M |�  # ) if w |�  #  for all w �  T. 
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In less formal words, a system satisfies a LTL formula if the formula is satisfied 
by all possible runs (traces) of the system. Each run of the system is judged separately. 
Hence, the name “linear”. This feature can be called trace semantics and is the 
fundamental difference in comparison to CTL. 

3.2 CTL 

Computational tree logic has a little bit more complicated syntax then LTL.  

Definition 12. Let AP be a set of atomic propositions, then syntactically correct CTL 
formulas are recursively defined as follows: 

#
��� 
 P | �$#�
 |
�#
%
#�
 |
�#
�
#�
 |
�#
�
#�
 |
�#
&
#�  

 |
� AX #�
 |
� EX #�
 



 |
� AF #�
 |
� EF #� 



 |
� AG # �
 |
� EG # �


 |
 A-# 
 U
 # .
 |
 E-# 
 U
 # .


P
���
 true | false | p1 | p2 | … where p1, p2, … �  AP. 

As well as in the case of LTL, some operators are basic: true, false, $, %, EX, 
EG and EU. The others: � , � , & , AX, AF, EF, AG and AU are derived and can be 
expressed using the basic ones. 

Definition 13. Let #  and '  be CTL formulas, then the derived operators can be 
expressed as follows: 

#
�
'
�
$�$#
%
$'� 


#
�
'
�
$#
%
' 


#
&
'
�
�#
�
 '�
�
�'
�
#� 


AX #
�
$ EX�$#� 


EF # 
�
 E-true
 U
 # .


AF # 
�
$ EG�$ # �


AG # 
�
$ EF�$ # �


A-# 
 U
 ' .
�
$ EG�$ ' �
�
$ E-$' 
 U
�$ # 
�
$ ' �.� 


Informally, A and E mean “along all paths” and “along at least one path” 
respectively. X, E, G and U refer to “next state”, “some future state”, “all future states” 
and “until”. CTL formulas are interpreted over Kripke structures. 

Definition 14. Let M �� S, sinit, L, ��  be a Kripke structure, s �  S its state and #  a CTL 
formula. Satisfaction of #
 for a structure M and state s (M, s |�  # ) is recursively 
defined: 
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M, s |�  true

 and

$ (M, s |�  false) 

�  p �  AP:
 (M, s |�  p
*
 p �  L(s)) 

M, s |�  $#
*
$ (M, s |�  # ) 

M, s |�  #  % '
*
 (M, s |�  # ) % (M, s |�  ' ) 

M, s |�  EX #
*
�  t �  S:
 (� s, t�  �  �  �  M, t |�  # ) 

M, s |�  EG #
*
�  s0, s1, … �  S:
 (s �  s0 �   

 �  i +  0:
 (� si , si+1�  �  �  �  M, si |�  # )) 

M, s |�  E-# U '.
* 
 �  i +  0, s0, s1, …, si �  S:
 (s �  s0 �  M, si |�  '  �  

 �  0 ,  j �  i:
 (� sj, sj+1�  �  �  �
 M, sj |�  # )). 

Definition 15. Let M �  �S, sinit, L, ��  be a Kripke structure and #  a CTL formula. 
Kripke structure M satisfies the formula #  (M |�  # ) if M, sinit |�  # . 

In contrast to LTL, value of CTL formula depends to big extend on the structure 
of system’s state space. Given a Kripke structure of the system, possible branching of 
the execution paths forms a computational tree, see the example on Fig. 5. Semantics of 
CTL is best imagined on this tree. 

 

Figure 5.  Kripke structure unwound into a computational tree 

3.3 Hennessy-Milner logic 

Unlike the LTL or CTL introduced above, the Hennessy-Milner modal logic is used to 
specify properties of processes from the realm of process algebras such as Calculus of 
Communicating Systems (CCS [29]) or Communicating Sequential Processes (CSP 
[19]).  

Process can be viewed as an entity capable of performing actions. After 
performing an action (notation � a for an action a), process may act as another process. 
For example, process Clock = tick.Clock is capable of repeatedly performing the action 
tick. Process Alarm = ring.Clock can perform the action ring and then acts as the 
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process Clock. Models for CCS and CSP are Label Transition Systems. On Fig. 6, the 
LTS representing processes Alarm and Clock is depicted. 

 

Figure 6.  LTS representing processes Clock = tick.Clock and Alarm = ring.Clock 

Hennessy-Milner logic has a very simple syntax compared to CTL or LTL. Its 
semantics is also quite comprehensible. 

Definition 16. Let ACT be set of all possible actions. Syntactically correct formulas of 
Hennessy-Milner logic are recursively defined as follows: 

#
��� 
 true | false 

 |
�$#�
 |
�#
%
#�
 |
�#
�
#�
 |
�#
�
#�
 |
�#
&
#�  

 |
- K.
#
 |
� K�  # 
 where K �  ACT. 

Definition 17. Let E be a process, then satisfaction relation |�  is recursively defined: 

E |�  true

 and

$ (E |�  false) 

E |�  $# 
*
$ (E |�  # ) 

E |�  #  % ' 
*
 (E |�  # ) % (E |�  ' ) 

E |�  [K] # 
*
�  F �  {E’: 
 E � a
 E’ �
 a �  K}: 
 F |�  #  

E |�  <K> # 
*
�  F �  {E’: E � a
 E’ �
 a �  K}: 
 F |�  #  

Informally, -K. #  says that if the process performs an action from the set K, then 
the formula #  must hold. Dual to that, � K�  #  says that the process is able to perform at 
least one action from K and #  would hold afterwards. For example, formula � K�  true 
requires the process to be able to perform at least one action from set K. On the other 
hand, formula -K. false is satisfied by a process unable to perform any action from K. 
Not surprisingly, � K�  #
 �
 $- K. $#
 for any formula #�
 As can be seen from the 
examples, satisfaction of the Hennessy-Milner logic formulas again depends very much 
on the structure of processes (or LTS that represent it). 

3.4 Discussion 

With possible options introduced, the ultimate choice has to be made. When comparing 
different formalisms the following criteria should be kept in mind: 
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·  Suitability for specifying properties of behavior protocols and 

·  Expressiveness. 

The first criterion encourages use of such formalism, whose model and 
semantics is close to behavior protocols. The reason for this criterion is evident. 
Formalism that is used to operate over similar structures with similar meaning is likely 
to match also the needs of behavior protocols. Just to remind, behavior protocols’ 
syntax can evoke processes from process algebras. The common thing is the action 
nature of both. Both processes and protocols can be view as entities that are capable of 
performing actions (sending events and receiving events, in case of protocols). This 
suggests that use of the same formalism to specify the property could be reasonable.  

However, the semantics of behavior protocols makes the difference. For a given 
behavior protocol, the semantics is defined over set of traces generated by the protocol. 
Thus, two behavior protocols are semantically equivalent if they generate the same set 
of traces. This is what was denoted as the trace semantics and what was shared only 
with the LTL. Both CTL and Hennessy-Milner logic formulas depend on the structure 
of the examined system. It does not mean that these two could not be used at all. It 
rather says that the use of them could be confusing. 

According to the second criterion, expressiveness of the formalisms should be 
discussed. However, this is not meant to aim the exact formal expressive power 
(expressiveness of CTL and LTL are know to be incomparable) but rather to investigate 
whether are the formalisms able to express frequently used properties. For this purpose, 
project Specification patterns at SAnToS laboratory [40] is considered. The project 
targets to enumerate frequently used specification patterns and to give their notation in 
different formalisms: LTL, CTL, Graphical Interval Logic (GIL [12]), Quantified 
Regular Expressions (QRE [33]) and INCA queries [41]. For example, such frequently 
used patterns are: “A is absent between B and C”, “P is true globally after Q” or 
“between X and Y, Z is true at most twice”. As can be seen from results of the project, 
both CTL and LTL can be successfully used to express these frequently used 
specification patterns, although the resulting formulas are usually not easy to read. From 
this point of view, CTL and LTL can be thought of as quite suitable.  

Specification patterns project does not consider Hennessy-Milner logic, but it 
can be seen that it is not suitable to express this kind of properties without being 
seriously extended. In the basic form, it is not even able to express that the process 
should perform action tick for ever. By #  �  �� ACT�
 true�
 �
 �- ACT!� tick� .
 false�, 
one can say that the process is obliged to perform action tick as its first action. 
Generally, n-times [ACT] followed by #  requires that action number n /  1 (if any) can 
be only the action tick. Then by finite number of conjunctions, first n actions are forced 
to be tick. 

��� ACT�
 true�
�
�- ACT!� tick� .
 false��
�
 


-ACT.
��� ACT�
 true�
�
�- ACT!� tick� .
 false��
� 


-ACT.
- ACT.
��� ACT�
 true�
�
�- ACT!� tick� .
 false��
�
�
� 


-ACT.n
��� ACT�
 true�
�
�- ACT!� tick� .
 false�� 
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First, this constrains only a finite number of first actions. Second, this is 
definitely not a formula one would like to write or read. 

At the bottom line, Hennessy-Milner logic, despite its action nature close to 
behavior protocols, is disqualified by its low expressiveness. When comparing CTL 
with LTL, both are expressive enough and both lack the action nature of behavior 
protocols, so they cannot be used without some changes in the semantics. Difference is 
in the trace semantics of LTL, which makes it a bit more suitable. The ultimate decision 
is to use LTL with some necessary semantic changes that will be described in the 
following section. 

3.5 Targeting behavior protocols 

There are two major issues in using LTL on behavior protocols. First, the LTL is 
defined over a finite set of atomic propositions AP. In every state of the Kripke structure 
that represents the examined system, any subset of AP can hold. On the contrary, states 
of component described by a behavior protocol do not carry any special information; the 
transitions are labeled by appropriate events. In other words, from the point of view of 
Kripke structure, the run of a system is a sequence of visited states labeled by subsets of 
AP. From the point of view of behavior protocol, it is a sequence of transitions labeled 
by corresponding events. The natural solution is to map atomic propositions to events of 
behavior protocols. The set of atomic propositions AP can be chosen to be equal to the 
set of possible events. When a particular event is emitted, the associated atomic 
proposition is considered to be true and all others are false. 

In fact, there is one more improvement based on the following observation. 
When monitoring behavior of a composition of components, any emitted event is either 
accepted by a component bound on the corresponding interface (possibly out of the 
composition in case of subsumption binding) or it generates a bad activity error. Bad 
activity is always wrong and is detected by the compliance checker. Thus, it is not 
necessary to make difference between emitting and accepting an event, because it does 
not provide any additional information. From this reason, atomic propositions are 
mapped to m^ and m$ for every method m. Where m^ is considered to be true, when 
either of events ?m^, !m^ or  m^ is generated. Analogously m$ is true for events ?m$, 
!m$ and  m$. 

The second issue is in finiteness of traces of behavior protocols. Semantics of 
LTL is defined over infinite traces, whereas semantics of behavior protocols uses only 
finite traces. This suggests modification of LTL definitions to work only over finite 
words. In [14], three possible semantics of LTL over finite traces are presented: weak, 
strong and neutral, and their relations are studied. The reason for this division is in 
problematic X operator on finite traces. What value should have the formula X #  on the 
end of the trace? Consider formulas X true and X false and property $X #
�
 X $#

that holds in the classical LTL. In [17], it is shown that problems with different 
semantics can be, not surprisingly, consistently solved by using LTL-X, which is LTL 
without the X operator. Because of the simplicity, we adopt this approach and continue 
with the LTL-X. The definitions of LTL-X over finite traces follow. Definitions of 
derived operators do not change. 
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Definition 18. Let M be a set of methods, then syntactically correct LTL-X formulas are 
recursively defined as follows: 

#
��� 
 P | �$#�
 |
�#
%
#�
 |
�#
�
#�
 |
�#
�
#�
 |
�#
&
#�  

 |
� F #�
 |
� G #� 


 |
�#
 U
#�
 |
�#
 R
#� 


P
���
 true | false | m1^ | m1$ | m2^ | m2$ | … where m1, m2, … �  M. 

Definition 19. Let w �  � e1, e2, …, en�  be a finite trace of behavior protocol events and 
#  a LTL-X formula. Then satisfaction of #
 by w (w |�  # ) is recursively defined as: 

w |�  true

 and

$ (w |�  false) 

�  m �  M:
 (w |�  m^
*
 n �  0
�
 e1 �  � ?m^, !m^,  m^� ) 

�  m �  M:
 (w |�  m$
*
 n �  0
�
 e1 �  � ?m$, !m$,  m$� ) 

w |�  $#
*
$ (w |�  # ) 

w |�  #  % '
*
 (w |�  # ) % (w |�  ' ) 

w |�  #  U '
 *
�  min(1, n) ,  i ,  n�
�� ei, ei+1, …, en�  |�  '
�
 



 �  1 ,  j �  i�
� ej, ej+1, …, en�  |�  # ). 

Definition 20. Let 	  be a behavior protocol with language ��	� . Protocol 	  satisfies 
a LTL-X formula #  (	  |�  # ) if w |�  #  for all w �  ��	� . 

In order to design an algorithm for checking the modified LTL-X formula on 
behavior protocols, the algorithm for checking the original LTL formula on Kripke 
structure was consulted (it can be found in [9]). The keystone of the original algorithm 
is translation of the LTL formula into Büchi automaton, which accepts exactly the 
traces that satisfy the formula. Büchi automaton is a finite automaton that accepts 
infinite traces. An infinite trace is accepted if the automaton visits an accepting state 
infinite number of times along the trace. One of the possible translation algorithms is 
described in [16]. The algorithm for checking the LTL formula #  on Kripke structure M 
works in four steps: 

·  Büchi automaton BM, which accepts exactly traces corresponding to 
possible runs of system described by Kripke structure M, is constructed. 

·  Formula #  is negated and Büchi automaton B$# , which accepts exactly 
traces violating formula # , is constructed. 

·  Intersection of BM and B$#  is constructed. 

·  Language accepted by intersection of BM and B$#  is sought for 
emptiness. If the language is nonempty then the system does not satisfy 
the formula # , because there is a trace of system M that violates # . 

To prove that the language accepted by a given Büchi automaton is nonempty, 
one has to find a cycle reachable from the initial state and containing at least one 



 23 

accepting state. This can be done in time linear in the size of the automaton by a single 
depth first search traversal. 

The question is if the algorithm is usable also to the modified LTL and behavior 
protocols. Model for behavior protocol (or composition of protocols) is a finite 
automaton. If it was possible to construct a finite automaton that would accept exactly 
traces satisfying a given modified LTL formula, then the algorithm above could be used 
with just substituting Büchi automata by finite automata. Fortunately, the main idea of 
the LTL to Büchi automaton tableau-based translation algorithm can be used unchanged 
to generate a nondeterministic automaton accepting exactly traces, which satisfy a given 
modified LTL formula. Thus, the algorithm for checking whether a behavior protocol 
(or a composition of protocols) satisfies a modified LTL formula is almost the same as 
in the previous case sharing also the time complexity. The fourth step is done again in 
time linear in the size of the intersection automata, which is generally exponential in 
both length of the formula and length of the protocol. The translation algorithm is 
described in Section 5.2. 

Expressive power of the modified LTL is evidently a subset of regular 
languages, because any LTL formula can be translated into a finite automaton. It is 
reasonable to ask if the introduction of LTL really brought something new to the world 
of behavior protocols, whose power is also regular. There are at least two reasons for 
answering: “yes”. First, behavior protocols contain neither wildcards nor conjunction, 
so expressing property of a type: “A happens sometime after B” or “protocol satisfies 
both conditions A and B”, is theoretically possible, but very unpractical. Second, LTL 
with almost unchanged syntax is arguably better choice then introduction of “just 
another” specification language for component designer to learn. 

The last note is on differences between finite and infinite trace semantics of 
LTL -X. Consider the following infinite trace 0  and LTL-X formula # : 

0
�
� a, x, b, a, y, x, b, a, y, x, b, a, y, x, …� 


#
�
 G �� a
�
 F b�
�
� x
�
 F y��  

Formula #  says: “After each occurrence of a, b eventually follows. And after 
each occurrence of x, y eventually follows.” This is evidently true when considering 0  
with the infinite semantics. However, no nonempty prefix of 0  satisfies this formula 
with the finite semantics – one of the obligations will always be disobeyed. The second 
example of difference is formula ' : 

'
�
 F �� G a�
%
� G $a��  

Formula '  says: “Eventually, either a will be emitted for ever or a will not be 
emitted any more.” In the infinite trace semantics, this really puts a constraint on some 
kind of “stabilization” of the system. However, in the modified semantics, this holds for 
any trace including the empty one. Informally, on any non-empty finite trace, there is 
the last symbol, which is either a or not. Evidently, from this symbol on – that means 
just for this symbol – either G a or G $a
 holds. Satisfaction on empty trace follows 
directly from the definition. 
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4 Reduction of protocols 

Depending on the environment of a software component, some parts of its functionality 
are never used. For example, some methods are never invoked. In the language of 
behavior protocols this means that some traces defined by component’s protocol are not 
used in the composition. These unused traces can be omitted to improve readability of 
the protocol – reduction with respect to composition. 

Another case of protocol reduction is reduction with respect to property. Having 
a LTL formula, some aspects of the components’ behavior do not influence validity of 
the formula. Omitting parts of behavior protocols that represents these aspects and 
leaving only parts relevant to the property should make the comprehension of the 
behavior specification easier. 

However, the important requirement on both reductions is that the original 
protocol should be substitutable for the reduced protocol. In other words, any 
component that can be correctly described by the original protocol can be also described 
by the reduced protocol. 

4.1 Motivation example 

In order to clarify the basic idea, examples of the two different types of reduction will 
follow. The first one demonstrates use of the reduction with respect to composition. 
Fig. 7 shows composition of two components: A and B with the following behavior 
protocols: 

·  Component A: ?a{!x}* | (?b)* 

·  Component B: !a{?x + ?y}* 

 

Figure 7.  Example of reduction with respect to composition 

The component A can accept arbitrary numbers of calls of the methods a and b 
in parallel. During the invocation of the method a it calls the method x on B. On the 
other side, the component B repeatedly calls the method a on A and during this call it 
must receive call of either x or y. 
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Given the composition from Fig. 7, one can easily see that the methods b and y 
will never be called. Even though, both components can accept these calls, they will 
never be issued in this particular composition. So the behavior protocols of both 
components can be reduced to contain only the parts that are really used:  

·  Component A: ?a{!x}* 

·  Component B: !a{?x}* 

The important thing to note is the fact that this reduction just removed the 
unnecessary parts of both protocols. It did not reduce the behavior of the composed 
components in any way, since the behavior was restricted by the composition. This is 
not the case in the following example that presents reduction with respect to given 
property.  

 

Figure 8.  Example of reduction with respect to property 

On Fig. 8, there are again the components A and B. Each of them has also one 
external interface (to be used be the environment). Assume that the behavior protocols 
of the components are: 

·  Component A: (?a{!x})* | (?b{!y})* 

·  Component B: (?x{!z})* | (?y{!w})* 

The component A can accept arbitrary numbers of calls of the methods a and b 
in parallel. During invocation of a and b, it calls the method x and y on B, respectively. 
In the same manner, the component B forwards parallel calls of the methods x and y to 
the external calls of z and w. 

Let #  = G
� a^
 �
 F z^�  be the property. That is: “Each call of the method a 
(begin of the invocation) is eventually followed by a call of the method z.” Validity of 
this property is trivial, because every call of the method a is postponed to z via x. In 
contrast, parallel invocation of the method b and consequently y and w does not affect 
validity of this property by any means and can be omitted. The reduced protocols 
contain only parts relevant to the given property: 

·  Component A: (?a{!x})* 

·  Component B: (?x{!z})* 

Unlike the previous type of reduction, this restricts behavior of the components. 
In this case, the reduction is achieved only for a promise that the method b will never be 
called. This is a fundamental difference between these two types of reduction. If 
reduction with respect to composition is applied, the result can be used to substitute the 
original – only the unused behavior was removed. However, the result of reduction with 
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respect to property is generally weaker than the original. Also some parts that possibly 
could be used by the environment are omitted so the result can be used only in those 
environments that keep this promise. 

Motivation of the reduction is to help the designer with comprehension of a 
specification, by hiding insignificant parts of it. Reduction with respect to composition 
hides parts that are not used in the given composition, whereas reduction with respect to 
property goes further. It hides also parts that might be used, but are not significant to the 
given LTL formula. 

Although the basic idea of protocol reduction is quite easy to understand, a more 
formal approach has to be taken in the next sections to clearly present the proposed 
solution. 

4.2 Reduction preorder 

This section focuses on formal definition of possible reductions of a single behavior 
protocol. Given a behavior protocol, the question is: “What protocols can be thought of 
as its reductions?” 

The basic condition was already mentioned. The original protocol has to be 
substitutable for the reduced protocol. So any component that can be described by the 
original protocol can be also described by the reduced protocol. This condition follows 
from the fact that the reduced protocol is only a weaker description of the same 
implementation. 

Definition 21. Let 	 1 and 	 2 be behavior protocols, then 	 1 , R 	 2 if ��	 1�  �  ��	 2�  
and 	 2 is substitutable for 	 1. 

Informally, the reduced protocol can generate only traces generated by the 
original one – not necessarily all of them. Only the traces whose choice does not depend 
on the described component but rather on its environment (the environment has to emit 
an event) can be omitted. Otherwise, trace that can be chosen according to the original 
protocol is not possible any more in the reduced protocol and the original would be no 
longer substitutable for the reduced protocol. This is a sort of “contract” that the traces 
can be omitted provided that some methods are not called in some situations. 

Lemma 1. Relation , R on the set of behavior protocols is a preorder. It is called 
reduction preorder. 

Proof In order to show that the relation , R is a preorder, it has to be shown that the 
relation is both transitive and reflexive. Reflexivity is immediate. For any behavior 
protocol 	 , ��	�  �  ��	�
 and 	
 is always substitutable for itself, because the 
substitutability relation (Definition 7) is trivially reflexive. 

For transitivity, we have protocols 	 1, 	 2 and 	 3 such that 	 1 , R 	 2 and 	 2 
, R 	 3. It is to be shown that 	 1 , R 	 3. Obviously, 	 1 , R 	 2 and 	 2 , R 	 3 implies 
that ��	 1�  �  ��	 2�  �  ��	 3��
 However, substitutability of 	 3 for 	 1 is not so 
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obvious. Suppose that ��	 3 � M 	 1
-1� , where M is a set of all methods, contains traces 

with communication errors. Let 0  be one of the error traces.  

Suppose that 0  represents the bad activity error. Then there is 0 ’, such that 0 ’ is 
a prefix of some trace generated by 	 3 and continuing by an emit token and 	 1 
generates one or more traces with this prefix but none continuing with this particular 
token. Because of ��	 1�  �  ��	 2�  �  ��	 3� , also 	 2 generates one ore more traces 
with prefix 0 ’ (since 	 1 do). There are two possibilities. Either 	 2 generates also a 
trace with prefix 0 ’ continuing by the particular emit token or not. However, the first 
case contradicts substitutability of 	 2 for 	 1 and the second contradicts substitutability 
of 	 3 for 	 2. In both cases, the error trace 0  would occur. 

Cases with no activity and infinite activity can be proven analogously. 1  

 

Figure 9.  An example of the reduction preorder (it is incomplete – an infinite number 
of protocols could be inserted into the graph) 

See Fig. 9 for a brief example of the reduction preorder. After the reduction 
preorder is well defined, some other important concepts should be stated precisely, as 
well. 

Definition 22. Behavior protocol 	 1 is a reduction of behavior protocol 	 2 if 
	 1 , R 	 2. The set of reductions of protocol 	  is a set 2 	  �  ���
 �
 is a behavior 
protocol and  �  , R 	� . 

In the set of reductions, there are all possible reductions of a particular behavior 
protocol. Elements of this set, for which there is no smaller element present, are the 
most dummy protocols that are still compliant with the original one. They offer the 
same but perform less. However, usually the situation is more complicated. There is 
often a set of traces that are in some sense important and should be present also in the 
reduced protocols. 

Definition 23. Let 	  be a behavior protocol and T �  ��	�  a set of traces. Behavior 
protocol � 1 is a minimal reduction of 	  containing T if � 1 , R 	 , T
�  ��� 1�
 and there 
is no protocol � 2 such that � 2 , R � 1 and  T �  ��� 2�  3  ��� 1� . 

Set T is a set of important traces that should be preserved in the reduced 
protocol. What traces are important depends on the purpose of reduction. This definition 
is quite straightforward but unfortunately has some drawbacks. First, the minimal 
reduction is not unique. 
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Lemma 2. Let 	  be a behavior protocol and T �  ��	�  a set of traces and � 1 a 
minimal reduction of 	  containing T. There exist a protocol � 2 4  � 1 which is also a 
minimal reduction of 	  containing T. 

Proof Let � 2 � 
 � 1 + NULL.  Claim follows immediately from ��� 1�  �  ��� 2� . 1  

It can be easily seen that this way, an infinite set of minimal reductions can be 
generated if at least one exists. However, also more minimal reductions with different 
languages can exist in general. If 	  �  ?a + ?b and T �  5
 then both protocols ?a and 
?b are minimal reductions of  	  containing T. 

Second problem is that no minimal reduction is obliged to exist at all if the set of 
traces T is not a regular language. For example if 	  �  ?a*; ?b* and T �  �� ?an; ?bn�  
for n �  6 , no minimal reduction of 	  containing T exists. If we stick to the regular T, 
this problem does not occur. 

Unfortunately, Definition 23 does not enforce any restrictions on the resulting 
syntactic structure of the minimal reductions. However, the original goal was to help the 
designer with reading and reusing the protocol. Even a suboptimal solution preserving 
the syntactic structure of the original protocol would be preferred over the optimal one. 
Such a solution will be described in the next section.  

Because of the principle of inverted frame protocol, introduced in Section 2.2, 
also notion of inverted reduction will be useful in the following. 

Definition 24. Let 	 1 and 	 2 be behavior protocols, then 	 1 , IR 	 2 if ��	 1�  �  ��	 2�  
and 	 1 is substitutable for 	 2. 

Definition 25. Behavior protocol 	 1 is an inverted reduction of behavior protocol 	 2 if 
	 1 , IR 	 2. Set of inverted reductions of protocol 	  is a set 2 	  �  ���
�
 is a behavior 
protocol and  �  , R 	� . 

4.3 Term rewriting 

In this section, an approach that operates on the syntactic structure of the protocol – the 
term rewriting [11] – is presented. We define a set of rewriting rules that are repeatedly 
applied to the original protocol to perform the reduction. These rules will enforce 
preservation of both syntactic structure and substitutability of the original protocol. This 
way, any result of the rewriting will always be a reduction of the original protocol in 
accordance with Definition 22.  

First of all, a few definitions have to be stated. 

Definition 26. Behavior protocol or subprotocol of a behavior protocol 	  is nullable 
(predicate nullable(	 ) is true) if an empty trace ��  �  ��	� . 

Definition 27. Behavior protocol or subprotocol of a behavior protocol 	  is passive 
(predicate passive(	 ) is true) if no trace 0  �  ��	�  starts with an emit event (event of a 
form !a^ or !a$, where a is a method). 
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The point of passive and nullable protocols is simple. Whenever a subprotocol 
only waits for en event – is passive – it is a prospective place to be reduced. In other 
words, environment can choose not to send any of the events the component is waiting 
for and this part can be reduced. If a nullable subprotocol is to be reduced, it can be 
reduced to NULL protocol. 

For example protocol ?a{!x} is passive but protocol !a{?x}* is not. The first one 
is not nullable but the second one is (note the * operator). 

Definitions 26 and 27 can be stated also inductively as they are really used in the 
implementation. These definitions follow for the sake of completeness. 

Definition 28. Let 	  and �  be behavior protocols and let a be a method: 

·  !a^, !a$, ?a^ and ?a$ are not nullable 

·  NULL is nullable 

·  	 * is nullable 

·  	  + �  is nullable if 	  or �  is nullable 

·  	  | �
 and 	 ; �  are nullable if both 	  and �  are nullable 

Definition 29. Let 	  and �  be behavior protocols and let a be a method: 

·  !a^ and !a$ are not passive 

·  ?a^ and ?a$ are passive 

·  NULL is passive 

·  	 * is passive if 	  is passive. 

·  	  + �  and 	  | �  are passive if both 	  and �  are passive 

·  	 ; �  is passive if 	  is passive and either 	  is not nullable or �  is also 
passive 

Syntactic abbreviations like method calls or the or-parallel operator can be 
derived intuitively. Also brackets despite being part of the syntax of behavior protocols 
are ignored, to stay comprehensible. 

With all necessary concepts defined, the reduction rules can be formulated. Let 
	
 and
�
 be behavior protocols. The rewriting rules for protocol reduction follow: 

	
 
 7
 NULL  if 	  4  NULL and nullable(	 ) and passive(	 ) 

	  + � 
 7
	 
 if passive(� )
 


	  + � 
 7
� 
 if passive(	 ) 

	  | �
 
7
	 
 if passive(� ) and nullable(� ) 

	  | �
 
7
� 
 if passive(	 ) and nullable(	 ) 

	  | �
 
7
	  + � 
 if passive(	 ) and passive(� ) and nullable(	 ) and nullable(� ) 

	 ; �
 
 7
	 
 if passive(� ) and nullable(� ) 
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	 ; �
 
 7
� 
 if passive(	 ) and nullable(	 ) 

Rules can be applied on any subprotocol of the protocol being rewritten. A 
subprotocol is formally any substring that is itself syntactically a behavior protocol. It 
has to be shown that application of the rules generates reduction of the original protocol. 

Lemma 3. Let 	 1 and 	 2 be behavior protocols and 	 2 be derived from 	 1 by 
application of one or more rewriting rules to some of its subprotocols. Then 	 2 is a 
reduction of 	 1. 

Proof First, evidently ��	 2�  �  ��	 1��
 because no rule adds traces that would not 
be present in the original protocol. Second, 	 1 is substitutable for 	 2, because any 
omitted subprotocol is passive. It means that only parts stating requirements put on the 
component are omitted. So the protocol 	 2 has lower requirements on the implementing 
component than the protocol 	 1. Since no changes on the provided side are made, 	 1 is 
clearly substitutable for 	 2. 1  

The rewriting rules are monotonic. Each rule makes the protocol shorter (less 
tokens) except the first one, which may remove no tokens but which cannot be used 
more than once on the same subprotocol. This ensures that after a finite number of 
rewriting no rewriting rule matches any more. Thus, at least one final reduction always 
exists. Depending on the choice of the rules, more such final reductions can exist. For 
example, consider again the protocol ?a + ?b. It can be reduced to either ?a or ?b that 
both cannot be reduced any further. 

As mentioned in the previous section, there is often a set of important traces that 
should be preserved by the reduction. This set depends on the purpose of reduction and 
is rather conceptional. It is not mentioned to be enumerated and given to the rewriting 
algorithm as an input – it is usually infinite. Among others, the rewriting algorithm has 
no notion about traces. Better way how to make the rewriting process aware of the 
important traces is to forbid the use of a particular rewriting rule if it could possibly 
cause removal of an important trace. For this purpose, both types of reductions are 
obliged to provide a mechanism that would specify whether a concrete rewriting rule 
can be applied to a particular subprotocol or not.  

 

Figure 10.  An example of the parse tree for the protocol ?a* | ?b* 
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As described in the following, both algorithms for reduction with respect to 
composition and for reduction with respect to LTL formula work over the parse trees of 
the protocols. An example of a parse tree can be seen on Fig. 10. The nodes of the parse 
trees are naturally the place, where to put the information about importance. Informally, 
each node of the parse tree is marked as important if the corresponding subprotocol can 
be used to generate an important trace. Moreover, the parallel operator nodes are 
marked as parallel-important if the corresponding interleaved subprotocols can be used 
to generate an important trace. The rewriting rules are then altered as follows: 

	
 
 7  NULL  if 	  4  NULL and nullable(	 ) and passive(	 ) and not 
important(	 ) 

	  + � 
 7
	 
 if passive(� )
 and not important(� ) 

	  + � 
 7
� 
 if passive(	 ) and not important(	 ) 

	  | � 
 7
	 
 if passive(� ) and nullable(� )
 and not important(� ) 

	  | � 
 7
� 
 if passive(	 ) and nullable(	 ) and not important(	 ) 

	  | � 
 7
	  + � 
 if passive(	 ) and passive(� ) and nullable(	 ) and nullable(� ) 
and not parallel-important(	  | � ) 

	 ; � 
 7  	 
 if passive(� ) and nullable(� ) and not important(� ) 

	 ; � 
 7  � 
 if passive(	 ) and nullable(	 ) and not important(	 ) 

On Fig. 11, example of the protocol reduction is given. The protocol is ?a* | ?b* 
and the set of important traces is equal to �� ?a^, !a$� , � ?a^, !a$, ?a^, !a$� , …� . The 
important nodes are marked by black marks. It is easy to see, that all important traces 
are generated only using the left subtree. By application of the fourth rule, the ?a* 
protocol in acquired. 

 

Figure 11.  Rewriting of the protocol ?a* | ?b* with the set of important traces �� ?a^, 
!a$� , � ?a^, !a$, ?a^, !a$� , …�  
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Another example can be seen on Fig. 12. The protocol is the same and the set of 
important traces is equal to �� ?a^, !a$� , � ?a^, !a$, ?a^, !a$� , …, � ?b^, !b$� , � ?b^, 
!b$, ?b^, !b$� , …� . Both subtrees are necessary for generation of important traces; 
however, the parallel interleaving is not. The sixth rule can be applied to get the 
protocol ?a* + ?b*. 

 

Figure 12.  Rewriting of the protocol ?a* | ?b* with the set of important traces �� ?a^, 
!a$� , � ?a^, !a$, ?a^, !a$� , …, � ?b^, !b$� , � ?b^, !b$, ?b^, !b$� , …�  

Suboptimality of this approach is hidden in two aspects. First and obvious, we 
stick to the structure of the original protocol and thus automatically refuse solutions that 
are potentially better. Consider protocol ?a* with the set of important traces �� ?a^, !a$, 
?a^, !a$�� . Protocol ?a; ?a is arguably the best reduction, but the structure is different; 
no  sequence of the rewriting rules can result in this protocol. In this case, the protocol 
will not be reduced by the rewriting rules at all. Second, the reduction can be 
suboptimal when the protocols are not deterministic.  

Definition 30. We say that a behavior protocol is deterministic if for each nonempty 
prefix of any of its traces, the leaf of the protocol parse tree that have generated the last 
event can be identified unambiguously.  

For example, protocol ?a* + ?a* is not deterministic, since for a prefix � ?a^� , 
there are two leaves of the parse tree that could have generated the event ?a^. Because 
all nodes of the parse trees that could be used to generate an important trace are marked 
as important, all ambiguous nodes are marked. For the protocol ?a* + ?a* and a set of 
important traces equal to its whole language, all nodes of the parse tree will be marked 
as important due to the nondeterminism (all nodes can be used to generate an important 
trace). However, the best reduction would be ?a*. This behavior is acceptable because 
nondeterministic protocols are rather rare in practice. 

As already indicated, the notion of inverse reduction will be useful in the 
following. In order to generate an inverse reduction using the rewriting rules, concept of 
passive protocols has to be substituted by a dual concept of active protocols. 
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Definition 31. Behavior protocol or subprotocol of a behavior protocol 	  is active 
(predicate active(	 ) is true) if no trace 0  �  ��	�  starts with an accept event (event of 
a form ?a^ or ?a$, where a is a method). 

Rewriting rules have to be altered. All occurrences of the predicate passive have 
to be substituted by the predicate active. Modified rules can be used to generate inverse 
reductions. 

In this section, rewriting rules for reduction of behavior protocol were defined. 
However, they can be used only on a single protocol with the parse tree nodes marked 
as important or parallel-important according to the set of important traces. Next sections 
extend this idea to a composition of more components and define what the important 
traces are with respect to composition and with respect to property. 

4.4 Reduction with respect to composition 

As said before, composition of components is defined by frame protocol of each 
participating components (A and B on Fig. 13), frame protocol of the resulting 
composite component (C), bindings between inner components (1 and 2), subsumption 
(3) and delegation (4) bindings and unbound interfaces (5 and 6).  

The goal is to reduce protocols of inner components (A and B in the example) 
and the frame protocol (C) to leave out the behavior unused in this particular 
composition. The unreachable parts of the individual protocols should be omitted but 
the behavior of the whole architecture should remain unchanged. If � ,  
 and "  are 
behavior protocols of components A, B and C respectively, then the goal is to create 
protocols �8,  8 and "8 such that �8 , R ��
 8  , R  
 and "8 , IR " . This should guarantee 
that any implementation of component A (or B) that is compliant with the protocol �  
( ) is compliant also with the new protocol �8 ( 8). Also "8 , IR "
 should imply that "8 
remains substitutable for "�  so no communication errors are introduced in the higher 
levels of hierarchy. This claim would be true if the substitutability relation was 
transitive, which is actually not as discussed in Section 2.3. Protocols �8,  8 and "8 can 
be imagined to define virtual wrapper components A’, B’ and C’ as depicted on Fig. 14. 

 

Figure 13.  The composite component C consists of A and B, the internal (1 and 2), 
subsumption (3) and delegation (4) bindings and unbound interfaces (5 and 6) 
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Figure 14.  Idea of the virtual wrapper components. The components A, A’, B, B’, C 
and C’ have the behavior protocols � , �8,  ,  8, "  and "8 respectively, where �8 , R ��

 8 , R  
 and "8 , IR "  

The last and most evident requirement is that if the composition A, B and C is 
communication error free then also the composition of virtual components A’, B’ and 
C’ should contain no communication errors. Fortunately, this property is for free if the 
whole behavior is unchanged as required. It means that both compositions contain the 
same set of traces and also the same set of error traces. Thus, if the set of error traces of 
the composition A, B and C is empty then the set of error traces of the virtual 
composition is empty too. 

To create reduced protocols of inner components (�8 and  8), rewriting rules 
from the previous section are used. In case of the frame protocol ("8), the rules for 
inverse reduction are applied. Both sets of rules operate on a single protocol, so the sets 
of important traces have to be defined per each protocol. Informally, a trace of a 
protocol is important and should be preserved if it is really used – the consent operator 
does not discard it. Instead of constructing these sets, the implementation uses the 
second approach. It marks nodes of the protocol parse trees as important or parallel-
important. This information is actually used in the rewriting rules. 

The algorithm is divided into two parts. In the first part, traversal of the state 
space of the whole composition (using the consent operator) is performed and reachable 
nodes of each parse tree are marked as important. The parallel operator nodes are 
marked as parallel-important if a nontrivial interleaving of its subprotocols is ever used. 
This phase is very similar to the compliance checking. Instead of finding 
communication errors the algorithm is just marking reachable nodes of the parse trees, 
during the traversal. In fact, this part of the algorithm is really done together with the 
compliance checking in a single pass. Fig. 15 illustrates the first phase. 
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Figure 15.  First phase of the algorithm for reduction with respect to composition. In 
this phase, parse trees of individual components are marked during the traversal of the 
state space of the whole composition 

In the second phase, the rewriting rules are applied to each individual protocol 
using the information gathered in the first phase. See Fig. 16. 

 

Figure 16.  Second phase of the algorithm for reduction with respect to composition. In 
this phase, parse trees of individual components are separately reduced using the 
rewriting rules and marks gathered in the first phase 
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4.5 Reduction with respect to property 

An approach to checking a general temporal property stated in modified LTL-X was 
already presented in Section 3.5. It can be used both on a single protocol or a 
composition of more protocols. This section will focus on reducing the architecture to 
contain only archetypal traces that do influence validity of the LTL formula.  

Formally speaking, if the LTL formula is successfully verified then it is by 
Definition 20 true on all traces. So there is no trace that is really influencing the 
validity. LTL formula will stay true no matter which traces are removed. However, it is 
still possible to identify traces that are representative for different ways of fulfilling the 
property stated as the LTL formula.  

As described in Section 3.5, negation of the LTL formula is translated into a 
non-deterministic finite state machine that accepts all traces that violate the formula. In 
this state machine, transitions are labeled either with a single event token (only a single 
event can be emitted at one time moment) or by a possibly empty set of negated event 
tokens. The second type of transition can accept any event token that is not in the set. 
Recall the example of LTL formula from Section 4.1: G �a^
�
 F z^� . State machine 
corresponding to its negation can be seen on Fig. 17. This automaton accepts any word 
that starts with an arbitrary prefix (self loop in the state 0) and continues with a^ and 
any suffix without z^. 

 

Figure 17.  Non-deterministic finite state machine accepting all traces that violate the 
LTL formula: G �a^
�
 F z^�  

Let 0  be a trace not accepted by this automaton. Informally, symbols of the trace 
0  can be classified as important or unimportant. The symbol can be seen as important if 
it allows different run of this automaton then any symbol not mentioned in the formula 
or if it disallows some of runs otherwise possible. For example in the state 0, symbol a^ 
is important because it allows traversal to the state 1, which is not possible otherwise. In 
the state 1, symbol z^ is important because it disallows use of the self-loop. 

Definition 32. Let M be a non-deterministic finite state machine, 0  a trace of length n 
and xi, where 1 ,  i ,  n, symbol on the trace 0 . Let Si be a set of states of M that are 
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reachable by i ! 1 long prefix of 0 . Then the symbol xi is important if there is a 
transition from any state in Si marked by either the symbol xi itself or by a set of negated 
symbols including negation of xi. 

Using this definition and the automaton from the previous example, the 
underlined symbols in the following trace are important: 

� ?a^, ?b^, !a$, !z^, !b$, ?z$, !z^, ?z$, ?a^, !a$�  

The next step is identification of important traces from the set of traces 
generated by a behavior protocol. Just stating that important traces are those that contain 
important symbols is not enough. Use of for example parallel operator can mix in 
unwanted symbols. So the important traces have to be defined as in some meaning 
“shortest” traces containing the same important symbols – representatives. 

Definition 33. Let 	  be a behavior protocol, 0  �  ��	�  one of its traces and n length of 
0 . Trace 0  is important if there is no nonempty set I �  � 1, 2, …, n�  such that: 

1) If m is the smallest element in I then xm, the m-th symbol of 0 , is an 
accept event (event of a form ?a^ or ?a$, where a is a method) and 

2) For each i �  I, xi is not an important symbol of 0  and 

3) There is �  �  ��	�  created from 0  by removal of all xi, for i �  I. 

For example, consider again the LTL formula G �a 
̂ �
 F z^�  with the 
corresponding finit automaton (from Fig. 17) and a behavior protocol (?a{!z})* | 
(?b{!w})*. Traces of this protocol are parallel interleavings of calls to methods a and b. 
More precisely, traces of this protocol are exactly all interleavings of two sequences �  
and  , where �  9  � �� , � ?a^, !z^, ?z$, !a$� , � ?a^, !z^, ?z$, !a$, ?a^, !z^, ?z$, 
!a$� , …�  and   9  � �� , � ?b^, !w^, ?w$, !b$� , � ?b^, !w^, ?w$, !b$, ?b^, !w^, ?w$, 
!b$� , …� .  

By Definition 33, all traces for which   �  ��  are important, because they cannot 
be shorten whithout omitting some important symbols. Not so obviously, no trace for 
which   4  ��  is important. Whenever   4  ��  for some trace 0�
 there exists a 
nonempty set I of indices of first appearances of symbols ?b^, !w^, ?w$ and !b$ in 0 . 
No symbol with index from I is important. First index identifies an event ?b^ which is 
the accept event. Trace 0 ’ created by removal of symbols indexed by I is interleaving of 
 ’ and unchanged ��
 where  ’ is derived from  
 by omitting one repetition of sequence 
� ?b^, !w^, ?w$, !b$� . In other words, 0 ’ is also a trace of the protocol (?a{!z})* | 
(?b{!w})*. Thus, such a 0  is not an important trace by Definition 33. To summarize, 
important traces for this example are just traces: � �� , � ?a^, !z^, ?z$, !a$� , � ?a^, !z^, 
?z$, !a$, ?a^, !z^, ?z$, !a$� , …�  and the protocol could be reduced to (?a{!z})*. 

In the light of these definitions, the task is to reduce all the participating frame 
protocols of the individual components in the architecture and the frame protocol of the 
resulting compound component, so that the resulting composition would not contain any 
communication errors but preserve all important traces. Recall the example from 
Section 4.4, which describes composite component C consisting of components A and 
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B (see Fig. 13). If � ,  
 and "  are behavior protocols of components A, B and C 
respectively, then the goal is to create protocols �8,  8 and "8 such that �8 , R ��
 8  , R  

and "8 , R " . Note the difference in requirements put on the "8�
 Reduction with respect 
to composition requires "8 , IR "�
 This difference corresponds to the fact already 
mentioned in the motivation. In general, reduction with respect to LTL formula limits 
behavior of the whole composition. That means, component with the reduced behavior 
"8 can be unusable on some places, where the original component C can be used. 
Protocol "8
 may provide less than protocol "�
 


Protocols �8,  8 and "8 can be imagined to define virtual wrapper components 
A’, B’ and C’ respectively. See Fig. 18 in contrast to Fig. 14.  

 

Figure 18.  Idea of the virtual wrapper components for reduction with respect to 
property. The components A, A’, B, B’, C and C’ have the behavior protocols � , �8,  , 
 8, "  and "8, respectively, where �8 , R ��
 8  , R  
 and "8 , R "  

4.6 Dependency graph 

Because of the threat of the state explosion problem, any acceptable solution 
should not increase the time complexity necessary to check the LTL formula. It is linear 
in size of the connected state space of the behavior protocols and the finite automaton 
representing the LTL formula. These are generally exponential in sizes of the protocols 
and the formula, respectively. The proposed solution is suboptimal. It does not 
necessarily find the best reduction. However, it can manage without increasing the time 
complexity. 

As well as the algorithm for reduction with respect to composition, the algorithm 
first marks the parse trees of participating behavior protocols and then applies the 
rewriting rules. However, the situation is not so easy, because reachability is not enough 
in this case. For marking nodes of the parse trees, the algorithm creates a dependency 
graph derived from the parse trees and possible communication. Dependency graph is 
an oriented graph. Each vertex of the graph represents a group of nodes from a parse 
tree that share the importance mark. Edge in the dependency graph represents 
implication of importance (and thus preservation). If the source of the edge is marked as 
important then also the destination is marked.  
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The purpose of the graph is to represent the communication dependencies 
between protocols. It should be designed to have the following property. Let ?a^ be a 
leaf of a parse tree and x be a vertex of the dependency graph representing a group 
containing the leaf. Suppose that each symbol generated by the leave ?a^ is important. 
If all nodes represented by all vertices reachable from x were marked as important (and 
also parallel-important in case of parallel operator nodes) then a consequential reduction 
would preserve all important traces with respect to Definition 33 and no communication 
errors would be introduced. Having this property, the marking of the parse tree nodes 
can be done during the LTL checking by just marking corresponding vertices of 
dependency graph whenever an important symbol is generated. 

The algorithm itself is divided into three steps. First, parse trees are partitioned 
into groups of nodes that define vertices of the dependency graph. The graph is 
initialized by edges that are implied by the parse trees’ structure (see Fig. 19). Second, 
during the state space traversal of the checking process, vertices of dependency graph 
are marked as important if any of their nodes generates an important symbol and some 
additional edges may be added depending on the components’ communication (see Fig. 
20). Third, the vertices reachable from the marked vertices are also marked as 
important. Node of the parse tree is marked as important if it belongs to the group of an 
important vertex. Then, the rewriting rules are applied to perform the reduction. 

 

Figure 19.  First phase of the algorithm for reduction with respect to property. Nodes of 
the parse trees are partitioned into groups that form vertices of the dependency graph. 
Edges implied by the structure of parse trees are also added in this phase 
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Figure 20.  During LTL checking, edges implied by the communication are inserted 
and vertices of the dependency graph are marked as important, whenever an important 
symbol is generated (second phase). Marks for parse tree nodes are derived from the 
marks in the dependency graph (third phase) 

The partitioning of each parse tree is done by a recursive depth first search 
traversal starting from the root node. It exploits predicates nullable and passive defined 
in Section 4.3. Domain of the predicates is intuitively extended to the parse tree nodes. 
The node is nullable (resp. passive) if the subprotocol represented by the node is 
nullable (resp. passive). Five basic rules are used to decide whether to add the node to 
his parent’s group or to start a new group. The first matching rule is applied: 

·  If the current node is not passive then add it to the parent’s group 

·  If the current node is nullable then add it to a newly created group 

·  If the parent node is “*” then add the current node to the parent’s group 

·  If there is no nullable ancestor of this node or there is at least one “|” or 
“ ;” node between this node and the closest nullable ancestor then add the 
current node to the parent’s group 

·  Otherwise add the current node to a newly created group 

Meaning of the first two rules is quite straightforward. The first says that no 
subprotocol that can spontaneously emit an event will be omitted without omitting its 
parent too. No such rewriting rule exists, so there is no need to create a new group. The 
second rule enforces creation of a new group for the passive subprotocol that is 
substitutable by a NULL protocol, because it could possibly be left out and should be 
treated individually. The third rule is just a technicality that prevents creation of the 
unnecessary single member groups for “*” nodes. The fourth rule is quite tricky. It is 
chosen to distinguish between two following situations. 

Protocol (?a + ?b)* (see Fig. 21) generates set of traces � �� , � ?a^, !a$� , � ?b^, 
!b$� , � ?a^, !a$, ?a^, !a$� , � ?a^, !a$, ?b^, !b$� , …� . Suppose that each occurrence 
of a symbol !b$ is important (as underlined). Then only traces ��� , � ?b^, !b$� , � ?b^, 
!b$, ?b^, !b$� , …�  are important by Definition 33. That is why the separate vertices 
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are needed for the parse tree nodes for ?a and ?b, because these nodes can be reduced 
independently. Fifth rule is applied.  

 

Figure 21.  Parse tree for the behavior protocol: (?a + ?b)*. Groups of nodes define 
vertices of the dependency graph 

On the other hand, protocol ((?a + b?); ?c)* generates set of traces ��� , � ?a^, 
!a$, ?c^, !c$� , � ?b^, !b$, ?c^, !c$� , � ?a^, !a$, ?c^, !c$, ?a^, !a$, ?c^, !c$� , …� . 
If every occurrence of ?c^ is important (as underlined) then all these traces are 
important too, by definition. In this case, parse tree nodes for ?a and ?b should belong 
to the same group – the third rule is applied and the group of the parent node is shared 
(see Fig. 22). 

 

Figure 22.  Parse tree for the behavior protocol: ((?a + ?b); ?c)*. The single group of 
nodes defines the only vertex of the dependency graph 
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Oriented edges of the dependency graph represent preservation dependence. If 
the source of the edge is preserved in the resulting protocol then the destination has to 
be preserved as well. The protocol: ?a{?b*}*, generates two vertices. One for ?a{…}* 
and one for  ?b*. Additionally an edge is created from ?b* to ?a{…}*. If the ?b* part is 
preserved then also the ?a{…}* part is needed and the result is ?a{?b*}*. However, the 
result ?a* is also possible (no edge goes the opposite direction). 

There are two rules for adding edges between two dependency graph vertices. 
Let x and y be distinct vertices of the dependency graph: 

·  If there are a and b nodes of the parse trees, such that a is parent of b and 
a (resp. b) is in the group represented by x (resp. y), then there will be an 
edge coming from y to x. 

·  If there are a and b leaves of the parse trees, such that a (resp. b) is in the 
group represented by x (resp. y) and the composition contains a trace in 
which a and b communicate (generate events that are joined into a tau 
event), then there will be two edges coming from y to x and from x to y. 

Edges enforced by the first rule are added during the initialization phase because 
they depend only on the syntactic structure of the protocols. Other edges are added 
continuously during the second step of the algorithm – the state space traversal. The 
first rule says that whenever a particular node generates an important symbol, then the 
node and its ancestors cannot be completely reduced out. This surely preserves all 
important traces that contain this symbol generated by this node in the single protocol. 
However these traces could be still reduced out if they waited for an event that would 
not be emitted. The second rule transitively enforces existence of all traces that are 
necessary in the other protocols to preserve the important traces. The second rule also 
prevents introduction of the communication errors, provided that the original 
composition was error free. Complete proof of this claim is very technical and will not 
be presented here. Just to sketch it out, the construction of the dependency graph 
guarantees, that a leaf of the parse tree survives the reduction if and only if the 
associated vertex was marked as important. Thus, if a bad activity error is present in the 
reduced composition, it was also present in the original one. Otherwise, the second rule 
would ensure, that the vertex associated with the accept event preventing the bad 
activity in the original protocols will be marked as important. Absence of the other 
communication errors can be proved in a similar but more complicated way. 

The time complexity of the first and the third phase of the algorithm is clearly 
polynomial in the size of the protocols, because they need only depth first search 
traversals of the parse trees and the dependency graph (the rewriting can be also done 
by a single DFS traversal). The second phase is done during the LTL checking and adds 
only a constant overhead per each visited state and each used transition. Thus, it is still 
linear in the size of the connected state space of the protocols and automaton 
representing the formula. Thus, it is exponential in the size of the protocols and the LTL 
formula. 

It was already said, that this solution is suboptimal. To show an example, 
consider again the protocol ((?a + b?); ?c)*. As shown before, it is represented by a 
single vertex in the dependency graph. For this reason, the algorithm can reduce it to 
either NULL protocol or not at all. However, if every occurrence of the event ?b^ was 
important, then a protocol (?b; ?c)* would be a reasonable reduction containing all 
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important traces (the presented algorithm cannot achieve this reduction). The problem is 
inherent in the fact that the decision, whether a node is used on any important trace 
depends on a trace, not just the state. To make it properly, one would have to analyze all 
different traces (without cycling), number of which is generally exponential in the size 
of the state space. This would yield in the unbearable time complexity. 
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5 Prototype 

As a part of the thesis, a prototype implementation of the described techniques was 
developed. This section presents the prototype and justifies the design decisions that 
were made.  

An early decision was to base the prototype implementation on one of the 
existing behavior protocol checkers. Both verification of LTL and reduction of 
protocols are based on the traversal of the state space, which is also a keystone of the 
behavior protocol checkers. There were two choices described in the following 
subsection; both written in Java. This fact determined the use of Java also for all the 
extensions. 

5.1 Original checker 

Although, there were already several generations of behavior protocol checkers, only 
two possibilities are considered. First choice is the current behavior protocol checker 
that is part of the SOFA and Fractal component models’ reliability extensions [32, 10]. 
The second – DChecker – is being developed as a part of a master thesis focusing 
distributed checking of behavior protocols [38]. The checker, despite being in early 
development stage, involves some promising optimizations and gives very good results 
in the local version that was only available at the time of writing. 

Each behavior protocol can be equivalently imagined as a finite automaton 
accepting exactly the traces that the protocol can generate. A parallel composition of 
protocols using the consent operator can be again represented by a finite automaton. To 
check compliance of this composition, state space of the automaton has to be sought for 
communication errors. However, the state space of this automaton can be – and usually 
is – exponential in a size of participating protocols. This problem is known as the state 
explosion problem. Both checkers differ in a way they cope with it. 

The approach of the first checker is described in [23]. It generates the automaton 
representing the composition on-the-fly (states and transitions are created during the 
checking process as necessary) from the structure called parse tree automaton (PTA). 
PTA is a tree structure isomorphic to the protocol parse tree, extended as follows: (i) in 
each leaf, there is a primitive automaton representing an event of the protocol (i.e. it has 
two states an initial and a final one) and (ii) each inner node combines its children PTAs 
using a protocol operator. The state of this automaton is then determined by a state of all 
primitive automata in leaves and some additional information from other nodes (for 
example, identification of the branch of the + operator that is used, if any). The state 
identification is a selective concatenation of states of primitive automaton and the 
additional information. Unfortunately, this yields to state identification with variable 
length. Moreover, the length is far from optimal in the worst case. Consider a protocol 
consisting of n consequent events. The minimal automaton representing this protocol 
has n + 1 states with n transitions, each representing one event. Evidently, state of this 
automaton can be represented in :log2(n + 1); bits. However, the state identification 
generated by PTA is n bit long. 
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Another problem follows from the fact that PTAs are generally nondeterministic. 
Since the behavior protocols have the trace semantics, one has to consider all states 
reachable by the same prefix at the same time. For this reason, each PTA is associated 
with a special node that converts information from PTA to the deterministic form. State 
identification is a concatenation of all states reachable by already processed prefix. 
These deterministic nodes are connected using the consent nodes. 

 

Figure 23.  The tree structure for on-the-fly state space generation in the PTA-based 
checker. Depicted structure is used during the vertical compliance checking of the 
composition of the components A and B against frame C. A, B and C are specified by 
the protocols � ,  
 and "�
 respectively 

Fig. 23 shows the whole structure that is used for on-the-fly state space 
generation. In each step of the algorithm, the whole structure has to be traversed to 
create a set of possible transitions. This is a trade of between memory consumption and 
time necessary for the checking. The PTA-based checker can check really huge 
protocols without running out of memory, but it is rather slow. 

The approach of the second checker is based on the following observation: “The 
main source of the state explosion is the parallel composition of protocols by a consent 
operator, whereas the state spaces of the individual protocols are usually feasible.” This 
observation is arguable in presence of parallel operators, however it allows for very 
elegant optimizations. 

DChecker translates the individual behavior protocols into the corresponding 
nondeterministic finite state machines and then to the deterministic finite state 
machines, which are used instead of PTAs. This approach has two advantages. First, 
number of states is known in advance, so the state identification can be coded optimally 
and is of a fixed size. Second, no deterministic node is needed, as was the case with 
PTAs. The resulting structure used for on-the-fly state space generation can be seen on 
Fig. 24. 

Because the FSMs can be accessed very efficiently, the checker is quite fast. Of 
course, the price is that it can check only protocols, whose FMSs fit into memory. 
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Figure 24.  The tree structure for on-the-fly state space generation in DChecker. This 
structure is used for checking vertical compliance of the composition of the components 
A and B against the frame C. A, B and C are specified by the protocols � ,  
 and "�

respectively 

For the performance reasons discussed above, DChecker was chosen to be a base 
for the LTL checking and protocol reduction extensions. There was one more reason, 
the PTA-based checker uses concept of the atomic actions introduced in [22], which is 
not yet fully stabilized and which changes semantics of behavior protocols. This fact 
may cause problems, since this work does not take atomic actions into account. Fig. 25 
shows the table with performance comparison of the checkers. Input protocols can be 
found on the attached CD ROM in the directory /examples/evaluation . 

 tiny.bp medium.bp large.bp 

PTA-based checker 3 sec. 
6 084 states 

439 sec. 
456 976 states 

1 039 sec. 
1 001 832 states 

DChecker 
1 sec. 

3 969 states 
15 sec. 

194 481 states 
37 sec. 

500 094 states 

Figure 25.  Performance test of the PTA-based checker and DChecker. Protocols are 
available on the attached CD. All test were run on Pentium 4 3 GHz with 1 024 MB 
RAM (600 MB for Sun JVM – build 1.5.0_06-b05), Windows XP SP2 

5.2 LTL checking 

The local version of DChecker was extended to support checking of the modified LTL-X 
formulas and reduction of behavior protocols both with respect to composition and with 
respect to property as described in Sections 3 and 4. In this section, the LTL checking 
extension is described. It consists of two parts: translation of modified LTL-X formula 
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into a nondeterministic automaton and modification of the on-the-fly state space 
generation structure needed for the LTL checking itself. 

A simple parser of the LTL formula was generated using JavaCC [20], the Java 
tool for easy generation of parsers. The code of the parser resides in the package 
bpchecker.ltl.parser  along with the grammar definition file ltl.jj . 

The translation of the modified LTL-X formula into a nondeterministic finite 
automaton is defined in the package bpchecker.ltl.translation . During the 
development, also the library LTL2BA4J [26], which is the Java binding of the C tool 
LTL2BA for LTL to Büchi automata translation [25], was used for the translation (the 
option is still available). However, the result was a Büchi automaton with the infinite 
trace semantics. In many cases, the Büchi automaton could be directly used as a 
nondeterministic finite automaton for expressing also a property in the modified LTL-X, 
but it is not true in general. The translation algorithm was implemented using the same 
interface as the LTL2BA4J library, to allow easy substitutability. It is based on the 
tableau-based algorithm described in [16]. The main idea is to create states of the 
automaton describing different ways how to satisfy the LTL formula. Each state is 
represented by the following attributes: 

Incoming  Set of states. From each of the states, there should be a transition 
coming to this one. 

New  Set of subformulas that must hold in this state and have not yet 
been processed. 

Next  Set of subformulas that must hold in any immediate successor of 
this state. 

Forbidden  Set of events that cannot be used to transit to this state. 

Obliged Single event that can be used to transit to this state. Either 
Forbidden or Obliged is empty. 

Let #  be a modified LTL-X formula to be translated. First of all, #  is rewritten to 
contain only the operators: � , %, U, R and $�
 where negation can be used only before 
the event tokens. This can be done using relations from Definition 9 and De Morgan’s 
laws. 

Initialization:  The algorithm starts by creating a dummy initial state and one 
working state. The Incoming attribute of the working state contains the initial state and 
the New attribute is set to �#� . The working state is added to the set of unprocessed 
states. 

Core: While there is an unprocessed state, remove it from the set of unprocessed 
states and do the following, until its New attribute gets empty. Remove one formula '  
from its New attribute and: 

·  '  is an event – if the Forbidden attribute contains this event or the 
Obliged attribute is a different event, then discard this state, because the 
entering condition cannot be met. Otherwise, set Obliged to this event 
and empty the Forbidden attribute, because all other events are already 
forbidden by setting up Obliged. 
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·  '  is a negation of an event – if Obliged contains this event, then discard 
the state. Otherwise add the event to the Forbidden set. 

·  '  is a conjunction – add both subformulas to the New set. 

·  '  is of a form # 1 % # 2, # 1 U # 2 or # 1 R # 2 – split the state and add 
corresponding formulas to the New and Next sets of the two states as 
depicted on Fig. 26. 

When there is no more formulas in the New attribute, look to the set of processed 
states whether there is a state with the same Next, Obliged and Forbidden attributes. If 
so, add states from the Incoming set to the Incoming attribute of the already processed 
state and discard the newer one. Otherwise, add the current state to the set of processed 
states and create one unprocessed state initialized by setting New equal to the Next set of 
the current one and by adding it to the Incoming set. 

Finalization:  It is left to say what states are accepting. With the only exception 
of the dummy initial state, the state is accepting if it does not contain any formula of a 
form # 1 U # 2 in its Next set. This is, because an eventuality, specified by # 2, is yet to 
be satisfied. The initial state is accepting if the original formula #  is satisfied by an 
empty trace. This can be easily found out using directly Definition 19. 

'  New1 Next1 New2 

# 1 % # 2 # 1 5  # 1 

# 1 U # 2 # 1 # 1 U # 2 # 2 

# 1 R # 2 # 2 # 1 R # 2 # 1, # 2 

Figure 26.  State split. Formulas to be added to the New and Next sets of the new states 

Because the translation algorithm is not substantially changed, it shares some 
important properties. Probably the most important one is that the resulting automaton is 
generally exponential in a size of the formula. Thus, the time and space complexity is 
also exponential in the worst case. For example, consider a formula of a form: 

�F e1�
�
� F e2�
�
� F e3�
�
�
 �
� F en� 


The size of a finite automaton representing this formula has to be exponential, 
since in every state, it has to somehow remember what eventualities were already 
satisfied. Number of the different subsets is equal to 2n. 

In the implementation, one useful optimization is added (based on the paper 
[17]). The drawback of the straightforward algorithm above is that all transitions going 
into one state are required to be labeled by the same labels, derived from the contents of 
the Obliged and Forbidden sets. However, two states should be perceived as equal if the 
same traces start from them. Based on this observation, two states are considered equal 
if they share contents of the Next set. To ensure the correctness, states in the Incoming 
set have to be annotated with information determining the future label of the transition. 
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When it comes to the checking process itself, the structure used by DChecker for 
on-the-fly state space generation was modified by injecting a new root node on top of 
the tree (class bpchecker.fly.FlyLTL ) as depicted on Fig. 27. This node makes 
the intersection between state spaces of the behavior protocol composition and 
automaton representing the negation of the checked LTL formula. Whenever an 
accepting state of the intersection is reached, the formula is not satisfied. 

 

Figure 27.  Modification of the DChecker’s on-the-fly state space generation structure 

5.3 Reduction with respect to composition 

This section describes the protocol reduction extensions of DChecker. Both reside 
mainly in the package bpchecker.reduction . First part covers reduction with 
respect to composition. As described in Section 4.4, the algorithm first marks reachable 
parts of the protocols, and then performs the reduction using the rewriting rules. 

In DChecker, states and transitions of the finite automata representing the state 
spaces of the individual protocols do not carry information, from which part of the 
protocol they originated. This information has to be added and preserved during the 
behavior protocol to finite automata translation process. The process consists of three 
steps: (i) the protocol is translated into a nondeterministic finite automaton 
(bpchecker.fsm.NondeterministicFSM ) and (ii) a deterministic automaton 
(bpchecker.fsm.DeterministicFSM ) is created from the nondeterministic and 
(iii) a concise representation of the finite automaton for fast on-the-fly state space 
generation is created (bpchecker.fly.SimpleFlyFSM ).  

These structures were altered to support user information added to the states and 
transitions (classes: StateInfo  and TransitionInfo ). This user information 
must support merging, because in the second step of the translation, more states or more 
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transitions can be merged together (method merge ). Later during the state space 
traversal, these classes, if present, are called back, whenever the state is visited or 
accepted or when the transition is used. This is enough to implement adding marks to 
the reachable parse tree nodes. 

Each parse tree node has an initially unset important marker (NodeMarker ) 
and also a parallel-important marker, in case of the parallel operator node. In the first 
step of the translation algorithm, these markers are added to the user information of 
states and transitions, to be set up on the appropriate callbacks. The following rule is 
used: The important marker of a parse tree node is added to each transition that leads 
out of the subtree represented by the node, and to all accepting states (to be marked on 
the accepted  callback) within the subtree of the node. Moreover, the parallel-
important marker is added in both cases if the transition’s source or the accepting state 
represents position in both subtrees of the parallel operator node (child protocols were 
interleaved). 

During the second step of the algorithm, more states or more transitions can be 
merged together. In this case, sets of markers associated with the particular states or 
transitions are also merged. The third step does not affect structure of the automata, so 
the user information is just passed on. An example of the first two steps of the algorithm 
is shown on Fig. 28. The non-deterministic protocol ?a*; ?a is used to demonstrate 
merging of the markers in the second step. 

 

Figure 28.  First two phases of the behavior protocol to deterministic finite state 
machine translation process for protocol ?a*; ?a. Importance markers are gathered in 
the user information associated with states and transitions of the automata 

Later during the state space traversal, all met markers are just set up as visited 
via appropriate callbacks on StateInfo  and TransitionInfo . For this purpose, 
the depth first search traversal class (FlyDFSTraversal ) was altered to make the 
callbacks on the user classes. 

After the state space traversal, when all reachable parse tree nodes are marked, 
the reduction takes place. In the implementation, the rewriting rules can be used in just a 
single pass through the parse trees. The visitor pattern (see [15] for introduction to the 
design patterns) is used to perform the reduction in a single recursive traversal through 
the parse trees (bpchecker.parser.traversal.ReductionActions ). 
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5.4 Reduction with respect to property 

This section focuses on reduction with respect to property. As described in 
Sections 4.5 and 4.6, the parse trees are first partitioned into groups of nodes that later 
form vertices of the dependency graph (class DependencyGraph ). The partitioning 
and the base dependency graph creation are done again by a single recursive pass 
through the parse trees using the DependencyGraphActions  visitor from the 
package bpchecker.parser.traversal . This way, each node of the parse tree is 
associated with a vertex of the dependency graph. 

During the behavior protocol to a finite automaton translation process, the 
dependency graph vertices representing protocol leaves are associated with the 
automaton transitions in a same manner as the markers above. This allows adding of 
additional edges to the dependency graph during the state space traversal, whenever a 
communication takes place (a tau event is created) and also marking dependency graph 
vertices as important, if the important symbol is generated. After the traversal, the 
dependency graph vertices reachable from the important ones are also marked as 
important and the reduction is done by using the same ReductionActions  parse 
tree visitor. 
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6 Case study 

This section presents a short case study focusing on the use of reduction with respect to 
composition on the real-life protocols developed as a part of the already mentioned 
project Component Reliability Extensions for Fractal Component Model [10]. The 
second part of this section discusses a possible use of LTL checking of behavior 
protocols and reduction with respect to property to facilitate search for a suitable 
component in a big component repository. Unfortunately, no such a big component 
repository annotated by behavior protocols is available, so no real examples are given. 

6.1 Demo application 

As a part of the aforementioned project, a demo component application was designed. 
The components’ behavior was specified using behavior protocols and components 
were checked for both horizontal and vertical compliance. The demo application 
constitutes the airport service for providing wireless internet connection. The 
connection is granted to the owners of the first class or business class tickets and to the 
owners of the Frequent Flayers Card if they have a valid ticket. Other passengers can 
prepay the connection time by a credit card. 

The system consists of about twenty components including virtual components 
that are used to model the synchronization. The Fractal component model [31] is 
hierarchical – the components are either primitive or composite. Each component is 
associated with its frame protocol. The overview of components can be found on 
Fig. 29 borrowed from the project’s documentation available on its homepage. 

To briefly present the main components, the Firewall component represents the 
firewall for blocking unauthorized internet connections and redirecting them to the login 
page. The FlyTicketDatabase and FrequentFlyerDatabase components mediate the 
access to the databases of the airlines companies. CardCenter communicates with the 
bank credit card services and the AccountDatabase component encapsulates the 
database of accounts with prepaid internet connection. The Token component is a 
dynamically created entity representing a single logged user. All communication is 
orchestrated by the Arbitrator component. The last main component is the 
DhcpServer. It represents a DHCP server for a dynamic IP address allocation with 
support for the use of the permanent IP address database. This database mapping Mac to 
IP addresses could be connected via the IIpMacPermanentDb interface and its use can 
be triggered on via the IManagement interface. However, both these interfaces are left 
unbound and the feature of permanent IP address allocation is not used in the demo 
application. 

As already said, some of the components are composite. In the rest of this 
section, only the highest level of hierarchy will be studied. The behavior protocols of 
the main components will follow. The Firewall component provides interface IFirewall 
for the management of the port blocking and redirection and features the following 
behavior protocol: 
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( 
 ?IFirewall.EnablePortBlock_1* 
 | 
 ?IFirewall.EnablePortBlock_2* 
 | 
 ?IFirewall.EnablePortBlock_3* 
 | 
 ?IFirewall.DisablePortBlock* 
) 

The component FlyTicketDatabase provides interfaces IFlyTicketDb for the 
uniform access to the airline companies’ ticket databases and IFlyTicketAuth for the 
login confirmation based on the first or business class ticket identification: 

( 
 ?IFlyTicketAuth.CreateToken_1 
 + 
 ?IFlyTicketAuth.CreateToken_2 
 + 
 ?IFlyTicketDb.GetFlyTicketsByFrequentFlyerId 
)* 

FrequentFlyerDatabase provides IFrequentFlyerAuth for login confirmation 
based on the frequent flyer identification. 

( 
 ?IFrequentFlyerAuth.CreateToken { 
  ( 
   !IFlyTicketDb.GetFlyTicketsByFrequentFlyerId; 
   (!IFlyTicketAuth.CreateToken_2 + NULL) 
  ) + NULL 
 } 
)* 

CardCenter provides ICardCenter for money withdrawal requests: 

( 
 ?ICardCenter.Withdraw* 
) 

The component AccountDatabase provides two interfaces IAccountAuth for 
the login confirmation based on the user account identification and password and 
IAccount for the account management: 

( 
 ( 
  ?IAccount.GenerateRandomAccountId 
  + 
  ?IAccount.CreateAccount 
  + 
  ?IAccount.RechargeAccount { 
   !ICardCenter.Withdraw 
  } 
 )* 
 | 
 ?IAccount.AdjustAccountPrepaidTime_1* 
 | 
 ?IAccount.AdjustAccountPrepaidTime_2* 
 | 
 ?IAccount.AdjustAccountPrepaidTime_3* 
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 | 
 ?IAccountAuth.CreateToken* 
) 

Token provides IToken interface to allow control over its validity: 

( 
 ?IToken.InvalidateAndSave_1 { 
  (!IAccount.AdjustAccountPrepaidTime_1 + NULL); 
  !ITokenCallback.TokenInvalidated_1 
 }* 
 | 
 ?IToken.InvalidateAndSave_2 { 
  (!IAccount.AdjustAccountPrepaidTime_2 + NULL); 
  !ITokenCallback.TokenInvalidated_2 
 }* 
 | 
 ( 
  (!IAccount.AdjustAccountPrepaidTime_3 + NULL); 
  !ITokenCallback.TokenInvalidated_3 
 )* 
) 

The Arbitrator component provides ILogin for logging users in and out, 
IDhcpCallback to accept information from DHCP Server and ITokenCallback to be 
informed whenever the validity of a token expires: 

( 
 ( 
  ?ILogin.GetTokenIdFromIpAddress 
  + 
  ?ILogin.LoginWithFlyTicketId { 
   !IFlyTicketAuth.CreateToken_1; 
   (!IFirewall.DisablePortBlock + NULL) 
  } 
  + 
  ?ILogin.LoginWithFrequentFlyerId { 
   !IFrequentFlyerAuth.CreateToken; 
   (!IFirewall.DisablePortBlock + NULL) 
  } 
  + 
  ?ILogin.LoginWithAccountId { 
   !IAccountAuth.CreateToken; 
   (!IFirewall.DisablePortBlock + NULL) 
  } 
  + 
  ?ILogin.Logout { 
   !IToken.InvalidateAndSave_1 + NULL 
  } 
 )* 
 | 
 ?ITokenCallback.TokenInvalidated_1 { 
  !IFirewall.EnablePortBlock_1 
 }* 
 | 
 ?ITokenCallback.TokenInvalidated_2 { 
  !IFirewall.EnablePortBlock_2 
 }* 
 | 
 ?ITokenCallback.TokenInvalidated_3 { 
  !IFirewall.EnablePortBlock_3 
 }* 
 | 
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 ?IDhcpCallback.IpAddressInvalidated { 
  !IToken.InvalidateAndSave_2 + NULL 
 }* 
) 

DhcpServer provides IManagement interface which is left unbound: 

( 
 !IDhcpCallback.IpAddressInvalidated* 
 | 
 ( 
  ?IManagement.UsePermanentIpDatabase^; ( 
   !IIpMacPermanentDb.GetIpAddress* 
   | 
   ( 
    !IManagement.UsePermanentIpDatabase$; 
    IManagement.StopUsingPermanentIpDatabase^ 
   ) 
  ); !IManagement.StopUsingPermanentIpDatabase$ 
 )* 
) 

The frame protocol of the whole composition representing the environment 
follows: 

( 
  ?ILogin.GetTokenIdFromIpAddress 
  + 
  ?ILogin.LoginWithFlyTicketId 
  + 
  ?ILogin.LoginWithFrequentFlyerId 
  + 
  ?ILogin.LoginWithAccountId 
  + 
  ?ILogin.Logout 
  + 
  ?IAccount.GenerateRandomAccountId 
  + 
  ?IAccount.CreateAccount 
  + 
  ?IAccount.RechargeAccount 
)* 

The state space generated by this composition features above 4.5 millions states 
and the correctness can be verified by the DChecker in about 3 minutes (on Pentium 4 
3 GHz, 1 024 MB RAM, 600 MB for Sun JVM – build 1.5.0_06-b05, Windows XP 
SP2). Now, suppose that the wireless internet providing application should be reused in 
another environment (e.g. public garden), where the parts specific to the airport location 
will not be used. The frame protocols representing the environment can be manually 
altered to contain only inputs valid in the new location (only a credit card payment is 
now possible): 

( 
  ?ILogin.GetTokenIdFromIpAddress 
  + 
  ?ILogin.LoginWithAccountId 
  + 
  ?ILogin.Logout 
  + 
  ?IAccount.GenerateRandomAccountId 
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  + 
  ?IAccount.CreateAccount 
  + 
  ?IAccount.RechargeAccount 
)* 

Behavior protocols of the components can be now automatically pruned by 
running the reduction extensions of the DChecker. Protocols of the components Token, 
Firewall, CardCenter and AccountDatabase remain unchanged. On the other hand, 
protocols of the components FlyTicketDatabase and FrequentFlyerDatabase are 
reduced to NULL which means that the components are never used and can be safely 
left out from the composition. The protocols of the components Arbitrator and 
DhcpServer are reduced partially. The airport specific login calls are omitted in the 
protocol of Arbitrator: 

( 
 ( 
  ?ILogin.GetTokenIdFromIpAddress 
  + 
  ?ILogin.LoginWithAccountId { 
   !IAccountAuth.CreateToken; 
   (!IFirewall.DisablePortBlock + NULL) 
  } 
  + 
  ?ILogin.Logout { 
   !IToken.InvalidateAndSave_1 + NULL 
  } 
 )* 
 | 
 ?ITokenCallback.TokenInvalidated_1 { 
  !IFirewall.EnablePortBlock_1 
 }* 
 | 
 ?ITokenCallback.TokenInvalidated_2 { 
  !IFirewall.EnablePortBlock_2 
 }* 
 | 
 ?ITokenCallback.TokenInvalidated_3 { 
  !IFirewall.EnablePortBlock_3 
 }* 
 | 
 ?IDhcpCallback.IpAddressInvalidated { 
  !IToken.InvalidateAndSave_2 + NULL 
 }* 
) 

In case of DhcpServer, the unused feature of permanent addresses is left out: 

( 
 !IDhcpCallback.IpAddressInvalidated* 
) 

The behavior specifications of both the whole compositions and the composition 
with the simplified environment can be found on the accompanying CD in the directory 
/examples/case_study . 
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6.2 Component repository 

The airport internet service demo is not very useful for demonstration of the LTL 
checking and reduction with respect to property. The typical use of these techniques 
would be searching a large component repository for a suitable component, when 
designing a component application. Each component in the repository should be 
annotated by its behavior protocol. 

Consider a designer trying to find one of many data storage components present 
in the repository. The component should provide the IDataAccess interface with the 
methods insert, delete and query. Moreover, it should also provide the interface: 
IDataStorageManagement, which would allow configuring the component at 
runtime. On the other hand, the component should require the IFileSystem and 
ILogger interfaces. Methods of the IFileSystem interface provide access to a persistent 
storage, on which tables with data should be eternalized. The ILogger interface 
provides access to the system log. Suppose that the designer wants to find one of 
potentially many data storage components which would log each call of the methods on 
the IDataAccess interface (insert, delete and query).  

Without the LTL checking, the designer would define a behavior protocol that 
would best suit his needs, and try to find a component substitutable for it. However, this 
way, the designer would be forced to specify also the interplay on the IFileSystem 
interface as a reaction on the insert, delete and query method calls. This would require 
creation of some kind of a super-protocol compliant with any acceptable behavior. 

With the LTL checking, the designer can specify just the concrete condition that 
should be satisfied: 

G
�� IDataAccess.insert^
%
 IDataAccess.delete^
%
 IDataAccess.query^�
 

�
 F
 ILogger.log^� 


The LTL extension of the checker can be used to identify those components that 
satisfy the condition. Of course, only the components that provide the necessary 
interfaces have to undergo the verification process. Moreover, all protocols of the 
chosen set can be reduced with respect to the specified formula and the designer can 
read the logging interplay without being confused by parts of the protocols unimportant 
to the logging. Probably nothing more than the parallel calls on the 
IDataStorageManagement interface will be reduced in this case. 
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Figure 29.  Overview of the airport internet providing demo application 
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7 Related work 

This work is based on the concept of behavior protocols introduced in [35]. Since 
invention of behavior protocols, the notion of communication errors and compliance of 
components further evolved. This thesis is based on the consensual compliance 
presented in [1, 2]. There is an ongoing research on behavior protocols. The most 
significant works aim at two goals. First, a considerable effort is made to combine Java 
PathFinder with the checker for behavior protocols, in order to check primitive 
components against their behavior protocol specification [34]. Without it, there is no 
way to guarantee that the primitive components satisfy their behavior protocols and 
verification of compliance of the whole component hierarchy could be based on an 
unsatisfied assumption. 

The second goal is motivated by the work on the demo application – the airport 
internet providing service – designed as a part of the project Component Reliability 
Extensions for Fractal Component Model [10]. Lesson taught is that the syntax of 
behavior protocols misses some practical features like exceptions or atomic actions. See 
[36, 22] for further details on this topic. 

In Section 3, the finite trace semantics of LTL-X is presented. Similar 
modifications to the semantics of LTL are done also in other works, e.g. [14, 17]. These 
works focus on the verification of LTL formulas using runtime analysis and simulation 
of the examined system. In both cases, the output is a finite trace that can be further 
studied. The LTL is useful for its trace semantics. In contrast with CTL, each trace can 
be verified separately. The authors faced similar problems with definition of the next 
operator. In [14], three different semantics are presented: weak, neutral and strong, and 
their relations are discussed. On the other hand, authors of [17] sacrifice the next 
operator; this approach is the closest to the solution presented in this thesis. However, 
our work applies LTL-X on the action-based models and thus modifies the semantics 
even more. For example, the empty trace has a good meaning in the action-based 
semantics (no action was performed by the system) and LTL formulas have to be well 
defined on it. 

In the aforementioned works, the finiteness of the traces is inherent to the 
methods of their acquisition. The run of a system is still perceived as an infinite trace, 
however an output of the simulation or the run-time analysis is always finite. The traces 
are in fact truncated. Thus, all possible suffixes have to be correctly discussed, which 
makes the goal harder. On the other hand, in our work, finiteness of traces of behavior 
protocols is given by definition and each finite trace represents a single complete run of 
the system. 

The last branch of research that can be considered related to this thesis is 
program slicing (for surveys see [46, 6]). Program slicing is used to reduce a given 
program with respect to a certain criterion. For example, such a criterion can be a value 
of a variable at a particular line of the program. In that case, variables and execution 
paths of the program, which have no impact to that value, can be cut off. This technique 
is used also in the realm of model checking to reduce state space of the model before 
performing the verification.  
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As well as the protocol reduction, program slicing usually includes creation of a 
dependency graph with a similar meaning to the dependency graph from Section 4.6. 
However, there are also some major differences. First, unlike programs, behavior 
protocols do not contain any notion of variables or method parameters. Second, 
reduction of protocols is performed during the checking process and it is not primarily 
used to decrease the size of the state space. 
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8 Evaluation 

In Section 1.5, the goals of this thesis were stated. This section discusses the achieved 
results with respect to these goals. 

First goal was to target the verification of a general temporal property. This goal 
was reflected in Section 3, which presents an approach to verification of the properties 
stated in Linear Temporal Logic. LTL was chosen mainly for its trace semantics close 
to the semantics of behavior protocols. Also CTL and Hennessy-Milner logic were 
considered, but they did not qualify as discussed in Section 3.4. Since the classical LTL 
is defined over infinite traces and is rather state-based, modifications of the semantics 
were made to target finite traces of behavior protocols. To be precise, only LTL-X, 
which is LTL without the next operator, was used. As a consequence of the changes in 
semantics, also the algorithm for verification had to be altered along with the LTL to 
Büchi automata translation algorithm. 

The prototype implementation was created as an extension of the behavior 
protocol checker – DChecker [38]. Time complexity of the verification process in the 
worst case is exponential in both size of the protocols and size of the LTL formula. The 
following LTL formulas were verified on the behavior protocol below. The 
performance data are summarized on Fig. 30. 

Formula 1: G �c1.a^
�
 F c2.y^� 


Formula 2: G �c1.a^
�
� F c1.a$
�
� c2.x^
 R
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�
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frame: ?c1.a* | ?c1.b* | ?c2.c* | ?c2.d* 
 
# bound methods 
sync{c1.a, c1.b, c2.c, c2.d} 
 
# component 1 
?c1.a{ !c2.x | !c2.y }* |  
?c1.b{ !c2.xx* | !c2.yy* }* |  
?c1.w* |  
?c1.z* |  
?c1.ww* |  
?c1.zz* 
 
# bound methods 
sync{c2.x, c2.y, c1.w, c1.z, c2.xx, c2.yy, c1.zz, c1.ww} 
 
# component 2 
?c2.c{ !c1.w* | !c1.z* }* |  
?c2.d{ !c1.ww* + !c1.zz* }* |  
?c2.x* |  
?c2.y* |  
?c2.xx* |  
?c2.yy* 

 

 Time With reduction States of NFSM for LTL Visited states 

Compliance test 12 sec. – – 119 952 

Formula 1 14 sec. 26 sec. 2 254 898 

Formula 2 19 sec. 31 sec. 4 359 856 

Formula 3 24 sec. 42 sec. 7 511 559 

Formula 4 27 sec. 49 sec. 11 607 695 

Formula 5 20 sec. 33 sec. 49 348 389 

Figure 30.  Performance summarization. All test were run on Pentium 4 3 GHz with 
1 024 MB RAM (600 MB for Sun JVM – build 1.5.0_06-b05), Windows XP SP2 

Second goal consisted of developing reduction techniques for behavior protocols 
and it was focused in Section 4. Two types of reduction were identified: reduction with 
respect to composition and reduction with respect to property. Both types of reduction 
should help the designer to understand the behavior specification by making the 
protocols easier to comprehend. The first type should prune out those parts of the 
protocols that are not used in the particular composition. It should clarify the actual role 
of each component. On the other hand, reduction with respect to property removes the 
parts of the protocols that are irrelevant to the given property. The behavior protocols 
reduced in this manner should emphasize which part of the protocol makes the given 
property satisfied. 
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A prototype implementation of both of the proposed reduction algorithms was 
developed. Both can be performed during the verification process without increasing its 
time complexity. The drawback is the suboptimality of reduction results; i.e. both 
algorithms can reduce less than is really possible, mainly when applied to the 
nondeterministic protocols or in cases where the decision would require consulting the 
whole trace which would increase the time complexity, as discussed in Section 4.6. 

Usefulness of reduction with respect to composition was demonstrated on the 
real-life behavior protocols in Section 6 along with description of a typical use case for 
LTL checking and reduction with respect to property, without application on the real 
data in this case. 

The bottom line is that the goals stated in Section 1.5 were fulfilled. However, a 
natural question reads: “Does it really help the designer?” When it comes to reduction 
with respect to composition, it is a very straightforward technique that works reasonably 
well on real-life protocols. Suboptimality in case of the nondeterministic protocols 
(discussed in 4.3) is not an issue, because the amount of nondeterminism in the 
meaningful protocols is usually very low. 

When considering LTL checking and reduction with respect to property, it is 
important to note that the LTL checking can verify only properties that are really 
present in the abstract model of the behavior specification. For example, in the demo 
application, it would be very useful to be able to check whether the system behaves 
consistently to a single user (e.g. logout fails for the user that is not logged in), but the 
behavior specification of the components is stateless and this information is simply not 
present there. The properties that can be checked are only conditions on various 
implications of method calls without respect to their parameters. In fact, it is usually not 
so difficult to decide validity of the formulas by just looking into the protocols. 
However, it requires some level of understanding to the particular protocols and this is 
exactly the contribution of LTL checking and reduction with respect to property. These 
techniques can do the same automatically and can point out the important parts of the 
protocols even for the unqualified users interested in reuse. 
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9 Conclusion and Future work 

To summarize, the first contribution of this work is incorporating LTL into behavior 
protocols. Modifications to the semantics of LTL to suit needs of behavior protocols 
were proposed along with modifications to the standard LTL verification algorithm. The 
second contribution is development of reduction techniques for behavior protocols in 
order to make the comprehension of the behavior specification easier. All proposed 
algorithms were implemented as an extension to the behavior protocols checker 
DChecker. 

When it comes to future work, there are two tasks that might be aimed at in the 
future. First, the algorithm for translation of the modified LTL-X formulas into the finite 
automata is just a modification of the original algorithm described in [16] and it does 
not contain any nontrivial optimization. Thus, the resulting automaton can be larger 
than necessary. Second, as mentioned in Section 5 on the prototype implementation, 
DChecker tool, on which all the extensions were based, was still under development at 
the time of writing. Some additional effort have to be spend, in order to keep the 
extensions compatible with the alpha version that has not been completed yet. In its 
alpha version, the DChecker should support distributed state space traversal, which is 
not considered by the presented extensions. 
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Appendix 

This thesis is accompanied by the CD ROM containing binaries and source codes of the 
implementation and a set of examples. The CD ROM is organized as follows: 

/ README.txt 
Brief description of the contents of the CD ROM 

/doc/javadoc  
Generated reference documentation (see index.html ) 

/doc/thesis  
Electronic version of this document along with all the figures 

/src/  
Source codes of the extended DChecker 

/bin/dchecker.jar  
Executable JAR archive containing build of the extended DChecker 

/bin/lib  
LTL2BA4J library 

/examples/  
Directory with the examples (see EXAMPLES.txt ) 

/prerequisites/ 
Software prerequisites of the prototype: Sun Microsystems JRE 1.5, Ant 
tool and Java Compiler Compiler for both Linux and Windows 

Running the checker 

Prior to running the application, JRE 1.5 has to be installed on the target system. The 
installation files can be found in the /prerequisites  directory on the CD. Use the 
shell scripts dchecker.bat  or dchecker.sh  to run the application from the 
supplied executable JAR file. The command line parameters are as follows: 

-h  --help  
View the help for command line parameters 

-i  --input 'file'  
Read input from the specified file 

-r  --reduce   
Reduce protocols after verification. Type of the reduction depends on the 
type of verification (if –-ltl  or --ltl-file  parameter is present, then 
reduction with respect to property is performed) 

-o  --output 'file'  
Output the reduced protocols to the given file  

--ltl 'ltl'   
Verify the given LTL formula 
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--ltl-file 'ltl-file'   
Verify the LTL formula from the given file 

--dot-dump 'file'  
Dump an automaton representing the given LTL to the specified file in a 
DOT format (it can be visualized later by the Graphviz tool [18]) 

--external-translation  
Use the LTL2BA4J library for the LTL to NFSM translation 

The LTL operators have to be specified as follows:  


 $
 7 
 ! 


 � 
 7 
 &


 %
 7 
 | 


 �  7  -> 
 & 
 7 
 <-> 

An event have to be of a form Interface.Method^ or Interface.Method$. 

To run the checker on the supplied examples, use of the Ant script 
/examples/build.xml  is recommended. Installation files of the Ant tool are also 
available in the /prerequisites  directory. The script can be executed by just 
typing ‘ant ’ in the /examples  directory. It will print the necessary guidelines. 

Compiling the sources 

For the easy compilation process, the Ant script build.xml  is provided in the 
directory /src . It contains following targets: 

build   
Build the sources (default) 

clean  
Delete the compilation output 

rebuild  
Build the sources from scratch 

run  
Execute the built application 

parsers  
Generate the LTL and behavior protocol parsers using JavaCC tool. The 
JAVACC_HOME environment variable has to be set to the valid home 
directory of the JavaCC installation (installation files are provided in the 
/prerequisites  directory). 

If the Ant tool is correctly installed, the script can be executed from the /src  
directory by simply typing (on the write-enabled file system): 

ant target  


