Unified Modeling Language (UML)

An Overview
• UML is a modeling *notation*
 • now in 2.5.1 (December 2017)
 ▪ mature
 ▪ based on
 • notations previously used in the software engineering OOA&D – Bracha .. ,
 Booch (Ada at Rational), Rumbaugh OMT (at GE), Jacobson (use cases at
 Ericsson)
 ▪ suitable for Object-oriented
 ▪ design
 ▪ implementation
UML Diagrams

- Defines a number of diagrams
UML Diagrams – Class Diagram

ClassA

- name: String
- shape: Rectangle
 + size: Integer [0..1]
- area: Integer {readOnly}
- height: Integer = 5
- width: Integer

ClassB

- id {redefines name}
- shape: Square
- height = 7
- width
UML Diagrams – Component Diagram

UML Diagrams

• Defines a number of diagrams

Figure from: OMG, “Unified Modeling Language: Superstructure, Version 2.1.1”
UML Diagrams – Sequence Diagram

UML Diagrams – Communication Diagram

UML Diagrams – State Machine Diagram

Figures from: OMG, "Unified Modeling Language: Superstructure, Version 2.1.1"
UML Diagrams – Use Case Diagram

• CoCoME trading system...
Unified Modeling Language (UML)

Class Diagrams
Class Diagrams

• A class diagram shows
 ▪ classes
 ▪ relations among classes
 ▪ generalization
 ▪ associations (with multiplicities, names)
 • special case: aggregation and composition

• It’s definitely good to be able to read class diagrams!
Class Diagrams – Class

- Shows a class with attributes with explicitly marked visibility

<table>
<thead>
<tr>
<th>Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ size: Area = (100, 100)</td>
</tr>
<tr>
<td># visibility: Boolean = true</td>
</tr>
<tr>
<td>+ defaultSize: Rectangle</td>
</tr>
<tr>
<td>- xWin: XWindow</td>
</tr>
<tr>
<td>display()</td>
</tr>
<tr>
<td>hide()</td>
</tr>
<tr>
<td>- attachX(xWin: XWindow)</td>
</tr>
</tbody>
</table>
Class Diagrams – Notation

• Class compartments
 ▪ top
 • name and annotations
 • stereotypes, superclass,...
 ▪ attributes
 ▪ operations
 ▪ additional compartments
 • added by extensions, e.g.
 • EJB finder/business/activation compartments...

<table>
<thead>
<tr>
<th>Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ size: Area = (100, 100)</td>
</tr>
<tr>
<td># visibility: Boolean = true</td>
</tr>
<tr>
<td>+ defaultSize: Rectangle</td>
</tr>
<tr>
<td>- xWin: XWindow</td>
</tr>
<tr>
<td>display()</td>
</tr>
<tr>
<td>hide()</td>
</tr>
<tr>
<td>- attachX(xWin: XWindow)</td>
</tr>
</tbody>
</table>
Class Diagrams – Notation

- class name: bold
- abstract class (or method): italics
- class scope (aka static): underlined (instance-scope otherwise)
- visibility (attributes, operations)
 - + public visibility
 - # protected visibility
 - - private visibility
 - ~ package visibility

```
Window
+ size: Area = (100, 100)
# visibility: Boolean = true
+ defaultSize: Rectangle
- xWin: XWindow

display()
hide()
- attachX(xWin: XWindow)
```
Class Diagrams – Example

Figure from: Larman, C., “Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the Unified Process”
Associations

• Association
 - Semantic relationship
 - At least two ends
 • May be navigable
 - May have assigned aggregation type
 • Shared
 • Composite
Profiles & stereotypes

• UML can be extended by defining so called profiles and stereotypes
• This allows assigning particular roles and associating additional attributes to existing UML blocks
Meta-models

Modeling models...
Models and meta-models

• Model is what we specify
 ▪ e.g. data model of an application modeled in UML

• But what the language, which we use for modeling?
 ▪ The language itself can be again described by a model
 ▪ This model is called meta-model

• Meta-modeling constructs
 ▪ Classes
 ▪ Associations
 ▪ DataTypes
 ▪ Packages
 ▪ Constraints

XML metamodel
Modeling hierarchy

M3 – MOF definition

M2 – metamodel

generated

M1 – model

Repository of

M0 – application

MOF model

IDL metamodel

IDL interfaces

CORBA Objects

UML metamodel

UML diagrams

Objects
Modeling hierarchy

Hard-wired Meta-metamodel

MetaModel ("RecordTypes",
MetaClass ("Record",
[MetaAttr ("name", String),
 MetaAttr ("fields", List <"Field">)]
MetaClass ("Field", ...)

Record ("StockQuote",
[Field ("company", String)
 Field ("price", FixedPoint)])

StockQuote ("Sunbeam Harvesters", 98.77)
StockQuote ("Ace Taxi Cab Ltd", 12.32)

...
How many meta layers?

• The minimal number of layers is two

• Examples
 ▪ 2 layers
 • generic reflective systems - Class/Objecs
 ▪ 3 layers
 • relational database systems - SysTable/Table/Row
 ▪ 4 layers
 • UML, MOF specification - MOF/UML/User Model/User Object
 ▪ MOF is a UML-like language for meta-modeling (i.e. only core constructs compared to UML)
Representing MOF

• MOF has no own graphical representation
 ▪ Uses UML
 ▪ Relies on the fact that UML and MOF have a lot of similarities

• Brain exercise:
 ▪ UML is M2-model
 • Thus, it is an instance of MOF
 ▪ UML is used to represent MOF models
 ▪ MOF is modeled in MOF
 • Thus, MOF is formalized by UML
The CMOF package reuses the abstract syntax defined in the InfrastructureLibrary for UML, MOF.

Figure from: OMG, "Meta Object Facility (MOF) Core Specification, Version 2.0"