Behavior models and verification

Lecture 5

Jan Kofroň, František Plášil
Agenda

- CTL logic
- CTL model checking
CTL Model checking (explicit)

Model

Kripke structure

start empty → open
open → close
close → heat
heat → start
start → empty

Property specification

AG(start → AF heat)

Model checker

Property satisfied

Property violated

Error report
The task of explicit CTL model checking reads

- For a Kripke structure $M = (S, I, R, L)$ over AP and a (state based) temporal logic formula φ find the set of all states in S that satisfy φ:

$$X = \{ s \in S : M, s \models \varphi \}$$

- “Explicit” : Each state of M is explicitly represented in memory in a labeled, directed graph, and checked
KS satisfies the specification φ in $\{\varphi, \neg \varphi\}$ states

KS in the initial states I satisfies φ
KS does not satisfy the specification φ in the initial states I.
Computational Tree Logic

- Considers property of the states in a computational (sub)tree

- As opposed to LTL which, given a state s, considers property of each path (starting in s) separately
CTL example

- Consider
 - Kripke str. with initial state \bullet, property φ

- Assume
 - Syntax note: A – All paths E – Exists a path

- $\varphi = \text{AG EF } p$
 - In all (A) paths starting in \bullet and for any (G) state s on them it holds that there exists (E) a path starting with s such that it contains (F) a state where p holds

- true

- $\varphi = \text{AG EX } p$

- true

- $\varphi = \text{AG AX } p$

- false

- $\varphi = \text{AG EX AGp}$

- True
Consider

- Kripke str. with initial state \bullet, property φ

LTL

- Assume $\varphi = GFp$
 - In all ∞ paths starting in \bullet, p globally holds in the future
 - Not true, since
 - Implies computational tree with the path \uparrow
CTL syntax

- A CTL formula has one of the following forms:
 - 0, 1, p, ¬φ, φ & ψ, φ ⇒ ψ, φ ∨ ψ
 - p is an atomic formula, p ∈ AP
 - AX φ, EX φ
 - AG φ, EG φ
 - AF φ, EF φ
 - A[φ U ψ], E[φ U ψ]
 - where φ, ψ are CTL formulas
- A – All paths E – Exists a path (two quantifiers)
- X – neXt G – Globally F – Future U – Until
CTL semantics

- \(M, s \models \varphi \) stands for “a state \(s \) from the Kripke structure \(M \) satisfies a CTL formula \(\varphi \)”
- \(\models \) is defined by induction on the size of \(\varphi \)

Definition

- \(M, s \models p \) \iff p \in L(s)
- \(M, s \models \neg \varphi_1 \) \iff not \(M, s \models \varphi_1 \)
- \(M, s \models \varphi_1 \lor \varphi_2 \) \iff \(M, s \models \varphi_1 \) or \(M, s \models \varphi_2 \)
- \(M, s \models \varphi_1 \land \varphi_2 \) \iff \(M, s \models \varphi_1 \) and \(M, s \models \varphi_2 \)
Definition (cont.)

- $M, s \models \text{EX } \varphi_1 \iff$ there is a state t and a transition $s \rightarrow t$ in M s.t.
 $M, t \models \varphi_1$

- $M, s \models \text{AX } \varphi_1 \iff$ for every state t in M s.t. $s \rightarrow t$,
 $M, t \models \varphi_1$ holds
CTL semantics

Definition (cont.)

- **M, s \models EF \varphi_1** ⇔ there exists a state t and a path from s to t (in M) s.t. $M, t \models \varphi_1$

- **M, s \models AF \varphi_1** ⇔ on every infinite path (in M) beginning in s there is a state t s.t. $M, t \models \varphi_1$

- **M, s \models EG \varphi_1** ⇔ there exists an infinite path $\pi = \pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \ldots$ (in M) s.t. $s = \pi_0$ and for all $i \geq 0$ $\pi_i \models \varphi_1$ holds

- **M, s \models AG \varphi_1** ⇔ for every infinite path $\pi = \pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \ldots$ (in M) s.t. $s = \pi_0$, for all $i \geq 0$ $\pi_i \models \varphi_1$ holds
CTL semantics

Definition (cont.)

- \(M, s \models E [\varphi_1 U \varphi_2] \iff \) there exists an infinite path \(\pi = \pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \ldots \) (in \(M \)) s.t. \(\pi_0 = s \) and there exists \(i \geq 0 \) s.t.:
 - \(M, \pi_i \models \varphi_2 \)
 - for all \(j, 0 \leq j < i, M, \pi_j \models \varphi_1 \) holds

- \(M, s \models A [\varphi_1 U \varphi_2] \iff \) for all infinite paths \(\pi = \pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \ldots \) (in \(M \)) s.t. \(\pi_0 = s \), there exists \(i \geq 0 \) s.t.:
 - \(M, \pi_i \models \varphi_2 \)
 - for all \(j, 0 \leq j < i, M, \pi_j \models \varphi_1 \) holds
AX φ_1

$\bullet = \varphi_1$ holds

EX φ_1

$\bigcirc = \varphi_1$ either holds or not
\[AG \varphi_1 \]
\[EG \varphi_1 \]
\[AF \varphi_1 \]
\[EF \varphi_1 \]

\[\bullet = \varphi_1 \text{ holds} \]

\[\circ \]
\[E[\varphi_1 \cup \varphi_2] \]

\[A[\varphi_1 \cup \varphi_2] \]

- \(\bullet \) = \(\varphi_1 \) holds (\(\varphi_2 \) undefined)
- \(\bigcirc \) = \(\varphi_2 \) holds (\(\varphi_1 \) undefined)
- \(\bigcirc \) = \(\varphi_1, \varphi_2 \) undefined
Think of CTL formulas as approximations to LTL formulas

- $\text{AG EF } p$ is weaker than $\text{G F } p$

- $\text{AF AG } p$ is stronger than $\text{F G } p$
Think of CTL formulas as approximations to LTL formulas

- $\text{AG EF } p$ is \textbf{weaker} than $\text{G F } p$

- $\text{AF AG } p$ is \textbf{stronger} than $\text{F G } p$
Practicality perspective

- AG EF p is **weaker** than $G F p$

![Diagram of AG EF p]

Good for finding bugs... $EF p$
“exists” by CTL

- AF AG p is **stronger** than $F G p$

![Diagram of AF AG p]

Good for verifying... $FG p$
“invariant” by LTL

- CTL formulas easier to verify
• A property expressible in CTL but not in LTL
 ▪ **Fact:** There is no LTL formula \(\varphi \) equivalent to the CTL formula \(\text{AG}(\text{EF} \ p) \)
 ▪ Note that \(\text{AG}(\text{EF} \ p) \) is *not* the same as \(\text{G}(\text{F} \ p) \) in LTL
 ▪ Suppose that there is such a \(\varphi \) (in LTL). Consider the following K.S.

\[\begin{array}{c}
S_0 \\
\rightarrow \\
S_1 \\
\rightarrow \\
p
\end{array} \]
CTL vers. LTL (cont.)

- $\text{AG}(\text{EF } p)$ is true in s_0
 - φ is true in s_0 as well
 - i.e. φ is true on all paths that start in s_0
 - therefore φ is true on the path that loops in s_0
 - thus φ is true in s' of the following Kripke structure

- thus $\text{AG}(\text{EF } p)$ would have to be true in s'
- contradiction!
The LTL formula $\text{FG } p$ is not equivalent to any CTL formula.

In particular, it is not equivalent to the CTL formula AF (AG p).
The LTL formula $FG \, p$ is not equivalent to CTL formula $AF(AG \, p)$

To prove this, we have to find a Kripke structure M and a state s in M s.t.:

- either
 - $M, s \models_{LTL} FG \, p$
 - and not $M, s \models_{CTL} AF \, (AG \, p)$

- or
 - $M, s \models_{CTL} AF \, (AG \, p)$
 - and not $M, s \models_{LTL} FG \, p$
LTL ver. CTL

\[M, s \models_{LTL} FG p \]

not \[M, s \models_{CTL} AF (AG p) \]

\(\bullet = p \text{ holds} \)

\(\bigcirc = p \text{ does not hold} \)
Linear and Branching time logics are incomparable
LTL vers. CTL: Complexity

• Model checking of $M = (S, R, L)$
 - Does M satisfy ϕ?
 - $|M| = |S| + |R|
 - $|\Phi|$ = number of subformulas of Φ

• Time complexity
 - CTL: $O(|M| \cdot |\Phi|)$
 - LTL: $O(|M| \cdot 2^{|\phi|})$ (PSPACE complete)

• Conclusion
 - Linear complexity in $|M|$
 - LTL exponential in $|\phi|$
 - However, typically $|\phi| << |M|$
Back to CTL m.c.: Formula parse tree

\[(\text{EG } \text{E}[p \lor q]) \land \text{EX } r\]

```
(EG E[p U q]) & EX r
```

```
EG E[p U q]
```

```
E[p U q]
```

```
p
```

```
q
```

```
EX r
```

```
r
```
Explicit CTL model checking algorithm

- For every state s in S, the algorithm labels s with all subformulas of φ which are true in s
 - $\text{label}(s)$ – the set of labels associated with s
 - initially, $\text{label}(s) = L(s)$
 - then, the algorithm goes through a series of stages
 - during the i-th stage, the subformulas with $i-1$ nested operators are processed
 - when a subformula is processed, it is added to the labeling of each state s in which it is true (i.e. $\text{label}(s)$ is updated)
 - Once the algorithm terminates, we will have

$$M, s \models \varphi \iff \varphi \in \text{label}(s)$$
Explicit CTL model checking algorithm

\[(\text{EG} \ E[p \ U \ q]) \ & \ \text{EX} \ r\]
Explicit CTL model checking algorithm

\[(\text{EG E}[p \text{ U } q]) \& \text{EX } r\]

Jan Kofroň, František Plášil, Lecture 5
Explicit CTL model checking algorithm

\[(\text{EG } E[p \ U q]) \land \text{EX } r \]

\[E[p \ U q] \]

\[\text{p} \quad \text{E}[p \ U q] \]

\[\text{q} \quad \text{E}[p \ U q] \]

\[\text{r} \quad \text{E}[p \ U q] \]

\[\text{p} \quad \text{E}[p \ U q] \]

\[\text{q} \quad \text{E}[p \ U q] \]

\[\text{r} \]

Jan Kofroň, František Plášil, Lecture 5
Explicit CTL model checking algorithm

\[(\text{EG } E[p \cup q]) \land \text{EX } r\]

\[\text{EG } E[p \cup q]\]

\[E[p \cup q]\]

\[p \quad q \quad r\]

Jan Kofroň, František Plášil, Lecture 5
Explicit CTL model checking algorithm

Jan Kofroň, František Plášil, Lecture 5
Explicit CTL model checking algorithm

\[(\text{EG} \ E[p \ U \ q]) \land \text{EX} \ r\]

\[\text{EG} \ E[p \ U \ q]\]

\[E[p \ U \ q]\]

\[\text{EX} \ r\]

\[p\]

\[q\]

\[r\]
Explicit CTL model checking algorithm

- Any CTL formula can be expressed in the terms of \(\neg, \& \), EX, EU, EG

- Handling \(\neg \varphi_1, \varphi_1 \& \varphi_2, \) EX \(\varphi_1 \) during a stage of the algorithm is trivial
All operators in terms of EX, EG, EU

- $AX \varphi_1 = \neg EX (\neg \varphi_1)$
- $EF \varphi_1 = E[1 U \varphi_1]$
- $AG \varphi_1 = \neg EF (\neg \varphi_1)$
- $AF \varphi_1 = \neg EG (\neg \varphi_1)$
- $A[\varphi_1 U \varphi_2] = \neg EG (\neg \varphi_2) \&$
 & \neg E[\neg \varphi_2 U (\neg \varphi_1 \& \neg \varphi_2)]$
procedure CheckEU(ϕ₁, ϕ₂)
 T := {s : ϕ₂ ∈ label(s)};
 for all s ∈ T do
 label(s) := label(s) ∪ {E[ϕ₁ U ϕ₂]};
 end for all
 while T != {}
 choose s ∈ T;
 T := T \ {s};
 for all t such that R(t,s) do
 if E[ϕ₁ U ϕ₂] ∉ label(t)
 and ϕ₁ ∈ label(t) then
 label(t) := label(t) ∪ {E[ϕ₁ U ϕ₂]};
 T := T ∪ {t};
 end if
 end for all
 end while
end procedure
Handling $E[\varphi_1 \cup \varphi_2]$ – example: fragment of M
Handling $E[\varphi_1 U \varphi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\varphi_1 U \varphi_2]$
Handling $E[\varphi_1 U \varphi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling \(E[\varphi_1 \cup \varphi_2] \)
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\varphi_1 U \varphi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling EG ψ_1

- Based on decomposition of the graph into nontrivial strongly connected components
- A *strongly connected component* (SCC) C is a *maximal* subgraph such that every node in C is reachable from every other node in C along a directed path entirely contained within C
- C is *nontrivial* iff either it has more than one node or it contains one node with a self-loop
 - infinite path

Jan Kofroň, František Plášil, Lecture 5
Handling EG φ_1

- $M' = (S', R', L')$
- $S' = \{ s \in S : M, s \models \varphi_1 \}$
- $R' = R \mid_{S' \times S'}$
- $L' = L \mid_{S'}$
Lemma: $M, s \models EG \varphi_1$ iff both the following conditions are satisfied:

- $s \in S'$
- There exists a path in M' that leads from s to some node t in a nontrivial strongly connected component C of the graph (S', R')
Handling $\text{EG } \varphi_1$

- Construct the restricted Kripke structure $M' = (S', R', L')$
- Partition the graph (S', R') into strongly connected components
- Find those states that belong to a nontrivial component
- Work backward (using converse of R')
 - find all the states that can be reached by a path (converse of R' !) in which each state is labeled with φ_1
Handling EG φ_1

M:

- $\circ = \varphi_1$ holds
- $\square = \varphi_1$ does not hold
Handling φ_1

M':

Construction of (S', R')
Identification of nontrivial strongly connected components SCC by Tarjan algorithm (not detailed here)
Handling $\text{EG } \varphi_1$

\[\varphi_1 \] holds

SCC
procedure CheckEG(\(\varphi_1\))

\[
S' = \{s : \varphi_1 \in \text{label}(s)\};
\]
\[
\text{SCC} = \{C : C \text{ is a nontrivial SCC of } S'\};
\]
\[
T := \bigcup_{C \in \text{SCC}} \{s : s \in C\};
\]
\[
\text{for all } s \in T \text{ do}
\]
\[
\text{label}(s) := \text{label}(s) \cup \{\text{EG } \varphi_1\};
\]
\[
\text{end for all}
\]

while \(T \neq {}\) do

\[
\text{choose } s \in T;
\]
\[
T := T \setminus \{s\};
\]
\[
\text{for all } t \text{ such that } t \in S' \text{ and } R(t, s) \text{ do}
\]
\[
\text{if } \text{EG } \varphi_1 \notin \text{label}(t) \text{ then}
\]
\[
\text{label}(t) := \text{label}(t) \cup \{\text{EG } \varphi_1\};
\]
\[
T := T \cup \{t\};
\]
\[
\text{end if}
\]
\[
\text{end for all}
\]

end while

end procedure
Explicit CTL model checking algorithm

- CheckEU
 - $O(|S| + |R|)$
- CheckEG
 - $O(|S| + |R|)$
 - Partitioning using Tarjan algorithm: $O(|S'| + |R'|)$
- φ has at most $|\varphi|$ different subformulas

- Time complexity: $O(|\varphi| \times (|S| + |R|))$