Deductive Methods, Bounded Model Checking

Pavel Parízek

http://d3s.mff.cuni.cz
Deductive methods
If you want to know more ...

- Decision Procedures and Verification (NAIL094)
 - Lecturer: Martin Blicha, D3S
 - http://d3s.mff.cuni.cz/teaching/decision_procedures/

Basic terminology (reminder)

- Logic formula
 - syntax, semantics

- Propositional logic

- First-order logic
 - Predicates
 - Quantifiers

- Assignment
 - Partial assignment

- Satisfiability

- Validity (tautology)
Relation between satisfiability and validity

\[
\phi \text{ is valid} \implies \phi \text{ is satisfiable}
\]

\[
\phi \text{ is valid} \iff \neg \phi \text{ is unsatisfiable}
\]

\[
\phi \text{ is satisfiable} \iff \neg \phi \text{ is not valid}
\]
Normal forms

- **Negation normal form (NNF)**
 - syntax: !, |, & and variables
 - Negation only for variables
 - Example:

 $\neg a \lor (b \land \neg c) \land \neg d$

- **Conjunctive normal form (CNF)**
 - NNF as a conjunction of disjunctions
 - Example:

 $a \lor b \lor \neg c \land \neg d \land (e \lor \neg f)$

- **Disjunctive normal form (DNF)**
 - NNF as a disjunction of conjunctions
 - Example:

 $(a \land b \land \neg c) \lor \neg d \lor (e \land \neg f)$
Getting the normal forms

- De Morgan’s law
- Distributive law

Q: Is there a problem with conversion?
Getting the normal forms

- Transformation into an equivalent formula in CNF or DNF

- Problem: exponential blow-up of the size

- Remedy: creating *equisatisfiable* formula
Equisatisfiability

- Equisatisfiable formulas ϕ, ψ
 - both satisfiable or both unsatisfiable

- Examples

 ϕ: $!(a \rightarrow b)$
 ψ: $a \& !b$

 ϕ: $a \mid b$
 ψ: $(a \mid n) \& (!n \mid b)$

 ϕ: $a \& b \& !c$
 ψ: true

 ϕ: $!a \leftrightarrow b$
 ψ: false
Equisatisfiability

- Equisatisfiable formulas \(\phi, \psi \)
 - both satisfiable or both unsatisfiable

Examples

- \(\phi: \neg(a \rightarrow b) \) \(\psi: a \& \neg b \) \(\text{EQ, ES} \)
- \(\phi: a \mid b \) \(\psi: (a \mid n) \& (\neg n \mid b) \) \(\text{ES} \)
- \(\phi: a \& b \& \neg c \) \(\psi: \text{true} \) \(\text{ES} \)
- \(\phi: \neg a \leftrightarrow b \) \(\psi: \text{false} \) \(- \)
Equisatisfiability

• Tseitin’s encoding
 - Widely used algorithm for transforming a given propositional formula ϕ into an equisatisfiable formula ϕ' in CNF with linear growth only

• Practice: various optimizations applied
SAT solving
SAT solving

• Goal
 - Decide whether a given propositional formula ϕ in CNF is satisfiable

• Possible answers
 - Satisfiable + assignment (values, model)
 - Unsatisfiable + core (subset of clauses)

• Satisfiable formula $\phi \iff$ there exists a partial assignment satisfying all clauses in ϕ
Naive brute force solution

- Trying all possible assignments
 - Systematic traversal of a binary tree

DPLL (Davis-Putnam-Loveland-Logemann)

- Motivation: partial assignment can imply values of other variables in the given formula
- Example: from \((\neg a \lor b)\), \(v = \{ a \rightarrow 1 \}\) we get \(\{ b \rightarrow 1 \}\)
- Approach: iterative deduction
 - Inferring value of a particular variable
- Basic algorithm used in modern SAT solvers (with many additional optimizations) \(\Rightarrow\) DPLL-based SAT solving
SAT solving: optimizations

- Adding learned clauses (implied)
- Non-chronological backtracking
- Choice of the branching variable
 - Various heuristics on the best choice exist

- Restarts
 - When it takes too long, restart the solver and use other “seeds” for heuristic functions
SAT solving

- Problem size: 10K – 1M variables
 - Typical input formulas have structure
- Worse for random instances
- Hard instances exist (of course)
- Tools are getting better all the time
 - Reason: industry demand, annual competitions
 - http://www.satcompetition.org/

- Other approaches
 - Stochastic search (random walk)
 - Quickly finds solution for satisfiable instances
 - Ordered binary decision diagrams
Propositional logic: semantic X proof

- Semantic domain \models
 - Goal: find satisfying assignment for φ

- We know that: $\models \varphi \iff \vdash \varphi$

- Proof domain \vdash
 - Goal: derive the proof
 - axioms, inference rules
Resolution

• Input: CNF formula ϕ (a set of clauses)

• Goal: derive empty clause ($false$)

• Iterative process
 - Choose two suitable clauses from the set
 - Requirement: they must have complementary literals r, $!r$
 - Apply resolution step on these clauses
 $$(p_1 \mid \ldots \mid p_N \mid r), (q_1 \mid \ldots \mid q_N \mid !r) \Rightarrow (p_1 \mid \ldots \mid p_N \mid q_1 \mid \ldots \mid q_N)$$
 - Add the newly derived clause into the set
 - Repeat until we derive $false$ (or fail/stop)
Resolution

• Equivalent statements
 1) CNF formula ϕ is unsatisfiable
 2) We can derive empty clause using resolution on the clauses from ϕ

• Resolution used in practice
 ▪ Checking validity of a first-order logic formula
 ▪ Proof-by-contradiction
 ▪ Add negation of the conjecture into the set
SAT solving and propositional logic

- SAT looks very good, but we need more
 - For program verification, full theorem proving, ...

- First-order logic (predicate logic)

- Interesting theories
 - Linear integer arithmetic (\mathbb{N}, \mathbb{Z})
 - Data structures (arrays, bit vectors)
Decision procedure
Decision procedure

- Algorithm that
 - Always terminates
 - Outputs: YES/NO

- Decision procedure for a particular theory T
 - Always terminates and provides a correct answer for every formula of T
 - Goal: checking validity of logic formulas
Interesting theories

- Equality logic
 - With uninterpreted functions
- Linear arithmetic
 - Integer
 - Rational
- Difference logic
- Arrays
- Bit vectors
Equality logic

• Syntax
 ▪ Atomic formulas
 \(\text{term} = \text{term} \mid \text{true} \mid \text{false} \)
 ▪ Terms
 \(\text{variable} \mid \text{constant} \)

• Deciding validity of an equality logic formula is NP-complete problem
• Polynomial algorithm exists for the conjunctive fragment (uses only & and \(\exists \))
Equality logic with uninterpreted functions

- **Syntax**
 - Atomic formulas
 \[\text{term} = \text{term} \ | \ \text{predicate}(\text{term}, \ldots, \text{term}) \ | \ \text{true} \ | \ \text{false} \]
 - Terms
 \[\text{variable} \ | \ \text{constant} \ | \ \text{function}(\text{term}, \ldots, \text{term}) \]

- **Semantics**
 - No implicit meaning of functions and predicates
 - \[a_1 = b_1 \ & \ldots \ & a_N = b_N \rightarrow f(a_1,\ldots,a_N) = f(b_1,\ldots,b_N) \]

- **Decision procedure**
 - Transform into an equisatisfiable formula in equality logic
Equality logic with uninterpreted functions

• Purpose: abstraction
 - Full formula \(\rightarrow \) function semantics defined using axioms
 - Uninterpreted symbols \(\rightarrow \) just equality between arguments
 - \(\models \phi^{\text{EUF}} \rightarrow \models \phi \)

• False answers possible
 - Example: \(\text{add}(1,2) \neq \text{add}(2,1) \) in EUF

• Formula with UF easier to decide than the “full” formula
Linear arithmetic

- **Syntax**
 - Atomic formulas
 \[term = term \mid term < term \mid term \leq term \mid \text{true} \mid \text{false} \]
 - Terms
 \[\text{variable} \mid \text{constant} \mid \text{constant variable} \mid \text{term + term} \]

- **Example:** \((3x + 2y \leq 5z) \& (2x - 2y = 0)\)

- **Arithmetic without multiplication** \(\Rightarrow\) Presburger arithmetic

- **Decision procedure**
 - General case (full theory): \(2^{O(n)}\)
 - Conjunctive fragment over \(\mathbb{Q}\)
 - Linear programming: Simplex method (EXP), Ellipsoid method (P)
 - Conjunctive fragment over \(\mathbb{Z}\)
 - Integer linear programming (NP-complete)
Difference logic

- Syntax
 - Atomic formulas
 - \(\text{variable} – \text{variable} < \text{constant}\) |
 - \(\text{variable} – \text{variable} \leq \text{constant}\) |
 - true | false
 - Operators: !, &, ←, ↔

- Example: \((x – y < 3) \& (y – z \leq -4) \& (z – x \leq 1)\)

- Decision procedure
 - Conjunctive fragment polynomial for \(\mathbb{Q}\) and \(\mathbb{Z}\)
Data structures

- Array theory
 - Function symbols
 - \(\text{select}(a,i) \) // read, \(a[i] \)
 - \(\text{store}(a,i,e) \) // update, \(a[i] = e \)
 - Axiom read-over-write
 - \(\text{select}(\text{store}(a,i,e),i) = e \)

- Bit vectors
 - Motivation: precise computer arithmetic (overflows, ...)
 - Reasoning about individual bits in a finite vector (array)
 - Syntax: operators bitwise-AND, bitwise-OR, bitwise-XOR
 - Decision procedure
 - Typically flattened into a large instance of SAT
 - Many clever optimizations (encoding)
Combining theories

• Goal
 - Formulas that combine multiple theories
 - Example: linear arithmetic + arrays

• Decision procedures
 - Combined under specific constraints

• Nelson-Oppen method
Decision procedures: summary

- Decision procedures
 - Typically work for conjunctive fragments of the respective theories

- But we still need more
 - Formulas with arbitrary boolean structure and interesting theories (linear arithmetic, arrays)
Satisfiability Modulo Theory (SMT)
Satisfiability Modulo Theory (SMT)

- **Goal**
 - Decide satisfiability of a quantifier-free formula that involves constructs of specific theories

- **Idea**
 - Using combination of a SAT solver and a decision procedure (DP) for a conjunctive fragment of the respective theory
Naive use of a SAT solver

1. Extract boolean skeleton of the given formula ϕ
2. Run the SAT solver on the boolean skeleton
 a) unsatisfiable \Rightarrow the input formula is unsatisfiable
 b) satisfiable \Rightarrow we get a satisfying assignment ν
3. Run the DP on the formula derived from the satisfying assignment ν
 a) satisfiable \Rightarrow the input formula is satisfiable
 b) unsatisfiable \Rightarrow add the blocking clause for ν to the boolean skeleton and continue with the step 2
Approaches to SMT

- DPLL(T)-based SMT solving
 - Eagerness: DPLL asks DP for partial assignments during traversal
 - Benefit: earlier conflict discovery
 - Updating the set of clauses given to DP on-the-fly
 - iteration (add), backtracking (remove)
- Theory-based learning
 - DP can identify clauses valid/invalid in the given theory T
Available SMT solvers
- Z3, CVC4, Yices, MathSAT 5, OpenSMT, ...

SMT-LIB v2
- Defines common input format
- Big library of SMT problems

SMT-COMP
- Competition of SMT solvers
- http://smtcomp.org
SMT solving in practice

- Current state
 - Good performance
 - Highly automated
 - Many applications

- Drawbacks
 - Restricted to specific theories and domains (\mathbb{Q}, \mathbb{Z})
 - Very limited support for quantifiers (mostly \exists)
 - Much less powerful than full theorem proving
Theorem proving

- **Input**
 - Theory T: set of axioms
 - General formula ϕ in predicate logic

- **Goal**
 - Decide validity of the formula ϕ in T
 - Semantic domain: show unsatisfiable negation
 - Proof domain: prove ϕ from the axioms of T

- **Very powerful**
- **Interactive**
 - Partially automated

- **Tools:** PVS, Isabelle/HOL
Deductive methods: closing remarks

• Approaches
 ▫ DPLL-based SAT solving
 ▫ Decision procedures
 ▫ DPLL(T)-based SMT solving

• Formulas
 ▫ Propositional logic (boolean)
 ▫ Predicate logic with theories
 ▪ Equality with uninterpreted functions
 ▪ Linear arithmetic (difference logic)
 ▪ Data structures (arrays, bit vectors)

• Applications in program verification
Bounded model checking
Bounded model checking

• Goal: Exploring traces with bounded length
 ▪ Options: fixed integer value K, iteratively increasing
 ▪ Still remember preemption bounding for threads?

• Approach
 ▪ Encoding bounded program state space and properties into a logic formula ϕ
 ▪ Find property violations by checking satisfiability of ϕ

• Challenge
 ▪ Encoding program behavior into the formula ϕ
Program state space

- Program $P = (S, T, INIT)$
 - S is a set of program states
 - Predicates about values of program variables
 - Program counter (PC)
 - $INIT \subseteq S$ is a set of initial states
 - $T \subseteq S \times S$ is a transition relation

- Single transition
 - Updates program counter and some variables
 - Relating old and new values (x, x', pc, pc')
 - Example: $x = 2, x' = x + 1, pc = 5, pc' = pc + 1$
Transition relation

\[(pc = 1) \land (x' = x + 2y) \land (pc' = pc + 1)\]

\[\lor\]

\[(pc = 2) \land (x' = 0) \land (pc' = pc + 6)\]

\[\lor\]

...

\[\lor\]

\[(pc = N) \land (x' = x - y + 5) \land (pc' = pc + 1)\]
Traces with bounded length

- Transition relation unfolded at most K times
 - Fresh copies of program variables $(x, x', ..., x^{(K)})$ used for each unfolding of the transition relation

- Example
 - $INIT$: $x = 0$, $pc = 1$
 - $T(K)$: (
 $$(pc = 1) \land (x' = x + 2y) \land (pc' = pc + 1)) \lor$$
 $$... \lor ... \lor$$
 $$((pc^{(K-1)} = 1) \land (x^{(K)} = x^{(K-1)} + 2y^{(K-1)}) \land (pc^{(K)} = pc^{(K-1)} + 1))$$

- Specific consequences
 - Bounded number of loop iterations (unrolling)
Large formula

\[INIT(s_0) \land (\land_{i=0..k-1} T(s_i, s_{i+1})) \land (\lor_{i=0..k} \neg p(s_i)) \]

Represents all possible executions of the program with the length bounded by K
1) Derive formula representing the state space

2) Run the SAT/SMT solver on the formula in CNF

3) Interpret verification results
 - Satisfying assignment \(\Rightarrow \) we get a counterexample with the length \(\leq K \)
 - Unsatisfiable formula \(\Rightarrow \) no property violations in program executions of the length \(\leq K \)
BMC: technical challenges

- Encoding program in a mainstream language into a logic formula
 - heap, allocation, pointers, threads, synchronization

- Example: dynamic heap
 - Use predicate logic with array theory (select, store)
 - Array element access $a[i]$
 - Separate variables for the element $a[i]$ and the index i
 - Pointer access $(*p)$
 - Separate variables for dereference $*p$ and the pointer p
 - Transitions defined properly
Further reading
