
http://d3s.mff.cuni.czCrash Dump Analysis 2014/2015

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physicsfaculty of mathematics and physics

Trap tracingTrap tracing

Crash Dump Analysis 2014/2015 2Trap tracing

Mostly assembly language code without
epilogues and prologues

When there are no sdt probes

When the context is very restricted, such as
callback_handler or trap code

If there is no DTrace, i. e. Solaris 9 and older

When DTrace is not enoughWhen DTrace is not enough

Crash Dump Analysis 2014/2015 3Trap tracing

Set a breakpoint, but the debugger fails when
the breakpoint is hit
Set a breakpoint, the kernel crashes without
hitting the breakpoint
Set a breakpoint, the breakpoint is hit, but the
kernel crashes upon continuing

When kmdb is not enoughWhen kmdb is not enough

Crash Dump Analysis 2014/2015 4Trap tracing

TRAPTRACETRAPTRACE

Low-level tracing of essential system events
Available in Solaris

IA-32/AMD64 and SPARC V9 (sun4u/sun4v)
Slightly different implementations

May be the only analysis aid left when ...
... everything else fails
... other techniques are not applicable

Crash Dump Analysis 2014/2015 5Trap tracing

TRAPTRACE (2)TRAPTRACE (2)

Compile-time choice
Cannot be turned on if not present
Cannot be turned off if present
Enabled in debug kernels
When TRAPTRACE macro defined

MDB support
Present the trace data from a crash dump

Requires post-mortem interpretation by a human

Crash Dump Analysis 2014/2015 6Trap tracing

Trace data stored in a per-CPU kernel circular
buffer of records of the struct
trap_trace_record type

struct trap_trace_record {
uint16_t tt_tl;
uint16_t tt_tt;
uintptr_t tt_tpc;
uint64_t tt_tstate;
uint64_t tt_tick;
uintptr_t tt_sp;
uintptr_t tt_tr;
uintptr_t tt_f1;
uintptr_t tt_f2;
uintptr_t tt_f3;
uintptr_t tt_f4;

};

Implementation – sun4uImplementation – sun4u

Crash Dump Analysis 2014/2015 7Trap tracing

tt_tl
corresponds to the TL register as it existed in the
moment of the event

trap level
(0) – no trap in progress
(1) – a trap in progress
(>1) – nested trap in progress

depth of nesting

Implementation – sun4u (2)Implementation – sun4u (2)

Crash Dump Analysis 2014/2015 8Trap tracing

tt_tt
trap type

0x0 – 0x1ff
identifies the type of the trap

– page fault vs. interrupts vs. window trap etc.

>= 0x200
for non-trap events

– such as TSB-miss / hit
– passing a trace-point in the code

Implementation – sun4u (3)Implementation – sun4u (3)

Crash Dump Analysis 2014/2015 9Trap tracing

tt_tpc
corresponds to the TPC register as it existed in the moment of
the trap

trap PC
records the address in code where the event occurred

tt_tstate
snapshot of the TSTATE register as it existed in the moment of
the trap

information about processor state

Implementation – sun4u (4)Implementation – sun4u (4)

Crash Dump Analysis 2014/2015 10Trap tracing

tt_tick
corresponds to the STICK register as it existed in
the moment of the event

event timestamp

tt_sp
snapshot of the SP register as it existed in the
moment of the event

Implementation – sun4u (5)Implementation – sun4u (5)

Crash Dump Analysis 2014/2015 11Trap tracing

tt_tr

tt_f1 - tt_f4
auxilliary fileds used by non-trap records

e. g. details about MMU faults, register windows
configuration registers

Implementation – sun4u (6)Implementation – sun4u (6)

Crash Dump Analysis 2014/2015 12Trap tracing

> trap_table0+98*20,20/ai
0x1001300:
0x1001300: stx %l0, [%sp + 0x7ff]
...
0x100131c: stx %l7, [%sp + 0x837]
0x1001320: stx %i0, [%sp + 0x83f]
...
0x1001338: stx %fp, [%sp + 0x86f]
0x100133c: stx %i7, [%sp + 0x877]
0x1001340: ba +0x60dc
<0x100741c>
0x1001344: rd %pc, %l4
0x1001348: clr %l4
0x100134c: saved
0x1001350: retry

> trap_table0+98*20,20/ai
0x1001300:
0x1001300: stx %l0, [%sp + 0x7ff]
...
0x100131c: stx %l7, [%sp + 0x837]
0x1001320: stx %i0, [%sp + 0x83f]
...
0x1001338: stx %fp, [%sp + 0x86f]
0x100133c: stx %i7, [%sp + 0x877]
0x1001340: saved
0x1001344: retry
0x1001348: illtrap 0x0
0x100134c: illtrap 0x0
0x1001350: illtrap 0x0

Spot the difference

Instrumentation – sun4uInstrumentation – sun4u

Crash Dump Analysis 2014/2015 13Trap tracing

> trap_table0+98*20,20/ai
0x1001300:
0x1001300: stx %l0, [%sp + 0x7ff]
...
0x100131c: stx %l7, [%sp + 0x837]
0x1001320: stx %i0, [%sp + 0x83f]
...
0x1001338: stx %fp, [%sp + 0x86f]
0x100133c: stx %i7, [%sp + 0x877]
0x1001340: ba +0x60dc
<0x100741c>
0x1001344: rd %pc, %l4
0x1001348: clr %l4
0x100134c: saved
0x1001350: retry

> trap_table0+98*20,20/ai
0x1001300:
0x1001300: stx %l0, [%sp + 0x7ff]
...
0x100131c: stx %l7, [%sp + 0x837]
0x1001320: stx %i0, [%sp + 0x83f]
...
0x1001338: stx %fp, [%sp + 0x86f]
0x100133c: stx %i7, [%sp + 0x877]
0x1001340: saved
0x1001344: retry
0x1001348: illtrap 0x0
0x100134c: illtrap 0x0
0x1001350: illtrap 0x0

Spot the difference

Instrumentation – sun4uInstrumentation – sun4u

Crash Dump Analysis 2014/2015 14Trap tracing

TT_TRACE(label) macro
trace_gen

trace_win

trace_tsbmiss

trace_tsbhit

Instrumentation – sun4u (2)Instrumentation – sun4u (2)

Crash Dump Analysis 2014/2015 15Trap tracing

SYSTRAP_TRACE
tracing the sys_trap() trace-point

Directly embedded
pil_interrupt()

Instrumentation – sun4u (3)Instrumentation – sun4u (3)

Crash Dump Analysis 2014/2015 16Trap tracing

MDB can present the TRAPTRACE data
collected before crash

The data can be used to reconstruct events
which lead to a crash

Syntax

[cpuid]::ttrace [-x]

MDB SupportMDB Support

Crash Dump Analysis 2014/2015 17Trap tracing

> ::ttrace

CPU %tick %tt %tl %tpc

 0 00000000c40ced44 0024 cleanwin 0001 000000000108e4c0 vsnprintf

 0 00000000c40ced1f 0268 ? 0001 0000000001087704 panicsys+0x120

 0 00000000c40cecfb 0098 spill-6-norm 0001 00000000010086e4 flush_windows+4

 0 00000000c40cecf5 0098 spill-6-norm 0001 00000000010086e4 flush_windows+4

MDB Support (2)MDB Support (2)

Crash Dump Analysis 2014/2015 18Trap tracing

> 0::ttrace -x

%tick %tstate %tt %tl %tpc %sp

TR F1-4

00000000c40ced44 0000000000001606 0024 0001 000000000108e4c0 0000000000000000

0000000000009999 [15,7030003,3000e,0]

00000000c40ced1f 00000000000001c0 0268 0001 0000000001087704 0000000070002000

000000003f575c00 [ffffffffffffffff,1087708,3f680010,0]

00000000c40cecfb 0000009900001603 0098 0001 00000000010086e4 000000000180d5d1

0000000000009999 [15,2050001,3000e,1087be4]

00000000c40cecf5 0000009900001603 0098 0001 00000000010086e4 000000000180d681

0000000000009999 [15,1040002,3000e,102ae9c]

MDB Support (3)MDB Support (3)

Crash Dump Analysis 2014/2015 19Command Line Tools

Demonstration of memory debugging
techniques

Scenario
We used netcat as our target
We used libwatchmalloc for memory debugging

Found buffer overrun in netcat, an application that
had been running fine for quite a few years

Overrun not found in old netcat version

Real life example – ScenarioReal life example – Scenario

Crash Dump Analysis 2014/2015 20Command Line Tools

Attempt #1 - Something changed in netcat
Source code history does not show any changes

Maybe change in some dynamically linked libraries

Tried running with libumem ... no memory issue
discovered

Does not seem to be caused by netcat itself

Real life example – netcatReal life example – netcat

Crash Dump Analysis 2014/2015 21Command Line Tools

Attempt #2 - Problem in watchmalloc library
The algorithm as follows:

Preload own alloc/free functions that get used instead
the system ones
Append header and/or footer to each block
Protect header/footer using watchpoints

Simple code, no obvious bug

And yet allegedly the header/footer was touched

Real life example – watchmallocReal life example – watchmalloc

Crash Dump Analysis 2014/2015 22Command Line Tools

Attempt #3 - back in netcat
The function where we stopped makes a copy of an 48byte
wide buffer

It is implemented as 3x 16byte moves via MMX/SSE
instructions

Older version of uses 6x 8byte moves via GPRs

Finally! Something has changed - the compiler

Unfortunately neither assembly versions should trigger the
watchpoint and stop

Real life example – back in netcatReal life example – back in netcat

Crash Dump Analysis 2014/2015 23Command Line Tools

Attempt #4 - Problem with watchpoints
A watchpoint is interval (start, start+len) of memory that we care about

The MMU works with 4k pages. Once you enable watchpoint, kernel has to
protect whole page to catch any access

During every protection fault it needs to determine interval of the fault and
compare it to list of watchpoint intervals and either continue or take action

The range of the fault is calculated in a following way:
The start address is provided by the MMU hardware
The length is depending on the instruction that was running

Unfortunately the in-kernel disassembler understands SSE/MMX and knows that

the access is 16byte wide. There is no way to hit the watchpoint.

Real life example – watchpointsReal life example – watchpoints

Crash Dump Analysis 2014/2015 24Command Line Tools

Attempt #5 - take a look at protection fault
This is not task for DTrace

predicates too complicated to catch so precise fault
Otherwise it produces lot of data

kmdb is helpful to debug trap code, but we would
like to check the HW fault and this is place where
kmdb could have troubles

Real life example – which toolReal life example – which tool

Crash Dump Analysis 2014/2015 25Command Line Tools

Attempt #5 - take a look at protection fault
TrapTrace

As it is user-space fault, the registers contain user-space
values. Including %rip
We know the instruction range and its place in memory
Thus we can find corresponding trap trace data for that
particular %rip

Real life example – which toolReal life example – which tool

Crash Dump Analysis 2014/2015 26Command Line Tools

What we found
The register %cr2 does not contain expected value.
The value in it is +8 bytes

Based on this every interval kernel needs to check
is shifted 8 bytes to the right

Last 16-byte move instruction will cross the
watchpoint boundary

Real life example – what we foundReal life example – what we found

Crash Dump Analysis 2014/2015 27Command Line Tools

How can this happen?
The CPU reports correct %cr2 for 8byte memory access,
but not for 16 byte memory access

Except latest Xeons, no cpu guarantees atomic 128-bit
memory stores. Our CPU performs 2x 8-byte stores
internally and reports address in the middle in its %cr2

You can find this in AMD’s cpus errata. There is no
fix/workaround available as it does not break paging in
operating systems, just causes troubles with debuggers.

Real life example – what we found (2)Real life example – what we found (2)

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

