Behavior models and verification

Lecture 4

Jan Kofroň, František Plášil
Explicit LTL model checking

Model

Property specification

\[G(\text{start} \rightarrow F \text{heat}) \]

Model checker

Property satisfied

Property violated

Markov chains
Timed automata
Labelled transition system
Kripke structure

Jan Kofroň, František Plášil, Lecture 4
Example
• Büchi Automaton A_M
Given: M (and a state in M) and f

1. create A_M
2. negate the property f
3. create a Büchi automaton $A_{\neg f}$.
 • This automaton accepts all violations of the property f
4. it holds that $M \models f$ iff $L(A_M \times A_{\neg f}) = \emptyset$
Example: LTL Model Checking

- Check whether $M \models f$
 - $f = G(req \rightarrow (F\ ack))$
- By checking product automaton P, whether $L(P) = \emptyset$
 - $P = A_M \times A_{\neg f}$
 - If so, then $M \models f$, otherwise $M \models \neg f$.

Jan Kofroň, František Plášil, Lecture 4
Büchi Automaton $A_{\neg f}$

- $\neg f = F(req \land (G\neg ack))$
- Recall $f = G(req \rightarrow (F \text{ack}))$
Büchi product automaton P
Kripke Product Automaton Corner Case

- **Specific for** $F_1 = S_1$!!

Let $A_1 = (\Sigma, S_1, S_{01}, \Delta_1, F_1)$ and $A_2 = (\Sigma, S_2, S_{02}, \Delta_2, F_2)$ be Büchi automata. We have defined the product Büchi automaton $A = A_1 \times A_2$, accepting the intersection of $L(A_1)$ and $L(A_2)$.

In the special case $F_1 = S_1$, we can use a simpler product automaton denoted by $A' = A_1 \otimes A_2$:

- $A = (\Sigma, S, S_0, \Delta, F)$
- $S = S_1 \times S_2$
- $S_0 = S_{01} \times S_{02}$
- For all $s, s' \in S_1$, $t, t' \in S_2$, $a \in \Sigma$,
 \[((s, t), a, (s', t')) \in \Delta \text{ iff } (s, a, s') \in \Delta_1 \text{ and } (t, a, t') \in \Delta_2 \]
- $F = S_1 \times F_2 = F_1 \times F_2$

Recall that the special case $F_1 = S_1$ occurs whenever A_1 is a Kripke structure automaton A_M.

Jan Kofroň, František Plášil, Lecture 4

There are several algorithms for translating LTL formulae into Büchi automata. We show the variant due to Gerth, Peled, Vardi, and Wolper. Given an LTL formula f, it will generate a Büchi automaton A_f with at most $2^{O(|f|)}$ states. The automaton A_f will accept the language $\{ w \in \Sigma^\omega : w \models f \}$, where $\Sigma = 2^{AP}$.
Translation procedure overview

- Build automaton by starting with an initial node then expanding according to LTL formula.

 Each node labeled with 3 sets of formulae:
 - *New*: formulae not yet processed, that may force further expansions.
 - *Old*: formulae already processed and holding in this state
 - *Next*: formulae which should hold in any of the next states

- Idea: along any computation path, the *New* plus *Old* formulae at any point should hold of the remainder of the path.
 - Construction similar to “tableaux” theorem proving.
Translating LTL into Büchi automaton

- We put a formula φ into **negation normal form**
 - Also called positive normal form
 - All negations appear only in front of atomic propositions

- To avoid the blow-up of the LTL formula, we will use a new operator R (*release*)
 - $\varphi_1 R \varphi_2 = (G \varphi_2) \lor (\varphi_2 U (\varphi_1 \land \varphi_2))$
 - Informally: φ_1 “releases” φ_2
A simplification

• Before constructing the automata, put the LTL formula in \emph{negation normal form}:

 - mentions only AP elements, \neg, \land, \lor, X, R, U;
 - and all \neg’s only in front of AP elements

• Repeatedly rewrite using the LTL equivalences:

 - $Fg = \text{true} \lor g$
 - $Gg = \text{false} \land g$
 - $\neg(f \lor g) = \neg f \land \neg g$
 - $\neg(f \land g) = \neg f \lor \neg g$
 - and Boolean equivalences (De Morgan)
Translation into negation normal form

- $\neg X \varphi_1 = X \neg \varphi_1$
- $\neg (\varphi_1 U \varphi_2) = \neg \varphi_1 R \neg \varphi_2$
- $\neg (\varphi_1 R \varphi_2) = \neg \varphi_1 U \neg \varphi_2$
Translating LTL into Büchi automaton

- The algorithm for the LTL formula \rightarrow Büchi automata translation
 - The algorithm will manipulate a data structure called $node$ during its run
 - ID: A unique identifier of a node (a number)
 - Incoming: A list of node IDs
 - Old \subseteq sub(f)
 - New \subseteq sub(f)
 - Next \subseteq sub(f)
 - The nodes will form a graph, where the arcs of the graph are stored in the $Incoming$ list of the end node of the arc for easier manipulation
 - The initial node is marked by having a special node ID called $init$ in its $Incoming$ list
 - All nodes are stored in a set (use e.g., a hash table for implementation) called $nodes$
Translating LTL into Büchi automaton

- *Technical:* To implement the algorithm, the following functions are defined
 - $\text{Neg}(\text{true}) = \text{false}$
 - $\text{Neg}(\text{false}) = \text{true}$
 - $\text{Neg}(p) = \neg p, \ p \in \text{AP}$
 - $\text{Neg}(\neg p) = p, \ p \in \text{AP}$
The functions $\text{New1}(f)$, $\text{Next1}(f)$, and $\text{New2}(f)$ are tabulated below. They match the recursive definitions for disjunction, until, release, and next-time:

<table>
<thead>
<tr>
<th>f</th>
<th>$\text{New1}(f)$</th>
<th>$\text{Next1}(f)$</th>
<th>$\text{New2}(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_1 \lor f_2$</td>
<td>${f_2}$</td>
<td>0</td>
<td>${f_1}$</td>
</tr>
<tr>
<td>$f_1 U f_2$</td>
<td>${f_1}$</td>
<td>${f_1 U f_2}$</td>
<td>${f_2}$</td>
</tr>
<tr>
<td>$f_1 R f_2$</td>
<td>${f_2}$</td>
<td>${f_1 R f_2}$</td>
<td>${f_1, f_2}$</td>
</tr>
<tr>
<td>$X f_1$</td>
<td>0</td>
<td>${f_1}$</td>
<td>0</td>
</tr>
</tbody>
</table>
Translating LTL into Büchi automaton

- Basic idea of the LTL formula \rightarrow Büchi automata translation
 - To prove that $w \models \varphi_1 \lor \varphi_2$ it suffices to either prove that
 - $w \models \varphi_1$, or
 - $w \models \varphi_2$
 - To prove that $w \models \varphi_1 \cup \varphi_2$ it suffices to either prove that
 - $w \models \varphi_2$, or
 - $w \models \varphi_1$ and $w \models X(\varphi_1 \cup \varphi_2)$ // strategy (a), slide 24, 25
 - The only restriction is that the second case can only be used infinitely often iff the first case is also used infinitely often (we will use Büchi acceptance sets to handle that)
 - To prove that $w \models \varphi_1 R \varphi_2$ it suffices to either prove that
 - $w \models \varphi_1$ and $w \models \varphi_2$, or
 - $w \models \varphi_2$ and $w \models X(\varphi_1 R \varphi_2)$
Algorithm 1 The top-level LTL to Büchi translation algorithm

global nodes: Set of Node; // Use e.g., a hash table

procedure translate(f: Formula)
 local node: Node;
 nodes := 0; // Initialize the result to empty set
 node := NewNode(); // Allocate memory for a new node
 node.ID := GetID(); // Allocate a new node ID
 node.Incoming := \{init\}; // Incoming can be implemented as a list
 node.New = \{f\}; // Use e.g., bit-arrays of size sub(f) for these sets
 node.Old = 0;
 node.Next = 0;
 expand(node); // Call the recursive expand procedure
 return nodes;
end procedure
Algorithm 2 \textit{LTL to Büchi translation main loop}

\textbf{procedure} expand(node: Node)
 \textbf{local} node, node1, node2: Node;
 \textbf{local} f: Formula;
 \textbf{if} node.New = 0 \textbf{then}
 \textbf{if} \exists node1 \in \text{nodes with node1.Old} = node.Old \wedge \text{node1.Next} = node.Next \textbf{then}
 node1.Incoming := node1.Incoming \cup node.Incoming; // redirect arcs to \text{"node1"}
 \textbf{return}; // Discard \text{"node"} by not storing it to \text{"nodes"}
 \textbf{else}
 \text{nodes} := \text{nodes} \cup \{ \text{node} \}; // \text{"node"} is ready, add it to the automaton
 node2 := NewNode(); // Create \text{"node2"} to prove formulas in \text{"node.Next"}
 node2.ID := GetID();
 node2.Incoming := \{ node.ID \};
 node2.New = \{ node.Next \};
 node2.Old = 0;
 node2.Next = 0;
 expand(node2);
 \textbf{return};
else // node.New \= \emptyset holds
 pick f from node.New; // Any formula “f” in “node.New” will do
node.New := node.New \ { f }; // Remove “f” from proof objectives
switch begin(FormulaType(f))
 case atomic proposition, negated atomic proposition, true, false:
 expand_simple(node,f);
 return;
 case conjunction:
 expand_conjunction(node,f);
 return;
 case disjunction, until, release:
 expand_disjunction(node,f);
 return;
 case next:
 expand_next(node,f);
 return;
 switch end
 // Not reached
 return;
end procedure
Algorithm 3 *Expanding simple formulas*

procedure expand_simple(node: Node, f: Formula)
 if f = false or $\text{Neg}(f) \in \text{node.Old}$ then
 return; // “node” contains a contradiction (false / both p and $\neg p$), discard it
 else
 node.Old := node.Old $\cup \{ f \}$; // Recall that this node proves “f”
 expand(node); // Handle the rest of the formulas in “node.New”
 return;
end procedure
Algorithm 4 *Expanding conjunction*

procedure expand_conjunction(node: Node, f: Formula)

 local f1, f2: Formula;
 f1 := left(f); // Obtain subformula “f1” from left side of $f_1 \land f_2$
 f2 := right(f); // Obtain subformula “f2” from right side of $f_1 \land f_2$
 node.New := node.New \cup ({ f1, f2 } \ node.Old); // Prove both “f1” and “f2”
 node.Old := node.Old \cup { f }; // Recall that this node proves “f”
 expand(node); // Handle the rest of the formulas in “node.New”

return;

end procedure
Algorithm 5

Expanding disjunction

procedure expand_disjunction(node: Node, f: Formula)

local f1, f2: Formula;

local node1, node2: node;

// This one handles all the cases: \(f_1 \lor f_2, f_1 \cup f_2, f_1 \cap f_2 \)

// Replace “node” with two nodes “node1” and “node2” (The blow-up happens here!)
// Do the proof using strategy (b)

node1 := NewNode(); // Create “node1” to prove formulas using strategy (b)
node1.ID := GetID();
node1.Incoming := node.Incoming;
node1.New = node.New \(\cup (\text{New} I(f) \setminus \text{node.Old}) \); // Prove things in \(\text{New} I(f) \)
node1.Old := node.Old \(\cup \{ f \} \); // Recall that “node1” node proves “f”
node1.Next = node.Next \(\cup \text{Next} I(f) \); // On the next time, prove things in \(\text{Next} I(f) \)
// Do the proof using strategy (a)

node2 := NewNode(); // Create “node2” to prove formulas using strategy (a)
node2.ID := GetID();
node2.Incoming := node.Incoming;
node2.New = node.New ∪ (New2(f) \ node.Old); // Prove things in New2(f)
node2.Old := node.Old ∪ { f }; // Recall that “node2” node proves “f”
node2.Next = node.Next; // In case (a) Next2(f) is always empty

expand(node1); // “node1” does the proof using strategy (b)
expand(node2); // “node2” does the proof using strategy (a)
return; // discard “node” by not storing it to “nodes”

end procedure
Al\textbf{gorithm 6} \textit{Expanding next}

\textbf{procedure} expand_next(node: Node, f: Formula) \\
 \textbf{local} f1: Formula; \\
 f1 := left(f); // Obtain subformula “f1” from X \(f_1\)

 // This one handles the case X \(f_1\)

 node.Old := node.Old \cup \{ f \}; // Recall that “node” node proves “f”
 node.Next = node.Next \cup Next1(f); // On the next time, prove things in Next1(f)

 expand(node); // Handle the rest of the formulas in “node.New”
 \textbf{return};
\textbf{end procedure}
When expansion is completed, to get a Büchi automaton we need to add two things:

- Transition labels: for each edge (u,v), add a label X for each set X of variables making all the literals in $\text{Old}(v)$ true.

- Accepting states: Consider an arbitrary path, and suppose $p \lor q$ is true at the start. By construction,
 - either q is labeled true at some point,
 - or p and $p \lor q$ both labeled true forever.
 - Need to rule out the second case
 - Note: for formulas not containing \lor, all infinite paths are accepting
Accepting states

- For each subformula (of the original formula) of the form pUq, add a set F_{pUq} of accepting states: put s in F_{pUq} iff either
 - $q \in \text{Old}(s)$,
 - or
 - $pUq \notin \text{Old}(s)$

- **Recall**: A path (run) is accepted iff for each accepting set F_i, infinitely many states (nodes) in the path are in F_i

- **Observe**: A path is NOT accepted iff there is some subformula pUq such that at some point in the path, pUq becomes continuously true, but q never becomes true
Let’s trace through the algorithm with the following input:

\[a \cup (p \land q) \]
Solution (will see)

\[a \cup (p \land q) \]
\(N_1.\text{NEW} = \{ a \cup (p \land q) \} \)
\(N_1.\text{OLD} = 0; \)
\(N_1.\text{NEXT} = 0; \)
• Select a formula from the NEW set and process it in suitable way.
• The only formula here is
 \[a \cup (p \land q) \]
 \(\Rightarrow\) create 2 nodes
\[N_2.\text{NEW} = \{ a \} \]
\[N_2.\text{OLD} = \{ a \cup (p \land q) \} \]
\[N_2.\text{NEXT} = \{ a \cup (p \land q) \} \]

\[N_3.\text{NEW} = \{ p \land q \} \]
\[N_3.\text{OLD} = \{ a \cup (p \land q) \} \]
\[N_3.\text{NEXT} = 0 \]
\(N_2.\text{NEW} = 0 \)
\(N_2.\text{OLD} = \{ a \cup (p \land q) ; a \} \)
\(N_2.\text{NEXT} = \{ a \cup (p \land q) \} \)
\[N_4.\text{NEW} = \{ a \cup (p \land q) \} \]
\[N_4.\text{OLD} = 0 \]
\[N_4.\text{NEXT} = 0 \]
..skip some steps...

\[N_5.\text{NEW} = 0 \]
\[N_5.\text{OLD} = \{ a \cup (p \land q) ; a \} \]
\[N_5.\text{NEXT} = \{ a \cup (p \land q) \} \]

\[N_6.\text{NEW} = \{ p \land q \} \]
\[N_6.\text{OLD} = \{ a \cup (p \land q) \} \]
\[N_6.\text{NEXT} = 0 \]
Since N_5 is “equivalent” to N_2, discard the N_5 node and redirect edges to N_2
N₆. NEW = \{ p ; q \}
N₆. OLD = \{ a \cup (p \land q) ; p \land q \}
N₆. NEXT = 0

N₆. NEW = 0
N₆. OLD = \{ a \cup (p \land q) ; p \land q ; p ; q \}
N₆. NEXT = 0
\[N_7.\text{NEW} = 0 \]
\[N_7.\text{OLD} = 0 \]
\[N_7.\text{NEXT} = 0 \]
N₈.NEW = 0
N₈.OLD = 0
N₈.NEXT = 0
Since N_8 is “equivalent” to N_7, discard the N_8 node and redirect edges to N_7
Backtrack and process node N_3...

$N_3.\text{NEW} = 0$

$N_3.\text{OLD} = \{ a \cup (p \land q); p \land q; p; q \}$

$N_3.\text{NEXT} = 0$
Since N_3 is “equivalent” to N_6, discard the N_3 node and redirect edges to N_6

$N_2.\text{OLD} = \{ \ a \cup (p \land q) ; \ a \} $

$N_6.\text{OLD} = \{ \ a \cup (p \land q) ; p \land q ; p ; q \} $

$N_7.\text{OLD} = 0$
Accepting states and transitions

\[a \cup (p \land q) \]