Model checking

- For a Kripke structure $M = (S, I, R, L)$ over AP and a (state based) temporal logic formula φ
 find the set of all states in S that satisfy φ:

 $$X = \{ s \in S : M, s \models \varphi \}$$
Explicit vs. symbolic model checking

- **Explicit model checking**
 - M is *explicitly* represented in memory as a labeled, directed graph

- **Symbolic model checking**
 - Based on manipulation with *Boolean formulas*
 - The algorithm operates on entire sets of states rather than on individual states
 - Reduction of time and memory consumption
Did you know...?

- Explicit model checking
 - M is explicitly represented in memory directed graph

- Symbolic model checking
 - Based on manipulation with Boolean functions
 - The algorithm operates on entire system, not on individual states
 - Reduction of time and memory costs

George Boole (1815 –1864)
English mathematician, philosopher and logician
Today

- Ordered Binary Decision Diagrams (OBDDs)
 - We will later present a symbolic CTL model checking algorithm, based on manipulation with OBDDs
Outline

- Representing Boolean functions using OBDDs
 - Size of the OBDDs depends on the variable ordering
 - Heuristics for good variable ordering
- Logical operations on OBDDs
- Representing Kripke structures using OBDDs
Ordered Binary Decision Diagrams

• Canonical form representation for Boolean formulas
 ▪ Often substantially more compact than traditional normal forms (conjunctive NF, disjunctive NF)
 ▪ Variety of applications
 • symbolic simulation
 • verification of combinational logic
 • verification of finite-state concurrent systems

• We first introduce binary decision trees
 ▪ ... and then generalize binary decision trees to obtain (ordered) binary decision diagrams
Binary Decision Trees (BDTs)

- Rooted, directed trees
- Two types of vertices
 - Nonterminal
 - Each nonterminal vertex v
 - is labeled by a variable $\text{var}(v)$
 - has two successors:
 - $\text{low}(v)$... variable v is assigned 0
 - $\text{high}(v)$... variable v is assigned 1
 - Terminal
 - Each terminal vertex v is labeled by $\text{value}(v)$ which is either 0 or 1
Binary Decision Trees (BDTs)

\[\text{var}(u) = a_1 \]

\[\text{low}(u) = v \]

\[\text{high}(u) = w \]

Assignment \(t \): \(\text{value}(t) = 1 \)
Q: What function does this represent?
Binary Decision Trees (BDTs)
Binary Decision Trees (BDTs)

- Every binary decision tree represents a Boolean formula (Boolean function \(f : \{0,1\}^n \rightarrow \{0,1\} \))
- Our example: two bit comparator
 \[
 f(a_1, a_2, b_1, b_2) = (a_1 \leftrightarrow b_1) \land (a_2 \leftrightarrow b_2)
 \]

- To decide whether a particular truth assignment makes the formula true or false
 - Traverse the tree from the root to a terminal vertex \(t \)
 - On the path, in a nonterminal vertex \(v \):
 - If the variable \(\text{var}(v) \) is 0, then the next vertex on the path from the root to the terminal vertex will be \(\text{low}(v) \)
 - If the variable \(\text{var}(v) \) is 1, then the next vertex on the path from the root to the terminal vertex will be \(\text{high}(v) \)
 - \(\text{value}(t) \) is the value of the function / formula for this assignment
Binary Decision Trees (BDTs)

a1 := 1, a2 := 0
b1 := 1, b2 := 1
Binary Decision Trees (BDTs)

a1:= 1, a2:= 0

b1:= 1, b2:= 1
Binary Decision Trees (BDTs)

- $a_1 := 1$, $a_2 := 0$
- $b_1 := 1$, $b_2 := 1$
Binary Decision Trees (BDTs)

- $a_1 := 1, a_2 := 0$
- $b_1 := 1, b_2 := 1$
Binary Decision Trees (BDTs)

- Not very concise representation for Boolean functions
 - Essentially the same size as truth tables
- Usually a lot of redundancy in such trees
 - Two BDTs \(T_1, T_2 \) are isomorphic iff there exists one-to-one and onto function \(h \) s.t.
 - \(h \) maps terminals of \(T_1 \) to terminals of \(T_2 \)
 - \(h \) maps nonterminals of \(T_1 \) to nonterminals of \(T_2 \)
 - for every terminal vertex \(v \), \(\text{value}(v) = \text{value}(h(v)) \)
 - for every nonterminal vertex \(v \)
 - \(\text{var}(v) = \text{var}(h(v)) \)
 - \(h(\text{low}(v)) = \text{low}(h(v)) \)
 - \(h(\text{high}(v)) = \text{high}(h(v)) \)
 - In our example: 8 subtrees with roots labeled by \(b_2 \), but only 3 are distinct (i.e. not isomorphic)
 - merging the isomorphic subtrees, we obtain a more concise representation – a binary decision diagram
BDT → BDD

Jan Kofroň, František Plášil, Lecture 6
BDT \rightarrow BDD

Jan Kofroň, František Plášil, Lecture 6
BDT \rightarrow BDD
BDT \rightarrow BDD

[Diagram of a binary decision tree (BDD) with nodes labeled a1, a2, and b1, b2, illustrating the conversion process.]
Jan Kofroň, František Plášil, Lecture 6
Binary Decision Diagrams (BDDs)

- Rooted, directed acyclic graphs
- Two types of vertices
 - Nonterminal
 - Each nonterminal vertex v
 - is labeled by a variable $\text{var}(v)$
 - has two successors:
 - $\text{low}(v)$... variable v is assigned 0
 - $\text{high}(v)$... variable v is assigned 1
 - Terminal
 - Each terminal vertex v is labeled by $\text{value}(v)$ which is either 0 or 1
Every vertex v in a BDD determines a Boolean function $f_v(x_1, ..., x_n)$

- If v is a terminal vertex
 - $f_v(x_1, ..., x_n) = value(t)$

- If v is a nonterminal vertex with $\text{var}(v) = x_i$
 - $f_v(x_1, ..., x_n) = (\neg x_i \land f_{\text{low}(v)}(x_1, ..., x_n)) \lor (x_i \land f_{\text{high}(v)}(x_1, ..., x_n))$

A BDD with root r represents the Boolean function $f_r(x_1, ..., x_n)$
It is desirable to have a **canonical representation** for Boolean functions

- Two Boolean functions are logically equivalent if and only if they have isomorphic canonical representations
 - \(\rightarrow \) simplifies
 - checking equivalence of two formulas
 - checking satisfiability of a formula

Two BDDs \(B_1, B_2 \) are isomorphic iff there exists one-to-one and onto function \(h \) s.t.

- \(h \) maps terminals of \(B_1 \) to terminals of \(B_2 \)
- \(h \) maps nonterminals of \(B_1 \) to nonterminals of \(B_2 \)
- for every terminal vertex \(v \), \(\text{value}(v) = \text{value}(h(v)) \)
- for every nonterminal vertex \(v \)
 - \(\text{var}(v) = \text{var}(h(v)) \)
 - \(h(\text{low}(v)) = \text{low}(h(v)) \)
 - \(h(\text{high}(v)) = \text{high}(h(v)) \)
Order Binary Decision Diagrams (OBDDs)

• By placing two restrictions on BDDs, we obtain a canonical representation of Boolean functions –
 Ordered Binary Decision Diagrams (OBDDs)
 1. The same order of variables \(\rightarrow \) imposing a total ordering on the variables
 2. No isomorphic subtrees or redundant vertices \(\rightarrow \) applying 3 transformation rules

• Remove duplicate terminals
 ▪ Eliminate all but one terminal vertex with a given label and redirect all arcs to the eliminated vertices to the remaining one

• Remove duplicate nonterminals
 ▪ If two nonterminals \(u \) and \(v \) have \(\text{var}(u) = \text{var}(v), \text{low}(u) = \text{low}(v) \) and \(\text{high}(u) = \text{high}(v) \), then eliminate \(u \) or \(v \) and redirect all incoming arcs to the other vertex

• Remove redundant tests
 ▪ If nonterminal \(v \) has \(\text{low}(v) = \text{high}(v) \), then eliminate \(v \) and redirect all incoming arcs to \(\text{low}(v) \)
Remove Duplicate Terminals
Remove Duplicate Terminals
Remove Redundant Tests

Jan Kofroň, František Plášil, Lecture 6
Remove Redundant Tests
Remove Redundant Tests
Remove Redundant Tests

Jan Kofroň, František Plášil, Lecture 6
Remove Redundant Tests

Jan Kofroň, František Plášil, Lecture 6
Remove Redundant Tests
Remove Duplicate Nonterminals
Remove Duplicate Nonterminals
Ordered Binary Decision Diagrams (OBDDs)

- Transformation procedure
 - Start with a BDD satisfying the ordering property
 - Apply the transformation rules until the size of the diagram can no longer be reduced
- This can be done in a bottom-up manner by a procedure called Reduce (in time which is linear in the size of the original BDD)
- OBDD as a canonical form
 - Checking equivalence = checking isomorphism
 - Checking satisfiability = checking equivalence to the trivial OBDD (only one terminal labeled by 0)
Ordered Binary Decision Diagrams (OBDDs)

- The size of an OBDD can depend critically on the variable ordering

\[a_1 < b_1 < a_2 < b_2 \]

\[a_1 < a_2 < b_1 < b_2 \]
Ordered Binary Decision Diagrams (OBDDs)

- For n-bit comparator
 - $a_1 < b_1 < ... < a_n < b_n$
 - 3n + 2 vertices in the OBDD
 - $a_1 < ... < a_n < b_1 < ... < b_n$
 - $3 \times 2^n - 1$ vertices in the OBDD

- In general
 - Finding an optimal ordering for variables is infeasible
 - Even checking that a particular ordering is optimal is NP-complete
 - There are many functions that have exponential size OBDDs for any variable ordering

- **However:** In practice, using OBDDs to encode Boolean functions, sets, Kripke structures, etc. in many cases saves time and memory
Heuristics for good variable ordering

- Combinational circuit
 - Related variables should be “close together” in the ordering
 - Variables in a sub-circuit
 - determining the sub-circuit output
 - Depth-first traversal

- Dynamic reordering
Logical operations with OBDDs

- \(f(x_1, \ldots, x_n) \) – a Boolean function
- **Restriction** of some argument \(x_i \) of \(f \) to a constant value \(b \) (0 or 1)
 - \(f|_{x_i \leftarrow b}(x_1, \ldots, x_n) = f(x_1, \ldots, x_{i-1}, b, x_{i+1}, \ldots, x_n) \)
 - Implementation: depth-first traversal of the OBDD

\[
\begin{align*}
\text{Reduce} & \\
\text{b = 0} & \\
x & y
\end{align*}
\]
Logical operations with OBDDs

- **Shannon expansion**
 - \(f = (-x \land f|_{x=0}) \lor (x \land f|_{x=1}) \)
 - Application: efficient implementation of logical operations on Boolean functions represented using OBDDs
Let \(*\) be an arbitrary two-argument logical operation
- imagine logical AND for instance

\(f, f'\) – Boolean functions

\(v, v'\) – roots of the OBDDs representing \(f, f'\)
- Both OBDDs respect the same variable ordering

If \(v\) is a nonterminal vertex, \(x = var(v)\)

If \(v'\) is a nonterminal vertex, \(x' = var(v')\)
Logical operations with OBDDs

- If \(v, v' \) are terminal vertices

 \[f \cdot f' = \text{value}(v) \cdot \text{value}(v') \]

 for instance: \(\text{value}(v) \land \text{value}(v') \)

- If \(v, v' \) are nonterminal vertices and \(x = x' \)

 \[f \cdot f' = (\neg x \land (f|_{x\leftarrow 0} \cdot f'|_{x\leftarrow 0})) \lor (x \land (f|_{x\leftarrow 1} \cdot f'|_{x\leftarrow 1})) \]

 The subproblems are solved recursively

 The root of the resulting OBDD will be a new node \(w \) with

 \(\text{var}(w) = x \), \(\text{low}(w) \) will be the OBDD for \(f|_{x\leftarrow 0} \cdot f'|_{x\leftarrow 0} \) and

 \(\text{high}(w) \) will be the OBDD for \(f|_{x\leftarrow 1} \cdot f'|_{x\leftarrow 1} \)
Logical operations with OBDDs

- If v is a nonterminal vertex and
 - Either v' is a nonterminal vertex and $x < x'$
 - Or v' is a terminal vertex
 \[\Rightarrow f' \text{ does not depend on } x \]
 \[f'|_{x \leftarrow 0} = f'|_{x \leftarrow 1} = f' \]
 \[\Rightarrow \text{Shannon expansion simplifies to} \]
 \[f \ast f' = (\neg x \land (f|_{x \leftarrow 0} \ast f')) \lor (x \land (f|_{x \leftarrow 1} \ast f')) \]
 - The subproblems are solved recursively
 - The root of the resulting OBDD will be a new node w with $\text{var}(w) = x$, $\text{low}(w)$ will be the OBDD for $f|_{x \leftarrow 0} \ast f'$ and $\text{high}(w)$ will be the OBDD for $f|_{x \leftarrow 1} \ast f'$
Logical operations with OBDDs

- If \(v' \) is a nonterminal vertex and
 - Either \(v \) is a nonterminal vertex and \(x' < x \)
 - Or \(v \) is a terminal vertex

 \(\Rightarrow f \) does not depend on \(x' \)
 - \(f|_{x \leftarrow 0} = f|_{x \leftarrow 1} = f \)

\(\Rightarrow \) Shannon expansion simplifies to

- \(f \ast f' = (\neg x' \land (f \ast f'|_{x \leftarrow 0})) \lor (x' \land (f \ast f'|_{x \leftarrow 1})) \)
 - The subproblems are solved recursively
 - The root of the resulting OBDD will be a new node \(w \) with \(\text{var}(w) = x, \text{low}(w) \) will be the OBDD for \(f \ast f'|_{x \leftarrow 0} \) and \(\text{high}(w) \) will be the OBDD for \(f \ast f'|_{x \leftarrow 1} \)
Logical operations with OBDDs

- To prevent the algorithm from being exponential, use dynamic programming
 ➔ polynomial algorithm

- Each subproblem corresponds to a pair of OBDDs that are subgraphs of OBDDs for f, f'
 - Each subgraph is uniquely determined by its root
 - The number of subgraphs in the OBDD for f is bounded by the size of the OBDD for f (similar bound for f')
 ➔ the number of subproblems is bounded by the product of the size of the OBDDs for f and f'

- Result Cache
 - A hash table used to record previously computed subproblems
Representing relations using OBDDs

• If Q is an n-ary relation over $\{0,1\}$
 ▪ Q can be represented by the OBDD for its characteristic function:
 $f_Q(x_1, ..., x_n) = 1$ iff $Q(x_1, ..., x_n)$

• Let Q be an n-ary relation over a finite domain D
 ▪ Without loss of generality we assume D has 2^m elements for some $m > 0$
 ▪ We encode elements of D using a bijection
 $\phi: \{0,1\}^m \rightarrow D$
 ▪ We construct a Boolean relation Q_b of arity $m \times n$:
 $Q_b(<x_1>, ..., <x_n>) = Q(\phi(<x_1>), ..., \phi(<x_n>))$
 • $<x_i>$ is a vector of m Boolean variables that encodes the variable x_i, which takes values in D
 ▪ Q can now be represented as the OBDD determined by the characteristic function f_{Q_b} of Q_b
Representing Kripke structures using OBDDs

- \(M = (S, R, L) \)

- **Encoding \(S \)**
 - We assume there are exactly \(2^m \) states
 - \(\phi: \{0,1\}^m \rightarrow S \)

- **Encoding \(R \)**
 - The OBDD for characteristic function \(f_{R_b} \) of \(R_b(<x>, <x'>) \)

- **Encoding \(L \)**
 - Typically, \(L \) is defined as mapping from states to subsets of atomic propositions
 - It is more convenient to consider it as mapping from atomic propositions to subsets of states
 - An atomic proposition \(p \) is mapped to the set of states that satisfy it: \(L_p = \{ s \mid p \in L(s) \} \)
 - \(L_p \) is represented using the encoding \(\phi \)
Representing Kripke structures using OBDDs

\[R: (\neg x \land x') \lor (x \land x') \lor (x \land \neg x') \]

\[L: a \rightarrow \{s_1, s_2\}, \quad b \rightarrow \{s_1\} \]

\{((0,0), (0,1), (1,0))\}