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Abstrakt:

Behavior protokol je formalismus pro specifikaci chovani softwarovych
komponent. V syntaxi podobné regularnim vymagsou definovany fpustné sekvence
volani metod, p em se abstrahuje od vnitich dat komponent. Jde sice o rozumnou
arove abstrakce pro oveni bezchybnosti komunikace softwarovych komponent,
nicmén pro lov ka m e byt jeho pe teni a pochopeni obti né.

Tato prace se sna i pomoci softwarovému navirpachopit specifikaci chovani
komponent. Redklada zpsob automatického owovani platnosti obecnychasovych
vlastnosti vyjacenych v linearni temporalni logice spolu sV technikami redukce
behavior protokol. Redukce vzhledem ke kompozici odstranésyi protokolu, které
nejsou pou ity v dané kompozici komponent, arazhi tak skutené role vSech
komponent. Redukce vzhledem k vlastnosti vypustasty protokol, které nejsou
podstatné pro danou vlastnost. Takto redukovany protokol bydrraznit asti, které
zapi i uji platnost dané vlastnosti.
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Abstract:

Behavior protocol is a formalism used for behavior specification of aodtw
components. In a regular-expression like syntax, admissible sequencesttaid
invocations are specified abstracting from components’ internal data. \Wkigems to
be a reasonable level of abstraction for checking correctness of conatomiof the
software components, it can be still quite difficult for a human to read and understand.

This thesis aims to help the software designer to understand the behavior
specification of components more easily. An approach to automatic verificdtitie
general temporal properties stated in Linear Temporal Logic is presexbted) with
two techniques for reduction of behavior protocols. Reduction with respect to
composition prunes out those parts of the protocols that are not used in tloellpart
composition and clarifies the actual role of each component. Reduction wictds
property removes the parts of the protocols that are irrelevant taitren property.

The behavior protocols reduced in this manner should emphasize which part of the
protocol makes the given property satisfied.
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1 Introduction

Complexity of software systems is growing permanentlyhis process, two issues are
having more attention. One of them is maintainability of softwgséems. A complex
system can be hard to maintain and modify in a form of a huge moadaldde. The
component paradigm, dividing software into functional parts with wdihelé
interfaces, is a promising approach.

The second issue is correctness of systems. With a growieag®code and
extensive use of parallelism, it is impossible to prove corrextbgshand. Model
checking [9] is a method for proving correctness of a systeomatically. It is based
on traversing an abstract model of the system and verifyingatoass properties stated
in a suitable formalism such as temporal logic.

Behavior protocol [35] is a formalism used to describe abstramiel of
software components by a set of admissible sequences of mettsadPcatiefined
correctness property, absence of communication errors [2] in &ardhg of
components, can be verified on their behavior protocols.

This thesis aims to extend the limited set of the predefinecegrep that can be
verified on behavior protocols. It incorporates common temporal grepatated in the
Linear Temporal Logic (LTL). Second contribution of this thesithésdevelopment of
reduction methods that trim away the “unimportant” parts of behgwmiotocols
depending on either component composition or a property being verified.

1.1 Software components

Software components may be perceived as an extension oDhfext Oriented
Programming(OOP) paradigm. The concept of components shares many idéas wit
OOP, like encapsulation, and may be difficult to differentiat@sttdglance. Component

is usually an object, but not every object is a component. In the commysams,
independent deployment and easy reuse is emphasized. In genemalp@nent is a
building block of software and is well defined via its interfaces possibly a behavior
specification (nothing else should be expected both by the componenttsand i
environment). A component should be treated as a black box by its enviroemtdt

it can be easily substituted by another component with appropnetdaces and
behavior. On the other hand, to facilitate components’ reuse, compoheuntd make

no assumptions of their future environment additional to the interfacatibef. The
vision of programming with reusable software components is likergayith LEGO.

It is just putting matching prefabricated pieces together.

There are many component systems used in the software industmgumie few
of them, Microsoft's component systems’ family starts by Q&tiveX through COM
and DCOM and ends with the .NET component model [28, 27]. Other popular
component models are the Enterprise JavaBeans (EJB) by Sun Miernosy{45] and
the CORBA Component Model (CCM) by Object Management Group [30helmest



of this section, few concepts of the component models will be presesteg the
Software Appliances (SOFA) [32] component model’s terminology.

Interface of a component is defined by fitame - set of its interfaces and a
behavior specification. The behavior specification will be covered ktidde 1.3.
Interfaces are defined by a set of methods that can be callédtem. They can be of
two types:provided andrequired which mainly specifies only a direction of method
calls. Methods on provided interfaces are called on the componeist éryvironment;
they are provided to the environment. Methods on the required intenfaasalled by
the component on its environment; they are required by the component.

SOFA model allows alsdierarchical or compositecomponents, which are
composed of one or more other components. Such a component does not contain actual
code but only a specification of igchitecture which is a set of inner components and
bindingsof their interfaces. Provided interface of an inner component caouwel to
either required interface of another inner component or to a providethasteof the
frame of its parent -delegation In a similar vein, a binding between the required
interface of an inner component and required interface of the fadnits parent is
called subsumptionSome of the interfaces can remain unbound, but there is a danger
that sooner or later the component will call a method on it or tthali wait for a call,
which could result in the runtime error or a deadlock. Component, whigtotis
composite, is callegrimitive. Fig. 1 shows an example of the composite component.
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Figure 1. The composite component C consists of A and B,irternal bindings 1
and 2, the subsumption and delegation bindings & 4nrespectively. 5 and 6 are
unbound interfaces

1.2 Model checking

Although it is a well-known fact that some properties of programesalgorithmically
undecidable in general (for example tmadting problen), the ability to automatically
verify at least some properties under certain constraintsiggatin order to guarantee
correctness of software systems. Model checking is a techniquhityva this goal; it
uses an abstract model of a system to verify correctnepenties. The model can be
created manually or automatically and can use various levelstodichm. It is usually
finite to ensure decidability of the verification. Unlike testiaugd simulation, model
checking can really prove that a given model satisfies paticairrectness properties,



because it is based on exploration of the whole state space of thle iHmslever, if the
abstraction of the model is too far from the modeled system, therpespéat hold on
the model can be violated by the system itself.

The model of the system is usually represented &SiEke structureor a
Labeled Transition Syste(hTS), typically defined as follows:
Definition 1. Let AP be a finite set of atomic propositions, thelrgke structureis a
qguadruple S snit, L,  such that:
Sis a finite set of states,
Snit IS an initial state,
L: S AP?is a labeling function,

S Swhere s S s S ss , IS a transition relation.

Definition 2. Labeled Transition Systeima quadrupleS sy, Act,  such that:
Sis a finite set of states,
Snit IS an initial state,
Actis a finite set of actions,
S Act Sis a transition relation.
LTS is useful to describe action-based systems, where whatrsnaite the

performed actions. Kripke structure can represent systems, in thieichternal state is
more important then the visible actions. See the examples on Fig. 2.
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a critical section

Figure 2. Examples of LTS and Kripke stricture

The correctness properties are most often specified in one @) raf the
following forms:

Temporal logic formulas
Assertions



Pre-conditions and post-conditions

Temporal logic formulas will be covered in Section 3. They ammiditas of a
logic that is equipped with temporal operators to be able to exphesges of the
system in time. Assertions are expressions added to the spaifiof the model (or to
the code). They work very like the assertions known from the progragnianguages,
except for the fact that the model checkers can detect viokatiassertions in any of
the possible system’s execution paths. Methods of a system casob&naotated by
pre-conditions and post-conditions. Here, an advantage over assestitiesfact that
pre- and post-conditions can be used to check only parts of the sofystm shat can
be later combined together if the conditions match.

The most painful attribute of model checking is its complexity. Winssd on
the concurrent systems, the models usually feature state spgue®ential in the size
of the specification. This problem is known si@te explosion problerand many
techniques are trying to cope with it.

There are several model checking tools available. For examplendiel
checker SPIN [43] can verify models described in its spedifitdanguage Promela.
For verifying Java code, there are Java PathFinder [21] ofligideVeloped at NASA
and Bandera [39]. The Zing model checker [3] by Microsoft can verify modeddispe
again in its own specification language.

1.3 Behavior protocols

Behavior protocol [35] is formalism for describing behavior of avgfé component.

As already said, a component is viewed as a black box thatccapt method calls on

its provided interfaces and issue calls on its required intatf&cem this perspective, it

is reasonable to specify behavior of a component by a set ofsiolemisequences of
method calls. Behavior protocol is an expression with a regularssiprelike syntax

(in addition to %" and “*” operators, it features also operators for expressing paralle
interleaving 1" and “||”). Roughly speaking, the language generated by a protocol
defines the set of all valid sequences of variously interleavetthad calls on all
interfaces of the component.

Having the behavior specification of a component in this form, it isralato
ask whether a communication of two or more components is in a senset cer
protocols arecompliant For example, if one component calls a method on the other
one, which is not prepared to accept it, then the situation can bevpdras a
communication error. However, the opinion, on where the border betweeonrtieet
and the erroneous communication should be, has developed over time. Moreaver, it i
very likely to change in the future. This work is based on the definitions from [2jhwhi
are given in Section 2 that introduces behavior protocols more formally.

In verifying correctness of component systems, there aremw®jor tasks to
accomplish. First, correctness of communication between componentso hias t
verified. And second, behavior protocols of primitive components have to bkeche
for matching with their code. There is already a behavior protcioetker that can
automatically verify correctness of composition, developed as @p&MFA. There is



also an attempt to verify the primitive components against thetoguls using Java
PathFinder. See [34] for more information on this topic.

1.4 Problem statement

1)

(2)

3)

As already said in Section 1.3, there is an existing implementaf the
model checker for behavior protocols. However, by detecting commumicati
errors it can verify only correctness of communication, not supgort
verification of general temporal properties, though. The need for tee ¢ain

be justified as follows: In a typical case, software desigvaarts to reuse a
component stored in a component repository. Having its behavior protocol, he
or she may want to check whether the component meets the applgation’
requirements, which cannot be expressed via protocol compliance (e.g.
whether an acceptance of a callaoivill be in the future followed by a call of

b provided a call ot is accepted in the meantime). The choice of a suitable
formalism is crucial. It should be chosen with respect to the faeaf
behavior protocols.

Reusable software components usually provide more functionality than is
actually used in a concrete application. Behavior protocols of such
components tend to be very complicated and their integration to the
application floods the resulting architecture with an unused behavior.
Reduction of the unused parts of the frame protocols of participating
components, so that only the actually used part of the behavior isemhptur
could significantly simplify understanding the behavior specification.

If it was possible to check some general temporal property of aarmnt’s
behavior, then it would be also useful to be able to reduce the behavior
protocol to contain only parts that are relevant with respect toptbaerty.

This feature should allow designer to understand a possibly complexidreha
specification more easily.

1.5 Goals

From the open problems listed in Section 1.4, this thesis lays out the following goals:

The first goal is to address the problem (1) — verification areeal temporal
property. This should involve comparison of possible alternative formslism
for expressing the property, discussion on the choice and description of
incorporating into behavior protocols. A prototype implementation for
verification of the properties stated in the chosen formalism shbald
developed.

As a second goal, problems two and three should be addressed. Therakjorit
for both reduction with respect to composition (2) and reduction wifeces

to property (3) should be designed and a prototype implementation should be
created. Since the aim is to design reduction methods applicableheclker,

any solution with time complexity higher then complexity of teenpliance



or property checking, respectively, is unacceptable. The checkouggy is
already exponential in a size of protocols, because the state gpaerated by
protocols is generally exponential. In other words, even a solution paréprm
suboptimal reduction is favorable over an optimal reduction that woultreeq
too much time.

1.6 Structure of this thesis

This thesis reflects the goals as follows. In Section 2, a degpaduction to behavior
protocols is given for the sake of completeness. Section 3 disalsses of a suitable
formalism for expressing properties to be checked and presentsicatiiifs to be
done, in order to apply the formalism to behavior protocols. Section 4 cederstion

of protocols with respect to both composition and property, along witheakssary
prerequisites. Later in Section 5, the prototype implementationamadf extension to
the existing protocol checker [38] is described. A brief case Stlldyvs in Section 6.
It focuses on the use of the reduction on a real application and éscasypical

scenario for the use of the verification of a general property ahattren with respect
to that property. Related work is listed in Section 7 followed bgvatuation in Section
8 discussing fulfillment of the goals. The thesis is concluded in Section 9.



2 Behavior protocols

An informal idea of behavior protocols, as the expressions reprageatid sequences
of the method calls, was already sketched. This section déf@iesior protocols more
formally. The presented view is based on tdumsent operatoand theconsensual
compliancepresented in [1, 2].

2.1 Basics

First of all, the syntax of the behavior protocols has to be established.

Definition 3. Let M be a set of methods, then syntactically corbettavior protocols
are recursively defined as follows:

NULL | ( )*
1C5 )C+ ) 1C T )e )

['m~ [ 'm$ | ?2m” | ?2m$ | m”| m$
['m|[?m| m
['m{ }|?m{ }| m{ } forallm M.

The key stone of the behavior protocol is an event, which is atomicvéut e
represents either method cadhuest(start of the call) oresponsdreturn from the call).
There are six basic eventsa”®, 'Im$, 2m”, ?m$, m” and m$. The active call of a
method [m~*), passive acceptance of the c&i("), active return from the callrg$)
and acceptance of the return notificatidm$§). Events starting with represent the
inner events not visible to the environment. It is a completed comntionican the
inner interfaces. The everts” and?m” yield into m” and!m$ and?m$ into m$.

There are four basic operators;”,““*”, “+” and *“|". Concatenation ;
concatenates two behavior protocols (first behavior is followed by thade®perator
“+” is the alternative, any of the behaviors described by the wogers considered
valid. The finite sequencing operatoY’ ‘describes any finite number of repetitions of
the behavior specified by the operand. It includes also no repetitioch vghan empty
protocol ‘NULL”. En empty protocol just specifies a component, which does nothing.
At last, operator|* specifies all parallel interleaving of the two protocols.

An active method call'fn) is an abbreviation of a protocdin”; ?m$. That is, a
component actively emits a start of the method event)(and then passively waits for
the event notifying the method en@n{$). In a similar vein, the abbreviatidm{ }
represents protocolm”; ; ?m$, which dictates behavior specified by during the
method calin. Other abbreviations are listed in the following:

Definition 4. Let and be behavior protocols amd an identifier of a method, then
the abbreviations can be expressed as follows:

10



Im  ('Im”"; ?m$)

m  (?m”; 'm$)

m (. mY m$)

m{ } (‘m%, ;?m$)

m{ } (?m%", ;'m$)
m{ } (mY% ; m$)
| ()+C [ )+()

As already mentioned, each behavior protocol defineg€oeratey a set of
admissible traceslanguage Only finite traces are considered, but the language is not
necessarily finite. Two protocols are considered semanticallyivaent, if they
generate the same language.

Definition 5. Let u, v andw be finite traces and be the length ofi, thenu is an
interleavingof v andw if there exists a functioh 1, 2, ...,n 0, 1, such that trace
defined by symbols afl indexed by numbers, on whi¢lequals to 0, is equal toand
trace defined by symbols afindexed by numbers, on whi€lequals to 1, is equal .

Definition 6. Let M be a set of methods and and behavior protocols, then the
language of protocol , denoted as , Is recursively defined as follows:
NULL

X X foranyx !'m® Im$, ?2m”N,?m$, mN, m$ m M

: uv. u \Y;
* u, uy, uuy, ...: U

| u v , W . uis an interleaving o¥ andw

It can be easily seen, that the expressive power of behavior @otsequal to
the power of regular languages. Examples of behavior protocols agdatzes they
generate follow:

?m{'a + b} ?m{'a} + ?m{!b}
?mA, lan, ?a$, 'm$  ?mA, 1bA, ?b$, Im$

?a|?b ?an 'as$, ?b”, b$ ?an, ?b”, a3, b$
?an, ?b”, 1b$, la$  ?bA, 1b$, ?an, la$s  ?bA, ?a”, b, la%
?bn, ?a”, a3, 1b$

?a{!b*} ?an la$  ?a” 'bA ?b$, la$

?an, 1b”, ?b$, Ib”, ?b$, la$

11



2.2 Compliance of components

Having a composition of components annotated with their behavior protocols,
compliance of the protocols can be studied and possible communicabos @&an be
detected. In [2], three types of the communication errors are distinguished:

Bad activity— this communication error occurs when a call is issued on a
component which is according to its behavior protocol not prepared to
accept it. For example, consider protoc@s; ?b and!b; 'a. The former
describes a component, that is able to accept call of the mathad
thenb. The latter describes a component that first dallsnd thena.

This result in a bad activity error on the first calbof

No activity(or deadlock — it happens when at least one component waits
for an event (and cannot finish), but no component is able to emit any.
For example, protocols?a; b and ?b; !a describe behavior of
components that would result in no activity error, when composed
together. The first component waits for the calh@nd the second waits

for the call ofb. Neither one can emit an event and neither one can finish
- ?a; b and ?b; la .

Infinite activity (or divergencg¢ — this error occurs when there is a
sequence of events, such that there is no suffix that would allow all
components to finish at the same time or that would result inthatyc
error. Consider the following exemplary protocdls; ?b)* and?a; (!b;

?a)*. The communication of such component will never produce neither
bad activity nor no activity error. They can call the methadsndb
forever, but both components will never be able to finish at the same
time — the former can finish only after a callobr at the very beginning
and the latter can finish only after a callaof

The additionalconsent operator is able to add error tokens representing all
types of communication errors to the composition. The precise dafimstigiven in the
aforementioned paper [2]. For purposes of this work, only an intuitive ioealds
suffice. For behavior protocols and and a set of method§ x  contains
all interleaved traces of and synchronized on events associated with methods from
X. The synchronization means that for eath X, any event of a forrm” or ?m$
will always wait for the correspondig” or 'm$ resulting into an internal actiorm”
or m$. In addition, x  can also contain paths ending with an error token
representing corresponding communication errors, if pre&ad activity is denoted as

m” or m$, wherem depends on the event that caused the error. No activity and
infinite activity are denoted as and respectively. The seX contains methods
that are used for communication. Those are methods of all intetfaaeare bound
between the two components. Few examples for clarifying the idea follow:

?a;lb ap 'a;?b a®, a$%$, b" b$

?a;lb L la;?c a®, a$, Ib? ?b$, ?2c”, Ic$

a”, a$, b ?2ch, ?b3, Ic a”, a$, b ?2ch, Ic$, ?b$

12



a”, a$, ?c”, Ic$, Ib”, ?bS$ a®, a$, ?2c”, IbA Ic$, ?b$
an, a$, ?2ch, Ib?, ?2b$, Ic$

?a;?b L, p 'b;la b~
?a;?b 4 'a;?c ar, a$,
(Ya; ?b)* 4 p ?a; (Ib; ?a)* a’, a®, a$,
ar, a$, b a®, a$, b" b$

Because the consent operator explicitly adds traces with thenwoication

errors, it can be used to define compliance of components. Theresaxalipawo types
of compliancehorizontalandvertical. Given a composite component from Fig. 1, the
horizontal compliance relates to the communication on one level ofoti@anent
hierarchy, between the components A and B. On the other hand, vertigaiacm®
expresses substitutability relation between the archite¢tarmponent A and B) and
the frame bounding the architecture (C). Both these ideadeaescribed using the
consent operator. Informally, the components A and B are horizontallplieor) if

protocola x protocolg does not contain any trace with an error token. Th& set
contains all methods on interfaces bound by 1 and 2.

For definition of the vertical compliance, tireverted frametrick is used. The
frame protocol of C is inverted; all™are substituted by?” and vice versa. The
inverted protocol can be perceived as an independent component repgesbati
environment (see Fig. 3) and the consent operator can be used in theasaasein the
case of the horizontal compliance. So the architecture of A asd/@&tically compliant
with the frame C, if  protocolc® v protocol, x protocolg does not contain
any trace with an error token. The ¥etontains all methods on subsumed, delegated or
unbound, interfaces.

~ (LT / -
[
| E—
B |.
LA B |. ﬁ>
Inverted frame of C

Figure 3. An idea of the inverted frame representing the remvhent

2.3 Substitutability

For purposes of the reduction of protocols, the precise notioswbsitutabilityof the
component by another one will be necessary. It may be viewedpagialase of the

13



vertical compliance, when the architecture is defined by justggescomponent and all
common interfaces are bound (subsumed and delegated).

Definition 7. Let A and B be components andand their behavior protocols, then A
Is substitutablefor B, if m T+ does not contain any trace with an error token,
whereM is a set of all methods.

The concept of substitutability will be applied to the components arid the
protocols interchangeably. The relation of substitutability ngefi in this way is
evidently reflexive (for any protocol, v '* does not contain any trace with a
communication error). Unfortunately, the relation is not transitive., If and" are
behavior protocols, such thatis substitutable for and is substitutable fot, then
Is not substitutable for in general. It can be proved that w"' cannot contain
trace with a bad activity error; however it can still contidne no activity or infinite
activity error. As an example, consider protocols:

?b, la+ ?b and" la, or

(‘a; la)*, la; (la; la)* + (a; 'a)* and” la; (la; la)*
Protocol is substitutable for and is substitutable fot, but an "t
contains no activity or infinite activity communication error, respectively.

This is a known issue inherent in using the consent operator on idefioiitthe
vertical compliance. It represents an unfortunate inconsistencynthacause a loss of
the communication errors in a hierarchy of components, which coastitutfalse
negative. However, targeting this issue is out of scope of this thesis, which wiidae ba
on the available vertical compliance and substitutability as defined above.
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3 EXxpressing a property

This section discusses the choice of a suitable formalisneXpressing a general
temporal property. The formalism has to be chosen with respectdificgef behavior
protocols. First, three possible choices are introduced, two popular sénggics:
Linear Temporal Logic(LTL) and Computational Tree LogiqCTL) (for more
information see the fundamental papers [37, 24, 8]) and nktelaiessy-Milner logic
[44]. Choice of LTL and CTL is based on [9] and the fact that ttezs@oral logics are
used in the real-life model checkers such as Spin [43] and SMWIpf]y case studies
were made on applying temporal logic based model checking toolsontrivial
verification tasks (to name few of them [4, 13, 42]). LTL and Chd.thus regarded as
well-tried. It also reinforces the hope that designers will soonkater become familiar
with these temporal logics. For this reasons, exploiting one of them sounds reasonable

The third possible choice presented is Hennessy-Milner logic.diésgyned to
express properties of processespnocess algebragsee [5]). The main reason, for
which it is considered, is its action nature. Both CTL and LTd_designed to specify
properties of systems based on validity of atomic propositions incylarti states.
Transition is important only as a way to other state, no informatiaasociated with it.
From this point of view, behavior protocols are closer to processrakjebhey are
based on sending events. In behavior protocols, states carry no indornbai
transitions are labeled by the appropriate events.

3.1 LTL

Linear temporal logic, sometimes also Linear-time tempoogic) is based on
propositional logic, which is enriched by the temporal operators alaw for
expressing changes of a system in time.

Definition 8. Let AP be a set of atomic propositions, th&yntactically correct LTL
formulasare recursively defined as follows:

# P| $# | #%# |# # | # # | #&#
| X# | F# | G#
| # U# | # R#
P true| false| p1| p2| ... whereps, p2, ... AP.
From this definition, operators: true, fal§g,%, X and U are the basic operators
and operators: , , &, F, G and R are derived. Derived operators are only a syntacti

sugar that makes writing LTL formulas a little bit easiErey can be expressed using
the basic operators.

Definition 9. Let # and' be LTL formulas, then thelerived operatorscan be
expressed as follows:
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# ' SHNY

# ' OSHW'

#&' # ' ' #

# R' $$# usg
F# true U #

G# S$SF$# false R#

syntax name informal description

X # next Formula# will hold in the next state.

F# finally/eventually | Eventually# will hold.

G# globally Formula# holds globally.

# U "' | until Eventually' will hold, # holds until then.
# R’ release Need for true of is released by validity 6f.

Figure 4. Informal description of temporal operator

See Fig. 4 for names and informal meaning of the temporal oper&per
formal definition of the semantics of LTL formulas is given in tedinition below.
LTL formulas are interpreted over infinite words of the alphgbe®*". Any character
of this alphabet represents a possible state of the systemlisorate time moment by
the evaluation of the atomic prepositions. An infinite word then destrthanges of
the examined system’s state in time.

Definition 10.Letw S, S1, S, ... be an infinite word frong’ and# a LTL formula.
Thensatisfactionof # by the wordw (w | #) is recursively defined as:

w| true and$ (w| false)

p AP (W| p* p %)

w| $#*$  (w| #)

w| #%'* w| #)%W| ")

w| X#* 5,9, ... #

w| #U'* I+ 0: (S,S+1 - | 0, j<i:s, S+, ...| #).
Definition 11.LetM S sni, L, be a Kripke structure ail  (’ a set of infinite
paths that can be traversed Mh starting in the state; (states are mapped to the

characters of via the labeling functioh). Kripke structureM satisfiesa LTL formula
# M| #)ifw| # forallw T.
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In less formal words, a system satisfies a LTL formithe formula is satisfied
by all possible runs (traces) of the system. Each run of thensys judged separately.
Hence, the name “linear”. This feature can be catlegte semanticzand is the
fundamental difference in comparison to CTL.

3.2 CTL

Computational tree logic has a little bit more complicated syntax then LTL.

Definition 12. Let AP be a set of atomic propositions, themtactically correct CTL
formulasare recursively defined as follows:

# P|$# | #%# | # # | # # | #&#
| AX# | EX#
| AF# | EF#
| AG# | EG#
| A# U #. | E# U #.
P true| false| p1| p2| ... wherepy, p2, ... AP.

As well as in the case of LTL, some operators are basie; false$, %, EX,
EG and EU. The others:, , &, AX, AF, EF, AG and AU are derived and can be
expressed using the basic ones.

Definition 13.Let # and' be CTL formulas, then theerived operatorscan be
expressed as follows:

# ' SHNY
# ' OSHEW'
H&' # B 2

AX# $ EXS$#

EF# E-true U #.

AF# $ EGS$#

AG# $ EFS$#

A#U'. $ EG$ $ E$ US# $

Informally, A and E mean “along all paths” and “along at least path”

respectively. X, E, G and U refer to “next state”, “some fusitaee”, “all future states”
and “until”. CTL formulas are interpreted over Kripke structures.

Definition 14.LetM S sni, L, be a Kripke structures Sits state andt a CTL
formula. Satisfactionof # for a structureM and states (M, s | #) is recursively
defined:
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M,s| true and$ (M,s| false)
p AP: (M,s| p* p L(9)
M,s| $#*$ (M,s| #)
M,s| # %'* M,s| #)%WM,s| ")

M,s| EX#?* t S (st M, t| #)
M,s| EG#* % S,... S5 S
i+0:(s,su M.s| #))
M,s| E#U"* i+0,%% ... S:(s 9 Ms]|
0, j i:(s,su M,s| #)).

Definition 15. Let M S Snit, L, be a Kripke structure arid a CTL formula.
Kripke structureM satisfieshe formula# (M| #)if M, snic | #.

In contrast to LTL, value of CTL formula depends to big extend osttlueture
of system’s state space. Given a Kripke structure of themsysgtessible branching of
the execution paths formscamputational treesee the example on Fig. 5. Semantics of
CTL is best imagined on this tree.

Kripke structure Computational tree
B
S
W
AR
S, S, /\ S, \\Gs2> S,
/ @\ AN AN

Figure 5. Kripke structure unwound into a computational tree

3.3 Hennessy-Milner logic

Unlike the LTL or CTL introduced above, the Hennessy-Milner modgtIs used to
specify properties of processes from the realm of procesBratgesuch a€alculus of
Communicating System(€CS [29]) or Communicating Sequential Procesq€SP
[19]).

Process can be viewed as an entity capable of performingnsctAfter
performing an action (notation® for an actiora), process may act as another process.
For example, proces3lock = tick.Clock is capable of repeatedly performing the action
tick. ProcessAlarm = ring.Clock can perform the actionng and then acts as the
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procesClock. Models for CCS and CSP are Label Transition Systems. On Rige 6,
LTS representing process&klrm andClock is depicted.

tiqk
: ring (:>
Alarm Clock

Figure 6. LTS representing processéfock = tick.Clock andAlarm = ring.Clock

Hennessy-Milner logic has a very simple syntax compared to&TLTL. Its
semantics is also quite comprehensible.

Definition 16. Let ACT be set of all possible actionSyntactically correct formulas of
Hennessy-Milner logiare recursively defined as follows:

# true| false
| $# | #%# | # # | # # | #&#
|-K.# | K # whereK ACT.

Definition 17. Let E be a process, thesatisfactionrelation | is recursively defined:

E| true and$ (E| false)

El $#*$ (E| #)

E| #%' * (E|] #)%(E| ')

E| [K]#* F {E:E ?®E a K} F| #

E| <K>#* F {E:E ®F a K} F| #

Informally, -K. # says that if the process performs an action from th,sé&en
the formula# must hold. Dual to that,K # says that the process is able to perform at
least one action fror and# would hold afterwards. For example, formuld true
requires the process to be able to perform at least one &ctiorsetK. On the other
hand, formulaK. false is satisfied by a process unable to perform any afttonK.
Not surprisingly, K # $- K. $# for any formula# As can be seen from the

examples, satisfaction of the Hennessy-Milner logic formulasagpends very much
on the structure of processes (or LTS that represent it).

3.4 Discussion

With possible options introduced, the ultimate choice has to be made.dbtingaring
different formalisms the following criteria should be kept in mind:
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Suitability for specifying properties of behavior protocols and
Expressiveness.

The first criterion encourages use of such formalism, whose moukl a
semantics is close to behavior protocols. The reason for theyiami is evident.
Formalism that is used to operate over similar structuressivitliar meaning is likely
to match also the needs of behavior protocols. Just to remind, behaviocofsot
syntax can evoke processes from process algebras. The common tthegaistion
nature of both. Both processes and protocols can be view as d@httiese capable of
performing actions (sending events and receiving events, in cgs®totols). This
suggests that use of the same formalism to specify the property could be reasonabl

However, the semantics of behavior protocols makes the difference.droen
behavior protocol, the semantics is defined over set of tracesagehély the protocol.
Thus, two behavior protocols are semantically equivalent if they genthia same set
of traces. This is what was denoted as the trace semantiashahdvas shared only
with the LTL. Both CTL and Hennessy-Milner logic formulas dependhe structure
of the examined system. It does not mean that these two coultkneted at all. It
rather says that the use of them could be confusing.

According to the second criterion, expressiveness of the fomsakhould be
discussed. However, this is not meant to aim the exact fornmkssive power
(expressiveness of CTL and LTL are know to be incomparable) but tatherestigate
whether are the formalisms able to express frequently uspénies. For this purpose,
project Specification patterns at SAnToS laboratory [40] is coresideéFhe project
targets to enumerate frequently used specification pattern® ayigettheir notation in
different formalisms: LTL, CTL,Graphical Interval Logic(GIL [12]), Quantified
Regular ExpressionfQRE [33]) andNCA querieg41]. For example, such frequently
used patterns are: “A is absent between B and C”, “P & gtabally after Q" or
“between X and Y, Z is true at most twice”. As can be d$emn results of the project,
both CTL and LTL can be successfully used to express these fregquessd
specification patterns, although the resulting formulas are usually ryotoeiesad. From
this point of view, CTL and LTL can be thought of as quite suitable.

Specification patterns project does not consider Hennessy-Milgar, lout it
can be seen that it is not suitable to express this kind of piegevithout being
seriously extended. In the basic form, it is not even able to exfirasshe process
should perform actiotick for ever. By# ACT true - ACT tick . false,
one can say that the process is obliged to perform atitknas its first action.
Generally,n-times [ACT] followed by# requires that action number 1 (if any) can
be only the actioick. Then by finite number of conjunctions, firsactions are forced
to betick.

ACT true - ACT tick . false
-ACT. ACT true - ACT tick . false
-ACT. - ACT. ACT true - ACT tick . false

ACT" ACT true - ACT tick . false
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First, this constrains only a finite number of first actions.o8d¢ this is
definitely not a formula one would like to write or read.

At the bottom line, Hennessy-Milner logic, despite its action eatlose to
behavior protocols, is disqualified by its low expressiveness. When coignpg@TL
with LTL, both are expressive enough and both lack the action nafubehavior
protocols, so they cannot be used without some changes in the semaffecen® is
in the trace semantics of LTL, which makes it a bit moreablét The ultimate decision
is to use LTL with some necessary semantic changes tllabevdescribed in the
following section.

3.5 Targeting behavior protocols

There are two major issues in using LTL on behavior protocols., FrstLTL is
defined over a finite set of atomic propositigki2 In every state of the Kripke structure
that represents the examined system, any subgd? o&n hold. On the contrary, states
of component described by a behavior protocol do not carry any special inforniaion;
transitions are labeled by appropriate events. In other words, tf®moint of view of
Kripke structure, the run of a system is a sequence of visdatgbdabeled by subsets of
AP. From the point of view of behavior protocol, it is a sequence of ttamsilabeled
by corresponding events. The natural solution is to map atomic propediti events of
behavior protocols. The set of atomic propositidi®scan be chosen to be equal to the
set of possible events. When a particular event is emitted, HSuziaed atomic
proposition is considered to be true and all others are false.

In fact, there is one more improvement based on the following olbieerva
When monitoring behavior of a composition of components, any emitted svatiter
accepted by a component bound on the corresponding interface (possiloify tbat
composition in case of subsumption binding) or it generates a badyaetinor. Bad
activity is always wrong and is detected by the compliameler. Thus, it is not
necessary to make difference between emitting and acceptiegeat, because it does
not provide any additional information. From this reason, atomic propositare
mapped tan”® andm$ for every methodn. Wherem” is considered to be true, when
either of event®m”, Im” or m” is generated. Analogousty$ is true for event®@ms,
Im$ and m$.

The second issue is in finiteness of traces of behavior protocomnBes of
LTL is defined over infinite traces, whereas semantics of behavatocols uses only
finite traces. This suggests modification of LTL definitions to worlty over finite
words. In [14], three possible semantics of LTL over finite tracespresented: weak,
strong and neutral, and their relations are studied. The reasohidadivision is in
problematic X operator on finite traces. What value should havétimula X# on the
end of the trace? Consider formulas X true and X false and prcpeérsy X $#
that holds in the classical LTL. In [17], it is shown that problenmth wlifferent
semantics can be, not surprisingly, consistently solved by usihgLiWhich is LTL
without the X operator. Because of the simplicity, we adoptap@oach and continue
with the LTLx. The definitions of LTLx over finite traces follow. Definitions of
derived operators do not change.
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Definition 18. Let M be a set of methods, thepntactically correct LTl formulasare
recursively defined as follows:

# P SH | #%# | # # | # # | #&#
| F# | G#
| # U# | # R#
P true| false| m:™ [ mi$ | m" [ m2$| ...  wheremy, my, ... M.

Definition 19. Let w e, &, ..., 6, be afinite trace of behavior protocol events and
# a LTLx formula. Thersatisfactionof # byw (w| #) is recursively defined as:

w| true and$ (w| false)
m MWl m** n 0 e ?mNm" m")
m M:(w| m$* n 0O e ?m$'m$ m$)
w| $#*$  (w| #)
wl #%'* (w| #)%Ww| ")
w| #U" * min(L,n), i, n @&,8+, ..., & |

1, 01 684, ....6 | #).

Definition 20.Let  be a behavior protocol with language . Protocol satisfies
aLTLx formula# ( | #)ifw]| # forallw

In order to design an algorithm for checking the modified kTiormula on
behavior protocols, the algorithm for checking the original L®knfula on Kripke
structure was consulted (it can be found in [9]). The keystone afritp@al algorithm
is translation of the LTL formula int@uchi automatonwhich accepts exactly the
traces that satisfy the formula. Blchi automaton is a finit®naaton that accepts
infinite traces. An infinite trace is accepted if the autamatisits an accepting state
infinite number of times along the trace. One of the possible atéslalgorithms is
described in [16]. The algorithm for checking the LTL form#lan Kripke structure M
works in four steps:

Blchi automaton 3, which accepts exactly traces corresponding to
possible runs of system described by Kripke structure M, is constructed.

Formula# is negated and Bichi automatog, Bwhich accepts exactly
traces violating formul#, is constructed.

Intersection of B and B, is constructed.

Language accepted by intersection ofy Band B, is sought for
emptiness. If the language is nonempty then the system doedisiyt sa
the formula#, because there is a trace of system M that violates

To prove that the language accepted by a given Blchi automaton ispitgnem
one has to find a cycle reachable from the initial state anchioorg at least one
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accepting state. This can be done in time linear in the sittee @gutomaton by a single
depth first search traversal.

The question is if the algorithm is usable also to the modified &7d_behavior
protocols. Model for behavior protocol (or composition of protocols) isnéefi
automaton. If it was possible to construct a finite automaton thatvemalept exactly
traces satisfying a given modified LTL formula, then the aligor above could be used
with just substituting Blichi automata by finite automata. For&ipathe main idea of
the LTL to Blchi automaton tableau-based translation algorithm casdaeunchanged
to generate a nondeterministic automaton accepting exactgtrabich satisfy a given
modified LTL formula. Thus, the algorithm for checking whether halweor protocol
(or a composition of protocols) satisfies a modified LTL formulalisost the same as
in the previous case sharing also the time complexity. The fetethis done again in
time linear in the size of the intersection automata, whidererally exponential in
both length of the formula and length of the protocol. The translatigarithm is
described in Section 5.2.

Expressive power of the modified LTL is evidently a subset of asgul
languages, because any LTL formula can be translated intotex dutomaton. It is
reasonable to ask if the introduction of LTL really brought somgthew to the world
of behavior protocols, whose power is also regular. There are atweaseasons for
answering: “yes”. First, behavior protocols contain neither wilikcaror conjunction,
SO expressing property of a type: “A happens sometime aft@r Bjrotocol satisfies
both conditions A and B”, is theoretically possible, but very unpracts=dond, LTL
with almost unchanged syntax is arguably better choice then iotroduof “just
another” specification language for component designer to learn.

The last note is on differences between finite and infiniteetisemantics of
LTL.x. Consider the following infinite trad® and LTLy formula#:

0 a,x,bayxhbayxbayx,..
# G a Fb X Fy

Formula# says: “After each occurrence af b eventually follows. And after
each occurrence of, y eventually follows.” This is evidently true when considering
with the infinite semantics. However, no nonempty prefiX0osatisfies this formula
with the finite semantics — one of the obligations will alwayslisebeyed. The second
example of difference is formula:

F Ga% G$a

Formula' says: “Eventually, eithes will be emitted for ever oa will not be
emitted any more.” In the infinite trace semantics, thidygalts a constraint on some
kind of “stabilization” of the system. However, in the modified setneg, this holds for
any trace including the empty one. Informally, on any non-emipite ftrace, there is
the last symbol, which is eitheror not. Evidently, from this symbol on — that means
just for this symbol — either @ or G $a holds. Satisfaction on empty trace follows
directly from the definition.
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4 Reduction of protocols

Depending on the environment of a software component, some paddwofdationality
are never used. For example, some methods are never invoked. In thegdanfua
behavior protocols this means that some traces defined by comp@retdsol are not
used in the composition. These unused traces can be omitted to ingadability of
the protocol feduction with respect to composition

Another case of protocol reductionresduction with respect to propertiaving
a LTL formula, some aspects of the components’ behavior do not influeldieyvaf
the formula. Omitting parts of behavior protocols that representg thgsects and
leaving only parts relevant to the property should make the commmieheof the
behavior specification easier.

However, the important requirement on both reductions is that the original
protocol should be substitutable for the reduced protocol. In other words, any
component that can be correctly described by the original protocblecalso described
by the reduced protocol.

4.1 Motivation example

In order to clarify the basic idea, examples of the two iffetypes of reduction will
follow. The first one demonstrates use of the reduction with respecomposition.
Fig. 7 shows composition of two components: A and B with the following bahavi
protocols:

Component A?a{!x}* | (?b)*

Component Bla{?x + ?y}*

A F s
I

Figure 7. Example of reduction with respect to compaosition

The component A can accept arbitrary numbers of calls of tiieonsa andb
in parallel. During the invocation of the methadt calls the methock on B. On the
other side, the component B repeatedly calls the methmd A and during this call it
must receive call of eitherory.
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Given the composition from Fig. 7, one can easily see that the mdilaraby
will never be called. Even though, both components can accept thesahesllsyill
never be issued in this particular composition. So the behavior pretotdboth
components can be reduced to contain only the parts that are really used:

Component A?a{!x}*
Component Bla{?x}*

The important thing to note is the fact that this reduction jusbvenh the
unnecessary parts of both protocols. It did not reduce the behavior obrtiposed
components in any way, since the behavior was restricted bgothposition. This is
not the case in the following example that presents reductidn resipect to given
property.

—

A e

Figure 8. Example of reduction with respect to property

On Fig. 8, there are again the components A and B. Each of thensbama
external interface (to be used be the environment). Assume thia¢hlgior protocols
of the components are:

Component A:(?a{!x})* | (?b{'y})*
Component B:(?x{!z)* | (?y{'w})*

The component A can accept arbitrary numbers of calls of thigonsa andb
in parallel. During invocation ad andb, it calls the method andy on B, respectively.
In the same manner, the component B forwards parallel cale ohéthods andy to
the external calls af andw.

Let# =G a" F z™ be the property. That is: “Each call of the metlaod
(begin of the invocation) is eventually followed by a call of theho@z.” Validity of
this property is trivial, because every call of the methad postponed ta via x. In
contrast, parallel invocation of the metho&nd consequently andw does not affect
validity of this property by any means and can be omitted. The eddpmtocols
contain only parts relevant to the given property:

Component A:(?a{!x})*
Component B:(?x{'z})*

Unlike the previous type of reduction, this restricts behavior of theponents.
In this case, the reduction is achieved only for a promise thateti®odo will never be
called. This is a fundamental difference between these two typesduction. If
reduction with respect to composition is applied, the result can detasebstitute the
original — only the unused behavior was removed. However, the resatludtion with
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respect to property is generally weaker than the original. #dsae parts that possibly
could be used by the environment are omitted so the result can benlged those
environments that keep this promise.

Motivation of the reduction is to help the designer with comprehensian of
specification, by hiding insignificant parts of it. Reduction wigspect to composition
hides parts that are not used in the given composition, whereasoaduith respect to
property goes further. It hides also parts that might be used,ebnbgsignificant to the
given LTL formula.

Although the basic idea of protocol reduction is quite easy to understamake
formal approach has to be taken in the next sections to cleademirthe proposed
solution.

4.2 Reduction preorder

This section focuses on formal definition of possible reductions ofglesbehavior
protocol. Given a behavior protocol, the question is: “What protocols cdrobght of
as its reductions?”

The basic condition was already mentioned. The original protocolchae t
substitutable for the reduced protocol. So any component that can bibaetesgyr the
original protocol can be also described by the reduced protocol. Thigicorfdllows
from the fact that the reduced protocol is only a weaker deserif the same
implementation.

Definition 21.Let ; and , be behavior protocols, theny, r 2 if 1 2
and is substitutable for ;.

Informally, the reduced protocol can generate only traces dedely the
original one — not necessarily all of them. Only the traces wtitsiee does not depend
on the described component but rather on its environment (the environredatdmit
an event) can be omitted. Otherwise, trace that can be chosediagdo the original
protocol is not possible any more in the reduced protocol and the ongiiéd be no
longer substitutable for the reduced protocol. This is a sort of “adhtreat the traces
can be omitted provided that some methods are not called in some situations.

Lemma 1. Relation, r on the set of behavior protocols ispeeorder. It is called
reduction preorder

Proof In order to show that the relatiork is a preorder, it has to be shown that the
relation is both transitive and reflexive. Reflexivity is intdiade. For any behavior
protocol and is always substitutable for itself, because the
substitutability relation (Definition 7) is trivially reflexive.

For transitivity, we have protocols;, ,and jzsuchthat ;, r 2and -
, R 3. Itisto be shownthat,;, r 3 Obviously, 1, r 2and ., r 3implies
that 1 2 3 However, substitutability of 3 for 1 is not so
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obvious. Suppose that 3 u 1, whereM is a set of all methods, contains traces
with communication errors. L& be one of the error traces.

Suppose thad represents the bad activity error. Then thef® jsuch tha’ is
a prefix of some trace generated by and continuing by an emit token and
generates one or more traces with this prefix but none continuthgthis particular
token. Because of 2 3, also , generates one ore more traces
with prefix 0’ (since 1 do). There are two possibilities. Either, generates also a
trace with prefix0’ continuing by the particular emit token or not. However, thd firs
case contradicts substitutability of, for ; and the second contradicts substitutability
of sfor ». Inboth cases, the error tra@evould occur.

Cases with no activity and infinite activity can be proven analogously. 1

2a* + ?b{lx + y}*  ?a* + ?b{Ix} + NULL

%a*  7b{lx} + NULL

NULL

Figure 9. An example of the reduction preorder (it is incoetel— an infinite number
of protocols could be inserted into the graph)

See Fig. 9 for a brief example of the reduction preorder. Affterreduction
preorder is well defined, some other important concepts should be ptat@sely, as
well.

Definition 22. Behavior protocol ; is a reduction of behavior protocol », if
1, R 2. Theset of reduction®f protocol is a set2 is a behavior
protocol and , g

In the set of reductions, there are all possible reductiongaftigular behavior
protocol. Elements of this set, for which there is no smalEment present, are the
most dummy protocols that are still compliant with the originad.orhey offer the
same but perform less. However, usually the situation is mor@lioated. There is
often a set of traces that are in some sense important and shquriesbet also in the
reduced protocols.

Definition 23.Let  be a behavior protocol and a set of traces. Behavior
protocol ; is aminimal reduction of containingTif ;, r , T 1 and there
is no protocol , suchthat,, r 1and T 2 3 1.

SetT is a set of important traces that should be preserved inetheed
protocol. What traces are important depends on the purpose of reduction. This definition
is quite straightforward but unfortunately has some drawbackst, Fhe minimal
reduction is not unique.
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Lemma 2. Let be a behavior protocol and a set of traces and; a
minimal reduction of containingT. There exist a protocol, 4 ; which is also a
minimal reduction of containingT.

Proof Let » 1+ NULL. Claim follows immediately from 2. 1

It can be easily seen that this way, an infinite set of nahm@ductions can be
generated if at least one exists. However, also more mimgdattions with different
languages can exist in general. If ?a+?band T 5 then both protocol8a and
?b are minimal reductions of containing T.

Second problem is that no minimal reduction is obliged to exalt éthe set of
traces T is not a regular language. For example if ?a*; ?b* andT ?a"; ?2b"
forn 6, no minimal reduction of containingT exists. If we stick to the reguldr,
this problem does not occur.

Unfortunately, Definition 23 does not enforce any restrictions on thdtireg
syntactic structure of the minimal reductions. However, the otigma was to help the
designer with reading and reusing the protocol. Even a suboptimabaotuéserving
the syntactic structure of the original protocol would be prefeaver the optimal one.
Such a solution will be described in the next section.

Because of the principle of inverted frame protocol, introduced itidBe2.2,
also notion of inverted reduction will be useful in the following.

Definition 24.Let ;and , be behavior protocols, theny, r 2 if 1 2
and ; is substitutable for .

Definition 25. Behavior protocol ;is aninverted reductiorof behavior protocol ; if
1, R 2 Set of inverted reductioref protocol is a sef is a behavior
protocol and , gr

4.3 Term rewriting

In this section, an approach that operates on the syntacttusé of the protocol — the
term rewriting[11] — is presented. We define a set of rewriting rules tieatepeatedly
applied to the original protocol to perform the reduction. These ruiksemforce
preservation of both syntactic structure and substitutabilitjebtiginal protocol. This
way, any result of the rewriting will always be a reductiorthaf original protocol in
accordance with Definition 22.

First of all, a few definitions have to be stated.

Definition 26. Behavior protocol or subprotocol of a behavior protocols nullable
(predicate nullable() is true)if an empty trace

Definition 27. Behavior protocol or subprotocol of a behavior protocois passive
(predicate passive() is true) if no trac® starts with an emit event (event of a
form !'a” or!a$, wherea is a method).
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The point of passive and nullable protocols is simple. Whenever a subprotocol
only waits for en event — is passive — it is a prospective ptabe reduced. In other
words, environment can choose not to send any of the events the compomaiting
for and this part can be reduced. If a nullable subprotocol is techeed, it can be
reduced tdNULL protocol.

For example protoc®a{!x} is passive but protocdh{?x}* is not. The first one
is not nullable but the second one is (note*tbperator).

Definitions 26 and 27 can be stated also inductively as they algusatl in the
implementation. These definitions follow for the sake of completeness.

Definition 28.Let and be behavior protocols and kebe a method:
la”, 1a$, ?a” and?a$ are notullable
NULL is nullable
*is nullable
+ isnullableif or isnullable

| and ; arenullableif both and arenullable

Definition 29.Let and be behavior protocols and Ebe a method:
la® and!a$ are notpassive
?a” and?a$ arepassive
NULL is passive
*is passivef  ispassive.
+ and | arepassivafboth and arepassive
; is passiveif is passiveand either is notnullableor is also
passive

Syntactic abbreviations like method calls or the or-parallel tpe@an be
derived intuitively. Also brackets despite being part of the syotdoehavior protocols
are ignored, to stay comprehensible.

With all necessary concepts defined, the reduction rules canrbalébed. Let
and be behavior protocols. The rewriting rules for protocol reduction follow:

NULL if 4 NULL and nullable( ) and passive()
if passive()

if passive( )

if passive( ) and nullable( )

7
7
7
| 7 if passive() and nullable()
7
7 + if passive( ) and passive() and nullable( ) and nullable()
7

if passive() and nullable()
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; 7 if passive( ) and nullable( )

Rules can be applied on any subprotocol of the protocol beingtteswriA
subprotocol is formally any substring that is itself syntatlijca behavior protocol. It
has to be shown that application of the rules generates reduction of the original protocol

Lemma 3. Let ; and . be behavior protocols and, be derived from ; by
application of one or more rewriting rules to some of its subproto¢bklEn , is a
reduction of .

Proof  First, evidently 2 1 because no rule adds traces that would not
be present in the original protocol. Second, is substitutable for ,, because any
omitted subprotocol is passive. It means that only parts statjugyements put on the
component are omitted. So the protocelhas lower requirements on the implementing
component than the protocol. Since no changes on the provided side are magdis,
clearly substitutable for ». 1

The rewriting rules are monotonic. Each rule makes the protocol slil@ss
tokens) except the first one, which may remove no tokens but which cannsete
more than once on the same subprotocol. This ensures that aftereantimber of
rewriting no rewriting rule matches any more. Thus, attleas final reduction always
exists. Depending on the choice of the rules, more such final reductiorexist. For
example, consider again the proto@al+ ?b. It can be reduced to eith@ea or ?b that
both cannot be reduced any further.

As mentioned in the previous section, there is often a set of imptnaaes that
should be preserved by the reduction. This set depends on the purpose afrreuhett
Is rather conceptional. It is not mentioned to be enumerated and gities tewriting
algorithm as an input — it is usually infinite. Among others, theitieng algorithm has
no notion about traces. Better way how to make the rewriting @aoeare of the
important traces is to forbid the use of a particular rewritudg if it could possibly
cause removal of an important trace. For this purpose, both typesiwitions are
obliged to provide a mechanism that would specify whether a correngtéing rule
can be applied to a particular subprotocol or not.

2a* | 72b*: 0

?ar la$ ?b” b$

Figure 10. An example of the parse tree for the protdza | ?b*
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As described in the following, both algorithms for reduction with respec
composition and for reduction with respect to LTL formula work oveiptrse trees of
the protocols. An example of a parse tree can be seen on FithelAodes of the parse
trees are naturally the place, where to put the information @bpottance. Informally,
each node of the parse tree is marketing®rtantif the corresponding subprotocol can
be used to generate an important trace. Moreover, the paralladt@peodes are
marked agparallel-importantif the corresponding interleaved subprotocols can be used
to generate an important trace. The rewriting rules are thendadterfellows:

7 NULL if 4 NULL and nullable() and passive() and not
important( )

if passive() and not important()

if passive( ) and not important()

if passive() and nullable() and not important()

if passive( ) and nullable( ) and not important()

N N NN

+ if passive( ) and passive() and nullable( ) and nullable()
and not parallel-important(| )

; 7 if passive() and nullable() and not important()

; 7 if passive( ) and nullable( ) and not important()

On Fig. 11, example of the protocol reduction is given. The proto€al*i$ ?b*
and the set of important traces is equal tea”, 'a$ , ?a”*, !la$, ?a®, 'a$ , ... . The
important nodes are marked by black marks. It is easy to sea|ltivaportant traces
are generated only using the left subtree. By application of tihfoule, the?a*
protocol in acquired.

@ Important

[l Parallel-important

?a*:
Reduction >
T ?ar T la$ T ?br b$ T ?a’ la$

Figure 11. Rewriting of the protocoPa* | ?b* with the set of important traces?a”,
la$ , 7an la$, ?an, las , ...
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Another example can be seen on Fig. 12. The protocol is the same aetldhe
important traces is equal to?a”, 'a$ , ?a”, !a$, ?a”, 'a$ , ..., ?bN b$ , ?bA,
'b$, ?b”, Ib$ , ... . Both subtrees are necessary for generation of important traces;
however, the parallel interleaving is not. The sixth rule can gpieal to get the
protocol?a* + ?b*.

?a* | ?b*: ?a* + ?b*:

T ?an T la$ T ?b? b$ T ?ar la$ ?b” b$

Figure 12. Rewriting of the protocoPa* | ?b* with the set of important traces?a”,
lag , 7an la$, ?an la$ , ..., ?bN1h$ , ?bA 1b$, ?b7 b ...

Suboptimality of this approach is hidden in two aspects. First and obweus,
stick to the structure of the original protocol and thus autonligtieduse solutions that
are potentially better. Consider proto@al* with the set of important traces?a”, !a$,

?a”, 'a$ . Protocol?a; ?a is arguably the best reduction, but the structure is different;
no sequence of the rewriting rules can result in this protocol.drc#se, the protocol
will not be reduced by the rewriting rules at all. Second, the ctexiu can be
suboptimal when the protocols are not deterministic.

Definition 30. We say that a behavior protocol deterministicif for each nonempty
prefix of any of its traces, the leaf of the protocol parse that have generated the last
event can be identified unambiguously.

For example, protocda* + ?a* is not deterministic, since for a prefiea” ,
there are two leaves of the parse tree that could have gahdrateventa”. Because
all nodes of the parse trees that could be used to genelatp@tant trace are marked
as important, all ambiguous nodes are marked. For the pr&atel ?a* and a set of
important traces equal to its whole language, all nodes ofattse pree will be marked
as important due to the nondeterminism (all nodes can be used tatgearermportant
trace). However, the best reduction would?aé&. This behavior is acceptable because
nondeterministic protocols are rather rare in practice.

As already indicated, the notion of inverse reduction will be usefuihe
following. In order to generate an inverse reduction using the negyriiles, concept of
passive protocols has to be substituted by a dual concept of active protocols.
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Definition 31. Behavior protocol or subprotocol of a behavior protocolis active
(predicate active() is true) if no trac® starts with an accept event (event of
a form?a” or ?a$, wherea is a method).

Rewriting rules have to be altered. All occurrences of the gagzlpassive have
to be substituted by the predicate active. Modified rules carsée@ to generate inverse
reductions.

In this section, rewriting rules for reduction of behavior protocolewtfined.
However, they can be used only on a single protocol with the parseotles marked
as important or parallel-important according to the set of impadracegs. Next sections
extend this idea to a composition of more components and define whatpbeant
traces are with respect to composition and with respect to property.

4.4 Reduction with respect to composition

As said before, composition of components is defined by frame protdcehch
participating components (A and B on Fig. 13), frame protocol of éselting
composite component (C), bindings between inner components (1 and 2), subsumption
(3) and delegation (4) bindings and unbound interfaces (5 and 6).

The goal is to reduce protocols of inner components (A and B in tmepéda
and the frame protocol (C) to leave out the behavior unused in thisufartic
composition. The unreachable parts of the individual protocols should be oitted
the behavior of the whole architecture should remain unchanged. Ifand" are
behavior protocols of components A, B and C respectively, then thasgtmalkreate
protocols 8, 8 and"8 suchthat8 , r 8 , r and"8, r". This should guarantee
that any implementation of component A (or B) that is compliatit the protocol
( ) is compliant also with the new protocsl( 8). Also"8, r" should imply that'8
remains substitutable for so no communication errors are introduced in the higher
levels of hierarchy. This claim would be true if the substifilitg relation was
transitive, which is actually not as discussed in Section 2.3. Prot8¢o&and”8 can
be imagined to define virtual wrapper components A’, B’ and C’ as depicted on Fig. 14.

C 5 6

SRR RS

Figure 13. The composite component C consists of A and Bi,internal (1 and 2),
subsumption (3) and delegation (4) bindings ancunt interfaces (5 and 6)

33



Figure 14. Idea of the virtual wrapper components. The comptmé, A’, B, B’, C
and C’ have the behavior protocols 8, , 8," and"8 respectively, where8 ,
8, r and"8, r"

The last and most evident requirement is that if the composition adBC is
communication error free then also the composition of virtual componéni& And
C’ should contain no communication errors. Fortunately, this property isefe if the
whole behavior is unchanged as required. It means that both composdidas the
same set of traces and also the same set of error tFféees.if the set of error traces of
the composition A, B and C is empty then the set of error tracebeolvirtual
composition is empty too.

To create reduced protocols of inner compone@sa(d 8), rewriting rules
from the previous section are used. In case of the frame prot&plhe rules for
inverse reduction are applied. Both sets of rules operate onla grotpcol, so the sets
of important traces have to be defined per each protocol. Infgrnaltrace of a
protocol is important and should be preserved if it is really usih@ consent operator
does not discard it. Instead of constructing these sets, the inmjédime uses the
second approach. It marks nodes of the protocol parse trees as imnporparallel-
important. This information is actually used in the rewriting rules.

The algorithm is divided into two parts. In the first part, traveo$ahe state
space of the whole composition (using the consent operator) is pedf@amad reachable
nodes of each parse tree are marked as important. The paraliatoop®des are
marked as parallel-important if a nontrivial interleaving ositbprotocols is ever used.
This phase is very similar to the compliance checking. Insteadfinafing
communication errors the algorithm is just marking reachable nufdtbe parse trees,
during the traversal. In fact, this part of the algorithm &lyedone together with the
compliance checking in a single pass. Fig. 15 illustrates the first phase.
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Parse trees Marked parse trees

State space
of the composition

Figure 15. First phase of the algorithm for reduction withpest to composition. In

this phase, parse trees of individual componergsvaarked during the traversal of the
state space of the whole composition

State space
traversal

¢ Jo [0 o |

¢ (¢ Jo [0 |

In the second phase, the rewriting rules are applied to eachduaiprotocol

using the information gathered in the first phase. See Fig. 16.

Marked parse trees Reduced parse trees

o o
Rewriting >

B
= s -y
e Jo 0o Jo |

Y: Y é %
Rewriting >

Figure 16. Second phase of the algorithm for reduction wigpeet to composition. In
this phase, parse trees of individual componengs saparately reduced using the
rewriting rules and marks gathered in the firstggha
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4.5 Reduction with respect to property

An approach to checking a general temporal property stated in etbdifiLx was

already presented in Section 3.5. It can be used both on a single protoaol
composition of more protocols. This section will focus on reducing ritiatecture to

contain only archetypal traces that do influence validity of the LTindda.

Formally speaking, if the LTL formula is successfully vexfithen it is by
Definition 20 true on all traces. So there is no trace thaeadlyr influencing the
validity. LTL formula will stay true no matter which tracase removed. However, it is
still possible to identify traces that are representativelifeerent ways of fulfilling the
property stated as the LTL formula.

As described in Section 3.5, negation of the LTL formula is tramslate a
non-deterministic finite state machine that accepts allsrdw violate the formula. In
this state machine, transitions are labeled either with aesawgint token (only a single
event can be emitted at one time moment) or by a possibly eetpty segated event
tokens. The second type of transition can accept any event token tioatinsthe set.
Recall the example of LTL formula from Section 4.1: & F z” . State machine
corresponding to its negation can be seen on Fig. 17. This automators asgeptord
that starts with an arbitrary prefix (self loop in thetestd) and continues wit@™ and
any suffix withoutz”.

Ot

a/\

o

Figure 17. Non-deterministic finite state machine acceptingtralces that violate the
LTL formula: G a* Fz»

Let 0 be a trace not accepted by this automaton. Informally, symbols of tke trac
0 can be classified as important or unimportant. The symbol cagebeas important if
it allows different run of this automaton then any symbol not mentionéte formula
or if it disallows some of runs otherwise possible. For exampiled state 0, symbal®
Is important because it allows traversal to the state 1, whiebtipossible otherwise. In
the state 1, symbal® is important because it disallows use of the self-loop.

Definition 32.Let M be a non-deterministic finite state machi@ea trace of lengtm
andx;, wherel, i, n, symbol on the trac@. Let S be a set of states M that are
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reachable by ! 1 long prefix of0. Then the symbok; is important if there is a
transition from any state i§ marked by either the symbxlitself or by a set of negated
symbols including negation af.

Using this definition and the automaton from the previous example, the
underlined symbols in the following trace are important:

2an, 7bM, 1a$, 122, 1b$, 228, 127, 2z$, ?a%, 1a$

The next step is identification of important traces from the cfetraces
generated by a behavior protocol. Just stating that important tracessedHat contain
important symbols is not enough. Use of for example parallel opetatormix in
unwanted symbols. So the important traces have to be defined as inmszanang
“shortest” traces containing the same important symbols — representatives.

Definition 33.Let be a behavior protocd, one of its traces amdlength of
0. Trace0 isimportantif there is no nonempty set 1, 2, ...,n such that:

1) If mis the smallest element inthenx,, the mth symbol of0, is an
accept event (event of a forma” or ?a$, wherea is a method) and

2) Foreach |1, is not an important symbol 6f and
3) Thereis created fron® by removal of alk;, fori |I.
For example, consider again the LTL formula & F z* with the
corresponding finit automaton (from Fig. 17) and a behavior prot(itafz})* |

(?b{'w})*. Traces of this protocol are parallel interleavings of ¢allsi\ethodsa andb.
More precisely, traces of this protocol are exactly all ieéetings of two sequences

and , where 9 . ?an 1zh, ?z$, 1a$ |, 2an, 1z7, ?z$, 'a$, ?an, 1zh, ?z$,
la$ ,... and 9 . ?bN wA, ?2ws, 1bs , ?bA, wA, 2w, [bS, ?bA, wh, 2w,
b$ , ... .

By Definition 33, all traces for which are important, because they cannot
be shorten whithout omitting some important symbols. Not so obviously, refoac
which 4 is important. Whenever 4 for some traced there exists a

nonempty set | of indices of first appearances of symblots!'w”, ?2w$ and!b$ in 0.

No symbol with index from | is important. First index identifiesesent?b” which is

the accept event. Tra€e created by removal of symbols indexed by | is interleaving of
"and unchanged where ’is derived from by omitting one repetition of sequence
?b”, 'wh, ?w$, Ib$ . In other wordsQ’ is also a trace of the protoc@Pa{!z})* |

(?b{'w})*. Thus, such & is not an important trace by Definition 33. To summarize,

important traces for this example are just traces; ?2a”, 1z», ?z$, la$ , ?a?, 127,

?z$, 1a$, ?an, 1z7, ?z$, 1a$ , ... and the protocol could be reduced?a{!z})*.

In the light of these definitions, the task is to reduce all thiecpaating frame
protocols of the individual components in the architecture and the fsestecol of the
resulting compound component, so that the resulting composition would not contain any
communication errors but preserve all important traces. Réoal example from
Section 4.4, which describes composite component C consisting of comparemis
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B (see Fig. 13). If , and" are behavior protocols of components A, B and C
respectively, then the goal is to create proto&@ls8 and"8 suchthat8 , r 8 , r

and"8, r". Note the difference in requirements put on"theReduction with respect

to composition require$8 , g " This difference corresponds to the fact already
mentioned in the motivation. In general, reduction with respect to bfitadla limits
behavior of the whole composition. That means, component with the reducedobehavi
"8 can be unusable on some places, where the original component C card.be use
Protocol"8 may provide less than protocol

Protocols 8, 8 and"8 can be imagined to define virtual wrapper components
A’, B’ and C’ respectively. See Fig. 18 in contrast to Fig. 14.

cc A

Figure 18. Idea of the virtual wrapper components for reductiwith respect to
property. The components A, A’, B, B’, C and C’ kahe behavior protocols, 8, ,
8," and"8, respectively, wherdd, r 8 , g and"8, r"

4.6 Dependency graph

Because of the threat of the state explosion problem, any dueeptdution
should not increase the time complexity necessary to check théokmula. It is linear
in size of the connected state space of the behavior protocolbeafidite automaton
representing the LTL formula. These are generally exponentst@s of the protocols
and the formula, respectively. The proposed solution is suboptimal. It mimtes
necessarily find the best reduction. However, it can manage withweasing the time
complexity.

As well as the algorithm for reduction with respect to compositioraltjaithm
first marks the parse trees of participating behavior protoaots then applies the
rewriting rules. However, the situation is not so easy, becaasbability is not enough
in this case. For marking nodes of the parse trees, the algantates alependency
graph derived from the parse trees and possible communication. Dependapbyigr
an oriented graph. Each vertex of the graph represents a group of rodes [larse
tree that share the importance mark. Edge in the dependency @pmsents
implication of importance (and thus preservation). If the source @dfe is marked as
important then also the destination is marked.
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The purpose of the graph is to represent the communication dependencies
between protocols. It should be designed to have the following propettya”™ be a
leaf of a parse tree andbe a vertex of the dependency graph representing a group
containing the leaf. Suppose that each symbol generated by the&aigimportant.
If all nodes represented by all vertices reachable ftamere marked as important (and
also parallel-important in case of parallel operator nodes) thensequential reduction
would preserve all important traces with respect to Definitionn8B3r® communication
errors would be introduced. Having this property, the marking of thee gege nodes
can be done during the LTL checking by just marking correspondingceserof
dependency graph whenever an important symbol is generated.

The algorithm itself is divided into three steps. First, paesestare partitioned
into groups of nodes that define vertices of the dependency graph. dple igr
initialized by edges that are implied by the parse trestture (see Fig. 19). Second,
during the state space traversal of the checking processgegenficlependency graph
are marked as important if any of their nodes generatem@ortant symbol and some
additional edges may be added depending on the components’ commur{sxiding.
20). Third, the vertices reachable from the marked vertices lae marked as
important. Node of the parse tree is marked as important ifadbge to the group of an
important vertex. Then, the rewriting rules are applied to perform the reduction.

Parse trees Groups of nodes Dependency graph base

Figure 19. First phase of the algorithm for reduction withpest to property. Nodes of
the parse trees are partitioned into groups tham feertices of the dependency graph.
Edges implied by the structure of parse treeslaeaglded in this phase
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Dependency graph base Dependency graph Marked parse trees

A A
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Figure 20. During LTL checking, edges implied by the commutima are inserted
and vertices of the dependency graph are markéu@stant, whenever an important
symbol is generated (second phase). Marks for pagsenodes are derived from the
marks in the dependency graph (third phase)

The partitioning of each parse tree is done by a recursive diegtlsdarch
traversal starting from the root node. It exploits predicatdisble andpassivedefined
in Section 4.3. Domain of the predicates is intuitively extended tpdise tree nodes.
The node is nullable (resp. passive) if the subprotocol representdidebyode is
nullable (resp. passive). Five basic rules are used to decidheretadd the node to
his parent’s group or to start a new group. The first matching rule is applied:

If the current node is not passive then add it to the parent’s group
If the current node is nullable then add it to a newly created group
If the parent node is* then add the current node to the parent’s group

If there is no nullable ancestor of this node or there is at deesY” or
“" node between this node and the closest nullable ancestor then add the
current node to the parent’s group

Otherwise add the current node to a newly created group

Meaning of the first two rules is quite straightforward. Thetfsays that no
subprotocol that can spontaneously emit an event will be omitted witinaitting its
parent too. No such rewriting rule exists, so there is no needate @aew group. The
second rule enforces creation of a new group for the passive suloprdiat is
substitutable by &ULL protocol, because it could possibly be left out and should be
treated individually. The third rule is just a technicality tpatvents creation of the
unnecessary single member groups fdrrfodes. The fourth rule is quite tricky. It is
chosen to distinguish between two following situations.

Protocol(?a + ?b)* (see Fig. 21) generates set of traces ?a”, 'a$ , ?b”,
Ib$ , 7an la$, ?an, la$ , ?a” la$, ?bA b$ , ... . Suppose that each occurrence
of a symbol'b$ is important (as underlined). Then only traces, ?b*, b$ , ?b",
Ib$, ?b”, Ib$ , ... are important by Definition 33. That is why the separate &tic
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are needed for the parse tree node&and?b, because these nodes can be reduced
independently. Fifth rule is applied.

Figure 21. Parse tree for the behavior protocfda + ?b)*. Groups of nodes define
vertices of the dependency graph

On the other hand, protoc(l?a + b?); ?c)* generates set of traces , ?a”,
la$, 2c?, Ic$ , ?bA Ib$, 2¢”, Ic$ , ?an, la$, 2c¢h, Ic$, ?an, lag, 2¢h, e, ... .
If every occurrence of’c” is important (as underlined) then all these traces are
important too, by definition. In this case, parse tree node®3af@nd?b should belong
to the same group — the third rule is applied and the group of the padeis shared
(see Fig. 22).

Ic$

Figure 22. Parse tree for the behavior protoggRa + ?b); ?c)*. The single group of
nodes defines the only vertex of the dependengyhgra
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Oriented edges of the dependency graph represent preservationlatege If
the source of the edge is preserved in the resulting protocolltbetestination has to
be preserved as well. The protoce&{?b*}*, generates two vertices. One fa{...}*
and one for?b*. Additionally an edge is created frd?h* to ?a{...}*. If the ?b* part is
preserved then also tif&a{...}* part is needed and the resul?&?b*}*. However, the
result?a* is also possible (no edge goes the opposite direction).

There are two rules for adding edges between two dependency @grdicles/
Let x andy be distinct vertices of the dependency graph:

If there area andb nodes of the parse trees, such #hiatparent ob and
a (resp.b) is in the group represented kyresp.y), then there will be an
edge coming frony to x.

If there area andb leaves of the parse trees, such th@esp.b) is in the
group represented by (resp.y) and the composition contains a trace in
which a andb communicate (generate events that are joined into a tau
event), then there will be two edges coming frpta x and fromx toy.

Edges enforced by the first rule are added during the inétadiz phase because
they depend only on the syntactic structure of the protocols. Othes edgeadded
continuously during the second step of the algorithm — the state spaeesal. The
first rule says that whenever a particular node generatespantant symbol, then the
node and its ancestors cannot be completely reduced out. This suraiveseall
important traces that contain this symbol generated by this natle single protocol.
However these traces could be still reduced out if they wadtedrf event that would
not be emitted. The second rule transitively enforces existened thces that are
necessary in the other protocols to preserve the important trdeesetond rule also
prevents introduction of the communication errors, provided that the original
composition was error free. Complete proof of this claim is verkrical and will not
be presented here. Just to sketch it out, the construction of the depedapicy
guarantees, that a leaf of the parse tree survives the mduttand only if the
associated vertex was marked as important. Thus, if a bad aetirotyis present in the
reduced composition, it was also present in the original one. Othetivessecond rule
would ensure, that the vertex associated with the accept event prgvdm bad
activity in the original protocols will be marked as important. Alsseof the other
communication errors can be proved in a similar but more complicated way.

The time complexity of the first and the third phase of tigerdhm is clearly
polynomial in the size of the protocols, because they need only degthsdiarch
traversals of the parse trees and the dependency graph (thingeeain be also done
by a single DFS traversal). The second phase is done dueihg thchecking and adds
only a constant overhead per each visited state and each usdtbtrambus, it is still
linear in the size of the connected state space of the protocolsawachaton
representing the formula. Thus, it is exponential in the siZeegbtotocols and the LTL
formula.

It was already said, that this solution is suboptimal. To showxamge,
consider again the protocf(?a + b?); ?c)*. As shown before, it is represented by a
single vertex in the dependency graph. For this reason, the atgaréth reduce it to
eitherNULL protocol or not at all. However, if every occurrence of the evbfitwas
important, then a protocdPb; ?c)* would be a reasonable reduction containing all
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important traces (the presented algorithm cannot achieve thigimguThe problem is
inherent in the fact that the decision, whether a node is used omnpoytant trace
depends on a trace, not just the state. To make it properly, one woulib lzenadyze all
different traces (without cycling), number of which is generatiyomential in the size
of the state space. This would yield in the unbearable time complexity.
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5 Prototype

As a part of the thesis, a prototype implementation of the desctédrhniques was
developed. This section presents the prototype and justifies the desigiomks that
were made.

An early decision was to base the prototype implementation on oneeof t
existing behavior protocol checkers. Both verification of LTL and reolucof
protocols are based on the traversal of the state space, whisb & leeystone of the
behavior protocol checkers. There were two choices described in tosvifigl
subsection; both written in Java. This fact determined the use ofalvdor all the
extensions.

5.1 Original checker

Although, there were already several generations of behavior pratioeckers, only
two possibilities are considered. First choice is the currentvimehprotocol checker
that is part of the SOFA and Fractal component models’ relialeitensions [32, 10].
The second — DChecker — is being developed as a part of a masierfdbasing
distributed checking of behavior protocols [38]. The checker, despite beiagrly
development stage, involves some promising optimizations and gives veryegodtd
in the local version that was only available at the time of writing.

Each behavior protocol can be equivalently imagined as a finitematibn
accepting exactly the traces that the protocol can genergtaradlel composition of
protocols using the consent operator can be again representechitg automaton. To
check compliance of this composition, state space of the automatom beasought for
communication errors. However, the state space of this automatdrecaand usually
IS — exponential in a size of participating protocols. This proliekmown as thstate
explosionproblem. Both checkers differ in a way they cope with it.

The approach of the first checker is described in [23]. It gersetfageautomaton
representing the compositiamn-the-fly (states and transitions are created during the
checking process as necessary) from the structure qallse tree automato(PTA).

PTA is a tree structure isomorphic to the protocol parse tréenaed as follows: (i) in
each leaf, there is a primitive automaton representing an elvér protocol (i.e. it has

two states an initial and a final one) and (ii) each inner node ocesiis children PTAs
using a protocol operator. The state of this automaton is then determined by a d$tate of a
primitive automata in leaves and some additional information fronr othées (for
example, identification of the branch of theoperator that is used, if any). The state
identification is a selective concatenation of states of pvieniautomaton and the
additional information. Unfortunately, this yields to state identifoce with variable
length. Moreover, the length is far from optimal in the worst d@sesider a protocol
consisting ofn consequent events. The minimal automaton representing this protocol
hasn + 1 states withn transitions, each representing one event. Evidently, state of this
automaton can be represented:log,(n + 1); bits. However, the state identification
generated by PTA is bit long.
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Another problem follows from the fact that PTAs are generally nondetetiinis
Since the behavior protocols have the trace semantics, one has ittecatisstates
reachable by the same prefix at the same time. Forghson, each PTA is associated
with a special node that converts information from PTA to the mi@testic form. State
identification is a concatenation of all states reachable tea@d} processed prefix.
These deterministic nodes are connected using the consent nodes.

|
% PTA for B

PTA for o

Figure 23. The tree structure for on-the-fly state space gdiwar in the PTA-based
checker. Depicted structure is used during theicadrcompliance checking of the
composition of the components A and B against fr&né, B and C are specified by
the protocols, and" respectively

Fig. 23 shows the whole structure that is used for on-the-fle pace
generation. In each step of the algorithm, the whole structuréohlas traversed to
create a set of possible transitions. This is a trade of betmemory consumption and
time necessary for the checking. The PTA-based checkercltack really huge
protocols without running out of memory, but it is rather slow.

The approach of the second checker is based on the following obserVatien:
main source of the state explosion is the parallel composition afcotetby a consent
operator, whereas the state spaces of the individual protocols allg teagble.” This
observation is arguable in presence of parallel operators, howeakows for very
elegant optimizations.

DChecker translates the individual behavior protocols into the corresponding
nondeterministic finite state machines and then to the determirfisite state
machines, which are used instead of PTAs. This approach has two gésgarkiast,
number of states is known in advance, so the state identificatidrecaoded optimally
and is of a fixed size. Second, no deterministic node is neededisathe case with
PTAs. The resulting structure used for on-the-fly state spaceag@mecan be seen on
Fig. 24.

Because the FSMs can be accessed very efficientlyhteker is quite fast. Of
course, the price is that it can check only protocols, whose FMSs fit into memory.
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Composite state
identification

Figure 24. The tree structure for on-the-fly state space gaimer in DChecker. This
structure is used for checking vertical compliaotéhe composition of the components
A and B against the frame C. A, B and C are spetifiy the protocols, and"

respectively

For the performance reasons discussed above, DChecker was chosen to be a base
for the LTL checking and protocol reduction extensions. There wasnone reason,
the PTA-based checker uses concept ofatbenic actionantroduced in [22], which is
not yet fully stabilized and which changes semantics of behavior ptstdthis fact
may cause problems, since this work does not take atomic actiorscaaont. Fig. 25
shows the table with performance comparison of the checkers. Input psotarobe
found on the attached CD ROM in the directmyamples/evaluation

tiny.bp m

edium.bp la

ge.bp

3 sec.

PTA-based checker 6 084 stated

439 sec.
456 976 state

1 039 sec.
5 1 001 832 state

|72}

DChecker 1 sec.

15 sec.

3 969 states

194 481 state

37 sec.

5 500 094 states

Figure 25. Performance test of the PTA-based checker and Dkéhe®rotocols are
available on the attached CD. All test were runPRamtium 4 3 GHz with 1 024 MB
RAM (600 MB for Sun JVM — build 1.5.0_06-b05), Wingds XP SP2

5.2 LTL checking

The local version of DChecker was extended to support checking obithéed LTL x

formulas and reduction of behavior protocols both with respect to congmoaitd with
respect to property as described in Sections 3 and 4. In this séleddal L checking
extension is described. It consists of two parts: translationoalified LTL x formula
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into a nondeterministic automaton and modification of the on-the-flye stpice
generation structure needed for the LTL checking itself.

A simple parser of the LTL formula was generated using Jajag|Cthe Java
tool for easy generation of parsers. The code of the parsersdsidbe package
bpchecker.ltl.parser along with the grammar definition filé.jj

The translation of the modified LTk formula into a nondeterministic finite
automaton is defined in the packdgechecker.ltl.translation . During the
development, also the library LTL2BA4J [26], which is the Java bindirtgeoC tool
LTL2BA for LTL to Blchi automata translation [25], was used foe translation (the
option is still available). However, the result was a Blchi automaith the infinite
trace semantics. In many cases, the Blchi automaton could b#dydused as a
nondeterministic finite automaton for expressing also a property imdioified LTLy,
but it is not true in general. The translation algorithm wasemphted using the same
interface as the LTL2BAA4J library, to allow easy substituitgbilt is based on the
tableau-based algorithm described in [16]. The main idea is @iecstates of the
automaton describing different ways how to satisfy the LTL foam&dach state is
represented by the following attributes:

Incoming Set of states. From each of the states, there should beiaamans
coming to this one.

New Set of subformulas that must hold in this state and have not yet
been processed.

Next Set of subformulas that must hold in any immediate successor of
this state.

Forbidden Set of events that cannot be used to transit to this state.

Obliged Single event that can be used to transit to this state. Either
Forbiddenor Obligedis empty.

Let# be a modified LTLx formula to be translated. First of &ll,is rewritten to
contain only the operators:, %, U, R and$ where negation can be used only before
the event tokens. This can be done using relations from Definition 9 emdopan’s
laws.

Initialization: The algorithm starts by creating a dummy initial state amel
working state. Théncomingattribute of the working state contains the initial state and
the New attribute is set to# . The working state is added to the set of unprocessed
states.

Core: While there is an unprocessed state, remove it from the sapajcessed
states and do the following, until idew attribute gets empty. Remove one formula
from its Newattribute and:

' is an event — if thd-orbidden attribute contains this event or the
Obligedattribute is a different event, then discard this state, bethese
entering condition cannot be met. Otherwise, @bliged to this event
and empty thd-orbiddenattribute, because all other events are already
forbidden by setting u@bliged
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IS a negation of an event —Gbliged contains this event, then discard
the state. Otherwise add the event toRbebiddenset.

is a conjunction — add both subformulas toNlesvset.

is of a form#, % #,, #, U #, or #, R #, — split the state and add
corresponding formulas to tHeew and Next sets of the two states as
depicted on Fig. 26.

When there is no more formulas in thewattribute, look to the set of processed
states whether there is a state with the sy Obliged andForbiddenattributes. If
so, add states from tHecomingset to thdncomingattribute of the already processed
state and discard the newer one. Otherwise, add the currenbdfageset of processed
states and create one unprocessed state initialized by étvepual to théNextset of
the current one and by adding it to theomingset.

Finalization: It is left to say what states are accepting. With thg erteption
of the dummy initial state, the state is accepting if it dugscontain any formula of a
form #1 U #, in its Nextset. This is, because an eventuality, specified Hys yet to
be satisfied. The initial state is accepting if the origioamula # is satisfied by an
empty trace. This can be easily found out using directly Definition 19.

New | Nexg News

#1%#2 #1 5 #l

#oU#, | #, | #.U#, | #,

HiR#, | #, | #1R#, | #1,#,

Figure 26. State split. Formulas to be added to MeevandNextsets of the new states

Because the translation algorithm is not substantially changgstiaies some
important properties. Probably the most important one is that $b#ing automaton is
generally exponential in a size of the formula. Thus, the timespade complexity is
also exponential in the worst case. For example, consider a formula of a form:

Fe; Fe, Fes Fe,

The size of a finite automaton representing this formula hae texponential,
since in every state, it has to somehow remember what evaetialiere already
satisfied. Number of the different subsets is equal.to 2

In the implementation, one useful optimization is added (based on the pape
[17]). The drawback of the straightforward algorithm above is thataasitions going
into one state are required to be labeled by the same labelgddieam the contents of
the ObligedandForbiddensets. However, two states should be perceived as equal if the
same traces start from them. Based on this observation, tige ata considered equal
if they share contents of tidextset. To ensure the correctness, states itnteming
set have to be annotated with information determining the future label of theidransit
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When it comes to the checking process itself, the structure ude@Hmcker for
on-the-fly state space generation was modified by injecting aroeimnode on top of
the tree (clasbpchecker.fly.FIyLTL ) as depicted on Fig. 27. This node makes
the intersection between state spaces of the behavior protocol ¢oompasd
automaton representing the negation of the checked LTL formula. Whenever a
accepting state of the intersection is reached, the formula is not gatisfie

LTL
check

Composite state
identification

[s]13[4]2]

FSM for o @ |
e 77777777777777777777777777777777777777777777777777777777 By

Figure 27. Modification of the DChecker’s on-the-fly state spageneration structure

5.3 Reduction with respect to composition

This section describes the protocol reduction extensions of DCheckér. r&mitle
mainly in the packagdpchecker.reduction . First part covers reduction with
respect to composition. As described in Section 4.4, the algorithnmiznks reachable
parts of the protocols, and then performs the reduction using the rewriting rules.

In DChecker, states and transitions of the finite automatagepting the state
spaces of the individual protocols do not carry information, from which gfathe
protocol they originated. This information has to be added and peelsdring the
behavior protocol to finite automata translation process. The processte@isthree
steps: (i) the protocol is translated into a nondeterministictefimmutomaton
(bpchecker.fsm.NondeterministicFSM ) and (i) a deterministic automaton
(bpchecker.fsm.DeterministicFSM ) is created from the nondeterministic and
(i) a concise representation of the finite automaton for tasthe-fly state space
generation is createtyjchecker.fly.SimpleFlyFSM ).

These structures were altered to support user information addedstatéseand
transitions (classesStatelnfo and TransitionInfo ). This user information
must support merging, because in the second step of the transtatienstates or more
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transitions can be merged together (metimoeirge). Later during the state space
traversal, these classes, if present, are called back, whehevestate is visited or
accepted or when the transition is used. This is enough to impledainganarks to
the reachable parse tree nodes.

Each parse tree node has an initially unsgiortant marker NodeMarker )
and also garallel-importantmarker, in case of the parallel operator node. In the first
step of the translation algorithm, these markers are added tsénenformation of
states and transitions, to be set up on the appropriate call@ek$ollowing rule is
used: The important marker of a parse tree node is added to aasitidn that leads
out of the subtree represented by the node, and to all acceptieg @ be marked on
the accepted callback) within the subtree of the node. Moreover, the parallel-
important marker is added in both cases if the transition’s soultte @ccepting state
represents position in both subtrees of the parallel operator nods fobtibcols were
interleaved).

During the second step of the algorithm, more states or nanrsitions can be
merged together. In this case, sets of markers associdtedhe particular states or
transitions are also merged. The third step does not affectuseraf the automata, so
the user information is just passed on. An example of the first two steps ajahiéhah
is shown on Fig. 28. The non-deterministic protoeat; ?a is used to demonstrate
merging of the markers in the second step.

Parse tree NFSM FSM

Figure 28. First two phases of the behavior protocol to deteistic finite state
machine translation process for proto®al; ?a. Importance markers are gathered in
the user information associated with states amitians of the automata

Later during the state space traversal, all met markergusr set up as visited
via appropriate callbacks ddtatelnfo and TransitionInfo . For this purpose,
the depth first search traversal claB§/DFSTraversal ) was altered to make the
callbacks on the user classes.

After the state space traversal, when all reachable paesaodes are marked,
the reduction takes place. In the implementation, the rewriting rules ceeden just a
single pass through the parse trees. Vibor pattern(see [15] for introduction to the
design patterns) is used to perform the reduction in a singlesnezdiraversal through
the parse treedpchecker.parser.traversal.ReductionActions ).
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5.4 Reduction with respect to property

This section focuses on reduction with respect to property. As debdribe
Sections 4.5 and 4.6, the parse trees are first partitioned into gronpdesf that later
form vertices of the dependency graph (clBspendencyGraph ). The partitioning
and the base dependency graph creation are done again by arstugkve pass
through the parse trees using tBbependencyGraphActions visitor from the
packageépchecker.parser.traversal . This way, each node of the parse tree is
associated with a vertex of the dependency graph.

During the behavior protocol to a finite automaton translation prodhss,
dependency graph vertices representing protocol leaves are atsgouwiith the
automaton transitions in a same manner as the markers abovealldWws adding of
additional edges to the dependency graph during the state spacsalravbenever a
communication takes place (a tau event is created) and alssghddpendency graph
vertices as important, if the important symbol is generatedcer Afte traversal, the
dependency graph vertices reachable from the important ones arenatked as
important and the reduction is done by using the sRewuctionActions parse
tree visitor.
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6 Case study

This section presents a short case study focusing on the uskictior with respect to
composition on the real-life protocols developed as a part of tkadgl mentioned
project Component Reliability Extensions for Fractal Component M@l The
second part of this section discusses a possible use of LTL checkibgha¥ior
protocols and reduction with respect to property to facilitasrcbefor a suitable
component in a big component repository. Unfortunately, no such a big component
repository annotated by behavior protocols is available, so no real exampla®are g

6.1 Demo application

As a part of the aforementioned project, a demo component applicatiotegigsaed.

The components’ behavior was specified using behavior protocols and components
were checked for both horizontal and vertical compliance. The demacatjowl
constitutes the airport service for providing wireless internetnection. The
connection is granted to the owners of the first class or busitessstickets and to the
owners of the Frequent Flayers Card if they have a validtii€dter passengers can
prepay the connection time by a credit card.

The system consists of about twenty components including virtual component
that are used to model the synchronization. The Fractal component [Batias
hierarchical — the components are either primitive or compositdh Eamponent is
associated with its frame protocol. The overview of components caiounel on
Fig. 29 borrowed from the project’s documentation available on its homepage.

To briefly present the main components, Buwewall component represents the
firewall for blocking unauthorized internet connections and redirecting them togime |
page. TherlyTicketDatabase andFrequentFlyerDatabase components mediate the
access to the databases of the airlines compad@edCenter communicates with the
bank credit card services and tAecountDatabase component encapsulates the
database of accounts with prepaid internet connection. Tbken component is a
dynamically created entity representing a single logged #dercommunication is
orchestrated by theArbitrator component. The last main component is the
DhcpServer. It represents a DHCP server for a dynamic IP addréssadbn with
support for the use of the permanent IP address database. This datappse Mac to
IP addresses could be connected vidliildacPermanentDb interface and its use can
be triggered on via thianagement interface. However, both these interfaces are left
unbound and the feature of permanent IP address allocation is not useddento
application.

As already said, some of the components are composite. In thefrdss
section, only the highest level of hierarchy will be studied. Thevi@hprotocols of
the main components will follow. THeérewall component provides interfatiéirewall
for the management of the port blocking and redirection and featurdslitheing
behavior protocol:
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?IFirewall.EnablePortBlock _1*

?IFirewall.EnablePortBlock 2*
?IFirewall.EnablePortBlock 3*

?IFirewall.DisablePortBlock*

The componenFlyTicketDatabase provides interfacesFlyTicketDb for the
uniform access to the airline companies’ ticket databasesFyiticketAuth for the
login confirmation based on the first or business class ticket identification:

L (

?IFlyTicketAuth.CreateToken_1

! +

?IFlyTicketAuth.CreateToken_2

: +
?IFlyTicketDb.GetFlyTicketsByFrequentFlyerld
Dk

FrequentFlyerDatabase provideslFrequentFlyerAuth for login confirmation
based on the frequent flyer identification.

b (

: ?IFrequentFlyerAuth.CreateToken {

E (

; lIFlyTicketDb.GetFlyTicketsByFrequentFlyerld;
: ('IFlyTicketAuth.CreateToken_2 + NULL)

| ) + NULL

)

D)F

The componenAccountDatabase provides two interfaceBAccountAuth for
the login confirmation based on the user account identification and @asamd
IAccount for the account management:

?lAccount.GenerateRandomAccountld
+

?IAccount.CreateAccount

+

?lAccount.RechargeAccount {
lICardCenter.Withdraw

}

)*
I

?lAccount.AdjustAccountPrepaidTime_1*

?lAccount.AdjustAccountPrepaidTime_2*

?lAccount.AdjustAccountPrepaidTime_3*
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?IAccountAuth.CreateToken*

' ( :
?IToken.InvalidateAndSave_1 {
("IAccount.AdjustAccountPrepaidTime_1 + NULL);
: lITokenCallback.Tokenlnvalidated_1 :
i i :
i I i
; ?IToken.InvalidateAndSave_2 { 5
! ("IAccount.AdjustAccountPrepaidTime_2 + NULL); :
lITokenCallback.TokenInvalidated_2
| p |
: | :
: ( :
; ("lIAccount.AdjustAccountPrepaidTime_3 + NULL); ;
| lITokenCallback.Tokenlnvalidated_3 :
: ) ;
) a

The Arbitrator component providedLogin for logging users in and out,
IDhcpCallback to accept information from DHCP Server df@kenCallback to be
informed whenever the validity of a token expires:

: (
l (

?ILogin.GetTokenldFromIpAddress

+

?lLogin.LoginWithFlyTicketld {
lIFlyTicketAuth.CreateToken_1;
(!IFirewall.DisablePortBlock + NULL)

}

+

?lLogin.LoginWithFrequentFlyerld {
lIFrequentFlyerAuth.CreateToken;
('IFirewall.DisablePortBlock + NULL)

}

+

?lLogin.LoginWithAccountld {
IlAccountAuth.CreateToken;
('IFirewall.DisablePortBlock + NULL)

}

+

?lLogin.Logout {
lIToken.InvalidateAndSave_1 + NULL

}

)*

I

?ITokenCallback.Tokenlnvalidated_1 {
lIFirewall.EnablePortBlock_1

}*

I

?ITokenCallback.Tokenlnvalidated_2 {
lIFirewall.EnablePortBlock_2

}*

I

?ITokenCallback.Tokenlnvalidated_3 {
lIFirewall.EnablePortBlock_3

}*
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?IDhcpCallback.IpAddressinvalidated {
lIToken.InvalidateAndSave_2 + NULL
}*

lIDhcpCallback.IpAddressinvalidated*

I
(

?IManagement.UsePermanentlpDatabase”; (
lllpMacPermanentDb.GetlpAddress*

I
(

IIManagement.UsePermanentlpDatabase$;
IManagement.StopUsingPermanentlpDatabase”

); lIManagement.StopUsingPermanentlpDatabase$

The frame protocol of the whole composition representing the environment
follows:

?ILogin.GetTokenldFromIpAddress
+

?lLogin.LoginWithFlyTicketld
+

?lLogin.LoginWithFrequentFlyerld
+

?lLogin.LoginWithAccountld
+

?lLogin.Logout
+

?IAccount.GenerateRandomAccountld
+

?1Account.CreateAccount
+

?lAccount.RechargeAccount

The state space generated by this composition features abovelibbsnsilates
and the correctness can be verified by the DChecker in about 3 sn{oat®entium 4
3 GHz, 1024 MB RAM, 600 MB for Sun JVM - build 1.5.0_06-b05, Windows XP
SP2). Now, suppose that the wireless internet providing application shorgddsal in
another environment (e.g. public garden), where the parts specifie &rport location
will not be used. The frame protocols representing the environment cararnglly
altered to contain only inputs valid in the new location (only a cosdd payment is
now possible):

?lLogin.GetTokenldFromIpAddress
+

?lLogin.LoginWithAccountld

+

?lLogin.Logout
+

?IAccount.GenerateRandomAccountld
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+

?IAccount.CreateAccount
+

?lAccount.RechargeAccount

Behavior protocols of the components can be now automatically pruned by
running the reduction extensions of the DChecker. Protocols of the contpdoken,
Firewall, CardCenter and AccountDatabase remain unchanged. On the other hand,
protocols of the componentlyTicketDatabase and FrequentFlyerDatabase are
reduced tadNULL which means that the components are never used and can lye safel
left out from the composition. The protocols of the componextsitrator and
DhcpServer are reduced partially. The airport specific login calls amitted in the
protocol ofArbitrator:

: (

: (

?lLogin.GetTokenldFromIpAddress

v +

; ?ILogin.LoginWithAccountld {

; llAccountAuth.CreateToken;

: ('IFirewall.DisablePortBlock + NULL)
: }

+

] ?ILogin.Logout {
lIToken.InvalidateAndSave_1 + NULL
E }

: )*

: I

; ?ITokenCallback.Tokenlnvalidated_1 {

i lIFirewall.EnablePortBlock_1

i I

: |

?ITokenCallback.Tokenlnvalidated_2 {

: lIFirewall.EnablePortBlock_2

| |

: |

: ?ITokenCallback.TokenInvalidated_3 {
lIFirewall.EnablePortBlock_3

' P

; I

| ?IDhcpCallback.IpAddressinvalidated {

; lIToken.InvalidateAndSave_2 + NULL
: 5

D)

The behavior specifications of both the whole compositions and the colmposit
with the simplified environment can be found on the accompanying Gieiditectory
/lexamples/case_study
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6.2 Component repository

The airport internet service demo is not very useful for dernsaditstr of the LTL
checking and reduction with respect to property. The typical uskest techniques
would be searching a large component repository for a suitable compaevient
designing a component application. Each component in the repository should be
annotated by its behavior protocol.

Consider a designer trying to find one of many data storage cemisopresent
in the repository. The component should provide ID&taAccess interface with the
methodsinsert, delete and query. Moreover, it should also provide the interface:
IDataStorageManagement, which would allow configuring the component at
runtime. On the other hand, the component should requirelAleSystem and
ILogger interfaces. Methods of tHEileSystem interface provide access to a persistent
storage, on which tables with data should be eternalized. |Odgger interface
provides access to the system log. Suppose that the designertovdimd one of
potentially many data storage components which would log eacbftht methods on
thelDataAccess interface (nsert, delete andquery).

Without the LTL checking, the designer would define a behavior protbeol
would best suit his needs, and try to find a component substitutableHomwever, this
way, the designer would be forced to specify also the interplah@i-leSystem
interface as a reaction on timsert, delete andquery method calls. This would require
creation of some kind of a super-protocol compliant with any acceptable behavior.

With the LTL checking, the designer can specify just the camo@tdition that
should be satisfied:

G IDataAccess.insert” % IDataAccess.delete” % IDataAccess.query”®
F ILogger.log"

The LTL extension of the checker can be used to identify those compdhant
satisfy the condition. Of course, only the components that provide thessaeyg
interfaces have to undergo the verification process. Moreollepraocols of the
chosen set can be reduced with respect to the specified foamdilthe designer can
read the logging interplay without being confused by parts gpitbcols unimportant
to the logging. Probably nothing more than the parallel calls on the
IDataStorageManagement interface will be reduced in this case.
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Figure 29. Overview of the airport internet providing demo Bgegion
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7 Related work

This work is based on the concept of behavior protocols introduced in [3ge Si
invention of behavior protocols, the notion of communication errors and comptiince
components further evolved. This thesis is based on the consensualaocmpl
presented in [1, 2]. There is an ongoing research on behavior protobelandst
significant works aim at two goals. First, a considerablerei$ made to combine Java
PathFinder with the checker for behavior protocols, in order to cheackitipe
components against their behavior protocol specification [34]. Withpthdte is no
way to guarantee that the primitive components satisfy théiavie protocols and
verification of compliance of the whole component hierarchy could bedbas an
unsatisfied assumption.

The second goal is motivated by the work on the demo applicationa ploet
internet providing service — designed as a part of the project CompoakaibilRy
Extensions for Fractal Component Model [10]. Lesson taught isthieasyntax of
behavior protocols misses some practical features like excepti@emic actions. See
[36, 22] for further details on this topic.

In Section 3, the finite trace semantics of L{Lis presented. Similar
modifications to the semantics of LTL are done also in other wer§§s[14, 17]. These
works focus on the verification of LTL formulas using runtime gsialand simulation
of the examined system. In both cases, the output is a finie tinat can be further
studied. The LTL is useful for its trace semantics. In contwitst CTL, each trace can
be verified separately. The authors faced similar problemsdeitinition of the next
operator. In [14], three different semantics are presented: weakalreud strong, and
their relations are discussed. On the other hand, authors of [11jceatiie next
operator; this approach is the closest to the solution presented imebkis. However,
our work applies LTLx on the action-based models and thus modifies the semantics
even more. For example, the empty trace has a good meaning intitrebased
semantics (no action was performed by the system) and LTLufasnmave to be well
defined on it.

In the aforementioned works, the finiteness of the traces is mh&vethe
methods of their acquisition. The run of a system is still perdeagean infinite trace,
however an output of the simulation or the run-time analysis is alfugte. The traces
are in fact truncated. Thus, all possible suffixes have to beatlyrdiscussed, which
makes the goal harder. On the other hand, in our work, finitenessces tof behavior
protocols is given by definition and each finite trace represenisgle complete run of
the system.

The last branch of research that can be considered related tthekis is
program slicing(for surveys see [46, 6]). Program slicing is used to reduc&ea gi
program with respect to a certain criterion. For example, saclegion can be a value
of a variable at a particular line of the program. In that cazmggables and execution
paths of the program, which have no impact to that value, can be clihigftechnique
is used also in the realm of model checking to reduce state sptwe model before
performing the verification.
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As well as the protocol reduction, program slicing usually includestion of a
dependency graph with a similar meaning to the dependency graptSé&otion 4.6.
However, there are also some major differences. First, unlikgrgms, behavior
protocols do not contain any notion of variables or method parametarsndSe
reduction of protocols is performed during the checking process @&dat primarily
used to decrease the size of the state space.
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8 Evaluation

In Section 1.5, the goals of this thesis were stated. This seliiomsses the achieved
results with respect to these goals.

First goal was to target the verification of a genemaipteral property. This goal
was reflected in Section 3, which presents an approach to veoific the properties
stated in Linear Temporal Logic. LTL was chosen mainly ®itriace semantics close
to the semantics of behavior protocols. Also CTL and HennessyiMibggc were
considered, but they did not qualify as discussed in Section 3.4. Sindadsieat LTL
is defined over infinite traces and is rather state-based, icaithhs of the semantics
were made to target finite traces of behavior protocols. To éesp; only LTLy,
which is LTL without the next operator, was used. As a consequerthe ohanges in
semantics, also the algorithm for verification had to be altateng with the LTL to
Blchi automata translation algorithm.

The prototype implementation was created as an extension of theidreha
protocol checker — DChecker [38]. Time complexity of the veriftcagrocess in the
worst case is exponential in both size of the protocols and sthe &ffL formula. The
following LTL formulas were verified on the behavior protocol belowheT
performance data are summarized on Fig. 30.

Formula 1: Gcl.a" Fc2.y"
Formula 2: Gcl.a? Fcl.a$ c2x" R$ cl.a$

Formula 3: Gcl.a" Fcl.a$ c2.x* R$ cl.a$

G cl.zz» $cl.ww” U cl.zz$

Formula 4: Gcl.a® Fcl.a$ c2.x" R$ cl.a$
G cl.zz $cli.ww” U cl.zz$

Fc2x& Fc2y?

Formula 5: Gcl.a? Fcl.a$ c2x* R$cla$ %
G cl.zz» $cl.wwN U cl.zz$ %
Fc2x*"& Fc2y?
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frame: ?cl.a* | ?cl.b* | ?c2.c* | ?2c2.d*

# bound methods
sync{cl.a, cl.b, c2.c, c2.d}

# component 1

?cl.a{!c2.x | !c2.y }*|

2cl.b{!c2.xx* | lc2.yy* }* |

?cl.w* |

?2cl.z* |

2cl.ww* | .
v ?cl.zz* '

# bound methods
' sync{c2.x, c2.y, cl.w, cl.z, c2.xx, c2.yy, cl.zz, c1l.ww}

1 # component 2

v ?2c2.c{!cl.w*|lcl.z* }* |

1 2¢2.d{ lcl.ww* + lcl.zz* }* |
1 2c2.x* |

L ?c2.y*F |

I 2C2.XX* |

1 2c2.yy*

Time | With reduction States of NFSM for L[TL  Vistates
Compliance test 12 sec. - - 119 952
Formula 1 14 sedq. 26 sec. 2 254 89§
Formula 2 19 sedq. 31 sec. 4 359 854
Formula 3 24 seq,. 42 sec. 7 511 559
Formula 4 27 seq. 49 sec. 11 607 69%
Formula 5 20 seq. 33 sec. 49 348 389

Figure 30. Performance summarization. All test were run ontieem4 3 GHz with
1 024 MB RAM (600 MB for Sun JVM — build 1.5.0_06%), Windows XP SP2

Second goal consisted of developing reduction techniques for behavior protocols
and it was focused in Section 4. Two types of reduction were igehtieduction with
respect to composition and reduction with respect to property. Both ofpeduction
should help the designer to understand the behavior specification by ntaking
protocols easier to comprehend. The first type should prune out thoseopdinis
protocols that are not used in the particular composition. It shoulty ¢lae actual role
of each component. On the other hand, reduction with respect to progradyes the
parts of the protocols that are irrelevant to the given property. Thievioe protocols
reduced in this manner should emphasize which part of the protocol rakgs/én
property satisfied.
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A prototype implementation of both of the proposed reduction algorithass w
developed. Both can be performed during the verification process witttoeasing its
time complexity. The drawback is the suboptimality of reducticsults; i.e. both
algorithms can reduce less than is really possible, mainly vappiied to the
nondeterministic protocols or in cases where the decision would eecprsulting the
whole trace which would increase the time complexity, as discussed in Section 4.6.

Usefulness of reduction with respect to composition was demonstratéa on
real-life behavior protocols in Section 6 along with description typacal use case for
LTL checking and reduction with respect to property, without appbicatn the real
data in this case.

The bottom line is that the goals stated in Section 1.5 weikeftllfHowever, a
natural question reads: “Does it really help the designer?"nVitheomes to reduction
with respect to composition, it is a very straightforward technilqaeworks reasonably
well on real-life protocols. Suboptimality in case of the nondetestninprotocols
(discussed in 4.3) is not an issue, because the amount of nondeternmnibm
meaningful protocols is usually very low.

When considering LTL checking and reduction with respect to propérty, i
important to note that the LTL checking can verify only propertigat are really
present in the abstract model of the behavior specification. Fonpdéxain the demo
application, it would be very useful to be able to check whether thensysehaves
consistently to a single user (e.g. logout fails for the the#ris not logged in), but the
behavior specification of the components is stateless and thimatfon is simply not
present there. The properties that can be checked are only conditiomarious
implications of method calls without respect to their paramseterfact, it is usually not
so difficult to decide validity of the formulas by just lookinganthe protocols.
However, it requires some level of understanding to the pantipubdocols and this is
exactly the contribution of LTL checking and reduction with resfeptroperty. These
techniques can do the same automatically and can point out the impentsnof the
protocols even for the unqualified users interested in reuse.
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9 Conclusion and Future work

To summarize, the first contribution of this work is incorporatingd. lifito behavior
protocols. Modifications to the semantics of LTL to suit needs of\wehgarotocols
were proposed along with modifications to the standard LTL verificatiaritdgn. The
second contribution is development of reduction techniques for behavior pratocols
order to make the comprehension of the behavior specificationr.eAligoroposed
algorithms were implemented as an extension to the behavior protooetker
DChecker.

When it comes to future work, there are two tasks that mighirbed at in the
future. First, the algorithm for translation of the modified LJtormulas into the finite
automata is just a modification of the original algorithm dégctiin [16] and it does
not contain any nontrivial optimization. Thus, the resulting automatorbealarger
than necessary. Second, as mentioned in Section 5 on the prototypeentalson,
DChecker tool, on which all the extensions were based, was still dadelopment at
the time of writing. Some additional effort have to be spend, in daldeep the
extensions compatible with the alpha version that has not been camypétdn its
alpha version, the DChecker should support distributed state spacasdtawdrich is
not considered by the presented extensions.
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Appendix

This thesis is accompanied by the CD ROM containing binariescamdescodes of the
implementation and a set of examples. The CD ROM is organized as follows:

| READMExt
Brief description of the contents of the CD ROM

/doc/javadoc
Generated reference documentation {gsdex.html )

/doc/thesis
Electronic version of this document along with all the figures

[src/
Source codes of the extended DChecker

/bin/dchecker.jar
Executable JAR archive containing build of the extended DChecker

/bin/lib
LTL2BA4J library

/lexamples/
Directory with the examples (s&&XAMPLES.txt )

/prerequisites/
Software prerequisites of the prototype: Sun Microsystems JREAGLS,
tool and Java Compiler Compiler for both Linux and Windows

Running the checker

Prior to running the application, JRE 1.5 has to be installed on the sggiem. The
installation files can be found in tigrerequisites directory on the CD. Use the
shell scriptsdchecker.bat or dchecker.sh  to run the application from the
supplied executable JAR file. The command line parameters are as follows:

-h --help
View the help for command line parameters
-i --input *file’
Read input from the specified file
-r --reduce
Reduce protocols after verification. Type of the reduction depends on the
type of verification (if—Itl  or --Itl-file parameter is present, then

reduction with respect to property is performed)

-0 --output ‘file’
Output the reduced protocols to the given file

--Itl It
Verify the given LTL formula
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--Itl-file "ltl-file’
Verify the LTL formula from the given file

--dot-dump 'file’
Dump an automaton representing the given LTL to the specifeednfia
DOT format (it can be visualized later by the Graphviz tool [18])

--external-translation
Use the LTL2BAA4J library for the LTL to NFSM translation

The LTL operators have to be specified as follows:

$ 7 !
7 &

% 7 |
7 ->

& 7 <>

An event have to be of a forimterface.Method” or Interface.Method$.

To run the checker on the supplied examples, use of the Ant script
/lexamples/build.xml is recommended. Installation files of the Ant tool are also
available in the/prerequisites directory. The script can be executed by just
typing ‘ant ’ in the/examples directory. It will print the necessary guidelines.

Compiling the sources

For the easy compilation process, the Ant schpiid.xml is provided in the
directory/src . It contains following targets:

build
Build the sources (default)

clean
Delete the compilation output

rebuild
Build the sources from scratch

run
Execute the built application

parsers
Generate the LTL and behavior protocol parsers using JavaCC tool. The
JAVACC HOMEnvironment variable has to be set to the valid home
directory of the JavaCC installation (installation files previded in the
/prerequisites directory).

If the Ant tool is correctly installed, the script can be exaddtom the/src
directory by simply typing (on the write-enabled file system):

ant target

69



