Course Agenda

Crash Dump Analysis 2015/2016

CHARLES UNIVERSITY IN PRAGUE
faculty of mathematics and physics

Department of Distributed and Dependable Systems

ORACLE
SUSE
redhat
Motivation

- **Goal**
 - Explain what is the right debugging tool when an application or the kernel crashes

- **Observation**
 - `printf()` is usually not the right tool
Motivation (2)

- More observations
 - System can crash even in production
 - We cannot alter the binary and run it again
 - We have to investigate **post mortem**
 - Using the record of the memory layout in the time of the crash (**crash dump**)
 - It is not wise to reinvent the wheel
 - We will see some **well-proven tools and best practices**
 - Some degree of **low-level programming knowledge** is required
Course Outline

- Basic low-level programming
 - Processor architectures, assembler, stack, ABI
 - IA-32, AMD64, SPARC V9
- Basic system debugging tools
 - Solaris, Linux, Windows
 - mdb, gdb, crash, WinDbg
- Core files, crash dumps
 - How to analyze them
Course Outline (2)

- **Common causes of crashes**
 - Memory corruption
 - Deadlock
 - Lockup
- **Dynamic tracing tools**
 - DTrace, SystemTap
- **System diagnostics tools**
 - ABRT
Expected Knowledge

- **Basic C language**
 - *Programming in C++* course should be more than sufficient

- **Basic low-level programming**
 - *Principles of Computers* course should be more than sufficient

- **User-level UNIX knowledge**
 - *Introduction to UNIX* course should be more than sufficient

- **Basic technical English**
 - For the slides, literature, tools and manuals
Practical

- **Lectures**
 - Thursdays 10:40 – 12:10 in lecture hall **S9**

- **Tutorials / Labs**
 - Thursdays 12:20 – 15:30 in lab **SU1**
 - Physical capacity is limited to about 15 students
 - Make sure your u-lab account is working
 - Or you can bring your own laptop
 - Make sure you have Internet connection
Current lecturers

- Martin Děcký – martin.decky@d3s.mff.cuni.cz
- Jiří Svoboda – jiri.svoboda@oracle.com
- Tomáš Jedlička – tomas.jedlicka@oracle.com
- Petr Muller – muller@redhat.com
- Martin Čermák – mcermak@redhat.com
- Jakub Filák – jfilak@redhat.com
- Vlastimil Babka – vbabka@suse.cz
- Michal Hocko – mhocko@suse.cz

Past contributors

- Jakub Jermář (Oracle/Avast)
- Vítězslav Bátrla (Oracle)
- Vineeth Pillai (Oracle)
Practical (3)

- Web
 - Slides, practical information, news
 - http://d3s.mff.cuni.cz/cda
Grading

- **Labs credit**
 - No lab attendance required
 - But strongly recommended
 - Passing a **practical test**
 - Typical assignment: Identify a root cause of a crash from a crash dump
 - At the end of the semester (2 tries)

- **Exam**
 - Passing a **written test**
 - Questions available on the web (3 terms)
Resources

- **Lectures and labs**
 - Most important hands-on experience
 - **Note:** The slides serve just as an outline

- **Literature**
 - **Frank Hofmann:** *The Solaris Operating System on x86 Platforms, Crashdump Analysis, Operating System Internals*
 - http://d3s.mff.cuni.cz/cda/ref/book.pdf
Resources (2)

- Literature (cont.)
 - Igor Ljubuncic: *Linux Kernel Crash Book*
 - Link
 - Chris Drake, Kimberley Brown: *PANIC! UNIX System Crash Dump Analysis Handbook*
 - Useful general reference
• Literature (cont.)

 Richard McDougall, Jim Mauro, Brendan Gregg: *Solaris Performance and Tools: DTrace and MDB Techniques for Solaris 10 and OpenSolaris*

 • Dynamic tracing and core dump analysis using mdb
Resources (4)

- **References**
 - *Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2*
 - IA-32 and AMD64 instruction set reference
 - Link
 - *SPARC Assembly Language Reference Manual, Appendix E SPARC-V9 Instruction Set*
 - SPARC V9 instruction set reference
 - Link
Disclaimer

- Your mileage may vary

- Different operating systems have different levels of support for crash dump analysis and observability
 - This course tries to explain the general principles
 - But sometimes we just need to demonstrate those principles in action

- Therefore we primarily use Solaris and Fedora (on IA-32, AMD64 and SPARC V9)
- It is up to you to translate the general principles and concrete examples to your favorite platform
- We welcome any constructive suggestions