Agenda

- CTL logic
- CTL model checking
CTL Model checking (explicit)

Property specification: $AG(start \rightarrow AF heat)$

Model:
- open
- close
- heat
- start empty
- close
- start close
- start heat

Model checker:
- Property satisfied
- Property violated
- Error report

Markov chains
Timed automata
Labelled transition system
Kripke structure
The task of explicit CTL model checking reads

- For a Kripke structure $M = (S, I, R, L)$ over AP and a (state based) temporal logic formula φ find the set of all states in S that satisfy φ:

$$X = \{ s \in S : M, s \models \varphi \}$$

- “Explicit”: Each state of M is explicitly represented in memory in a labeled, directed graph, and checked
Model checking – simple KS and property ϕ

KS satisfies the specification ϕ in states

KS in the initial states I satisfies ϕ
KS does not satisfy the specification \(\varphi \) in the initial states \(I \)
Computational Tree Logic

- Considers property of the states in a computational (sub)tree

- As opposed to LTL which, given a state s, considers property of each path (starting in s) separately
Consider

- Kripke str. with initial state \bullet, property φ

Assume

- Syntax note: A – All paths E – Exists a path

$\varphi = AG\ EF\ p$
- In all (A) paths starting in \bullet and for any (G) state s on them it holds that there exists (E) a path starting with s such that it contains (F) a state where p holds

- true

$\varphi = AG\ EX\ p$
- true

$\varphi = AG\ AX\ p$
- false

$\varphi = AG\ EX\ AGp$
- True
Consider

- Kripke str. with initial state \odot, property φ

LTL

- Assume $\varphi = \text{GF}p$
 - In all ∞ paths starting in \odot, p globally holds in the future
 - Not true, since
 - Implies computational tree with the path \uparrow
CTL syntax

- A CTL formula has one of the following forms:
 - 0, 1, p, ¬φ, φ & ψ, φ ⇒ ψ, φ ∨ ψ
 - p is an atomic formula, p ∈ AP
 - AX φ, EX φ
 - AG φ, EG φ
 - AF φ, EF φ
 - A[φ U ψ], E[φ U ψ]
 - where φ, ψ are CTL formulas

- A – All paths E – Exists a path (two quantifiers)
 X – neXt G – Globally F – Future U - Until
CTL semantics

- $M, s \models \varphi$ stands for “a state s from the Kripke structure M satisfies a CTL formula φ”
- \models is defined by induction on the size of φ

Definition

- $M, s \models p$ \iff $p \in L(s)$
- $M, s \models \neg \varphi_1$ \iff not $M, s \models \varphi_1$
- $M, s \models \varphi_1 \lor \varphi_2$ \iff $M, s \models \varphi_1$ or $M, s \models \varphi_2$
- $M, s \models \varphi_1 \land \varphi_2$ \iff $M, s \models \varphi_1$ and $M, s \models \varphi_2$
Definition (cont.)

- $M, s \models \text{EX } \varphi_1$ \iff there is a state t and a transition $s \rightarrow t$ in M s.t.
 $M, t \models \varphi_1$

- $M, s \models \text{AX } \varphi_1$ \iff for every state t in M s.t.
 $s \rightarrow t$, $M, t \models \varphi_1$ holds
Definition (cont.)

- $M, s \models EF \varphi_1 \iff$ there exists a state t and a path from s to t (in M) s.t. $M, t \models \varphi_1$

- $M, s \models AF \varphi_1 \iff$ on every infinite path (in M) beginning in s there is a state t s.t. $M, t \models \varphi_1$

- $M, s \models EG \varphi_1 \iff$ there exists an infinite path $\pi = \pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \ldots$ (in M) s.t. $s = \pi_0$ and for all $i \geq 0 \; \pi_i \models \varphi_1$ holds

- $M, s \models AG \varphi_1 \iff$ for every infinite path $\pi = \pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \ldots$ (in M) s.t. $s = \pi_0$, for all $i \geq 0 \; \pi_i \models \varphi_1$ holds
Definition (cont.)

- $M, s \models E [\varphi_1 U \varphi_2] \iff$

 there exists an infinite path $\pi = \pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \ldots$ (in M) s.t.

 $\pi_0 = s$ and there exists $i \geq 0$ s.t.:

 - $M, \pi_i \models \varphi_2$
 - for all $j, 0 \leq j < i$, $M, \pi_j \models \varphi_1$ holds

- $M, s \models A [\varphi_1 U \varphi_2] \iff$

 for all infinite paths $\pi = \pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \ldots$ (in M)

 s.t. $p_0 = s$, there exists $i \geq 0$ s.t.:

 - $M, \pi_i \models \varphi_2$
 - for all $j, 0 \leq j < i$, $M, \pi_j \models \varphi_1$ holds
Kripke structure

Computational tree
AX φ_1 holds

EX φ_1 either holds or not

$\bullet = \varphi_1$ holds

$\bigcirc = \varphi_1$ either holds or not
$\text{AG } \varphi_1$

$\text{EG } \varphi_1$

$\text{AF } \varphi_1$

$\text{EF } \varphi_1$

$\bullet = \varphi_1 \text{ holds}$

\circ
E[\varphi_1 \cup \varphi_2] = \varphi_1, \varphi_2 \text{ undefined}

A[\varphi_1 \cup \varphi_2] = \varphi_1 \text{ holds (\varphi_2 undefined)}

• = \varphi_1 \text{ holds (\varphi_2 undefined)}

○ = \varphi_2 \text{ holds (\varphi_1 undefined)}

○○ = \varphi_1, \varphi_2 \text{ undefined}
Difference between CTL and LTL

- Think of CTL formulas as approximations to LTL formulas
 - AG EF p is weaker than G F p
 - AF AG p is stronger than F G p
Think of CTL formulas as approximations to LTL formulas

- $\text{AG EF } p$ is \textit{weaker} than $\text{G F } p$

- $\text{AF AG } p$ is \textit{stronger} than $\text{F G } p$
Difference between CTL and LTL

- Practicality perspective
 - $\text{AG EF } p$ is **weaker** than $\text{G F } p$

 ![Diagram 1](image1)

 Good for finding bugs... $\text{EF } p$
 “exists” by CTL

 ![Diagram 2](image2)

 $\text{AF AG } p$ is **stronger** than $\text{F G } p$

 ![Diagram 3](image3)

 Good for verifying... $\text{FG } p$
 “invariant” by LTL

- CTL formulas easier to verify
• A property expressible in CTL but not in LTL
 - **Fact:** There is no LTL formula \(\varphi \) equivalent to the CTL formula \(AG(EF \, p) \)
 - Note that \(AG(EF \, p) \) is *not* the same as \(G(F \, p) \) in LTL
 - Suppose that there is such a \(\varphi \) (in LTL). Consider the following K.S.
• \(\text{AG(} \text{EF } \varphi \text{)} \) is true in \(s_0 \)

\[\Rightarrow \varphi \text{ is true in } s_0 \text{ as well} \]

- i.e. \(\varphi \) is true on all paths that start in \(s_0 \)

\[\Rightarrow \text{therefore } \varphi \text{ is true on the path that loops in } s_0 \]

\[\Rightarrow \text{thus } \varphi \text{ is true in } s' \text{ of the following Kripke structure} \]

\[\Rightarrow \text{thus } \text{AG(} \text{EF } \varphi \text{)} \text{ would have to be true in } s' \]

\[\Rightarrow \text{contradiction!} \]
The LTL formula $FG \ p$ is not equivalent to any CTL formula.

In particular, it is not equivalent to the CTL formula $AF (AG \ p)$.
The LTL formula $FG \ p$ is not equivalent to CTL formula $AF(AG \ p)$

To prove this, we have to find a Kripke structure M and a state s in M s.t.:

- either
 - $M, s \models_{LTL} FG \ p$
 - and not $M, s \models_{CTL} AF (AG \ p)$
- or
 - $M, s \models_{CTL} AF (AG \ p)$
 - and not $M, s \models_{LTL} FG \ p$
LTL ver. CTL

\[M, s \models_{\text{LTL}} \text{FG } p \]

\[\text{not } M, s \models_{\text{CTL}} \text{AF } (\text{AG } p) \]
Linear and Branching time logics are incomparable
LTL vers. CTL: Complexity

• Model checking of $M = (S,R,L)$
 - Does M satisfy ϕ?
 - $|M| = |S| + |R|$
 - $|\Phi| = \text{number of subformulas of } \Phi$

• Time complexity
 - CTL: $O(|M| \cdot |\Phi|)$
 - LTL: $O(|M| \cdot 2^{|\phi|})$ (PSPACE complete)

• Conclusion
 - Linear complexity in $|M|$
 - LTL exponential in $|\phi|$
 - However, typically $|\phi| << |M|$
Back to CTL m.c.: Formula parse tree

\[(\text{EG } E[p \cup q]) \& \text{EX } r\]

\[\text{EG } E[p \cup q] \quad \text{EX } r\]

\[E[p \cup q] \quad r\]

\[p \quad q\]
Explicit CTL model checking algorithm

- For every state \(s \) in \(S \), the algorithm labels \(s \) with all subformulas of \(\varphi \) which are true in \(s \)
 - \(\text{label}(s) \) – the set of labels associated with \(s \)
 - initially, \(\text{label}(s) = L(s) \)
 - then, the algorithm goes through a series of stages
 - during the \(i \)-th stage, the subformulas with \(i-1 \) nested operators are processed
 - when a subformula is processed, it is added to the labeling of each state \(s \) in which it is true (i.e. \(\text{label}(s) \) is updated)

- Once the algorithm terminates, we will have

\[
M, s \models \varphi \iff \varphi \in \text{label}(s)
\]
Explicit CTL model checking algorithm

\[(EG \ E[p \ U \ q]) \ & \ EX \ r\]

Jan Kofroň, František Plášil, Lecture 5
Explicit CTL model checking algorithm

\[(\text{EG E}[p \ U \ q]) \ & \ \text{EX} \ r\]

Jan Kofroň, František Plášil, Lecture 5
Explicit CTL model checking algorithm

\[(EG E[p \lor q]) \land EX r\]

\[EG E[p \lor q]\]

\[E[p \lor q]\]

\[EX r\]

\[p\]

\[q\]

\[r\]
Explicit CTL model checking algorithm

Jan Kofroň, František Plášil, Lecture 5
Explicit CTL model checking algorithm

(EG E[p U q]) & EX r

EG E[p U q]

E[p U q]

EX r

p q r

EG E[p U q]

EG E[p U q]

EG E[p U q]

EG E[p U q]

EX r

EX r
Explicit CTL model checking algorithm

(EG E[p U q]) & EX r

EG E[p U q]

E[p U q]

p q r

p
E[p U q]
EG E[p U q]

q
E[p U q]
EG E[p U q]

r
EX r

p
E[p U q]
EX r
EG E[p U q]

(EG E[p U q]) & EX r
Explicit CTL model checking algorithm

- Any CTL formula can be expressed in the terms of \neg, $\&$, EX, EU, EG

- Handling $\neg \varphi_1$, $\varphi_1 \& \varphi_2$, EX φ_1 during a stage of the algorithm is trivial
All operators in terms of EX, EG, EU

- $AX \varphi_1 = \neg EX (\neg \varphi_1)$
- $EF \varphi_1 = E[1 U \varphi_1]$
- $AG \varphi_1 = \neg EF (\neg \varphi_1)$
- $AF \varphi_1 = \neg EG (\neg \varphi_1)$
- $A[\varphi_1 U \varphi_2] = \neg EG (\neg \varphi_2) \&$

 & $\neg E[\neg \varphi_2 U (\neg \varphi_1 \& \neg \varphi_2)]$
Handling $E[\varphi_1 U \varphi_2]$

```plaintext
procedure CheckEU($\varphi_1$, $\varphi_2$)
    $T := \{s : \varphi_2 \in label(s)\}$
    for all $s \in T$
        $label(s) := label(s) \cup \{E[\varphi_1 U \varphi_2]\}$
    end for all
    while $T \neq \{\}$
        choose $s \in T$
        $T := T \setminus \{s\}$
        for all $t$ such that $R(t,s)$
            if $E[\varphi_1 U \varphi_2] \notin label(t)$
                and $\varphi_1 \in label(t)$
                then
                    $label(t) := label(t) \cup \{E[\varphi_1 U \varphi_2]\}$
                    $T := T \cup \{t\}$
                end if
        end for all
    end while
end procedure
```
Handling $E[\varphi_1 \cup \varphi_2]$ – example: fragment of M
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\varphi_1 U \varphi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\phi_1 \cup \phi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\varphi_1 U \varphi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\varphi_1 U \varphi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\varphi_1 U \varphi_2]$.

[Diagram showing multiple states and transitions with expressions φ_1, φ_2, $E[\varphi_1 U \varphi_2]$]
Handling $E[\varphi_1 U \varphi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\varphi_1 U \varphi_2]$
Based on decomposition of the graph into nontrivial strongly connected components

A strongly connected component (SCC) C is a maximal subgraph such that every node in C is reachable from every other node in C along a directed path entirely contained within C.

C is nontrivial iff either it has more than one node or it contains one node with a self-loop.

- infinite path
Handling EG φ_1

- $M' = (S', R', L')$
- $S' = \{ s \in S : M, s \models \varphi_1 \}$
- $R' = R \mid_{S' \times S'}$
- $L' = L \mid_{S'}$
Handling EG φ_1

Lemma: $M, s \models EG \varphi_1$ iff both the following conditions are satisfied:

- $s \in S'$
- There exists a path in M' that leads from s to some node t in a nontrivial strongly connected component C of the graph (S', R')
Handling $\text{EG} \ \varphi_1$

- Construct the restricted Kripke structure $M’ = (S’, R’, L’)$
- Partition the graph $(S’, R’)$ into strongly connected components
- Find those states that belong to a nontrivial component
- Work backward (using converse of $R’$)
 - find all the states that can be reached by a path (converse of $R’$!) in which each state is labeled with φ_1
Handling EG φ_1

\[\text{M:} \]

φ_1 holds
φ_1 does not hold
Handling φ_1

M':

Construction of (S', R')
Handling EG ϕ_1

Identification of nontrivial strongly connected components SCC by Tarjan algorithm (not detailed here)
Handling $\text{EG } \varphi_1$
procedure CheckEG(φ₁)
S' = {s : φ₁ ∈ label(s)};
SCC = {C : C is a nontrivial SCC of S'};
T := ∪_{C ∈ SCC} {s : s ∈ C};
for all s ∈ T do
 label(s) := label(s) ∪ {EG φ₁};
end for all
while T != {} do
 choose s ∈ T;
 T := T \ {s};
 for all t such that t ∈ S' and R(t, s) do
 if EG φ₁ ∉ label(t) then
 label(t) := label(t) ∪ {EG φ₁};
 T := T ∪ {t};
 end if
 end for all
end while
end procedure
Explicit CTL model checking algorithm

- CheckEU
 - $O(|S| + |R|)$

- CheckEG
 - $O(|S| + |R|)$
 - Partitioning using Tarjan algorithm: $O(|S'| + |R'|)$

- φ has at most $|\varphi|$ different subformulas

- Time complexity: $O(|\varphi| \times (|S| + |R|))$