Behavior models and verification

Lecture 6

http://d3s.mff.cuni.cz

Jan Kofroň, František Plášil
Model checking

- For a Kripke structure $M = (S, I, R, L)$ over AP and a (state based) temporal logic formula φ find the set of all states in S that satisfy φ:

$$X = \{ s \in S: M, s \models \varphi \}$$
Explicit vs. symbolic model checking

- Explicit model checking
 - M is **explicitly** represented in memory as a labeled, directed graph

- Symbolic model checking
 - Based on manipulation with **Boolean formulas**
 - The algorithm operates on entire sets of states rather than on individual states
 - Reduction of time and memory consumption
Did you know...?

- Explicit model checking
 - M is explicitly represented in memory directed graph

- Symbolic model checking
 - Based on manipulation with **Boolean** functions
 - The algorithm operates on entire on individual states
 - Reduction of time and memory consumption

George Boole (1815 – 1864)
English mathematician, philosopher and logician
Today

- **Ordered Binary Decision Diagrams (OBDDs)**
 - We will later present a symbolic CTL model checking algorithm, based on manipulation with OBDDs
Outline

- Representing Boolean functions using OBDDs
 - Size of the OBDDs depends on the variable ordering
 - Heuristics for good variable ordering
- Logical operations on OBDDs
- Representing Kripke structures using OBDDs
Ordered Binary Decision Diagrams

- Canonical form representation for Boolean formulas
 - Often substantially more compact than traditional normal forms (conjunctive NF, disjunctive NF)
 - Variety of applications
 - symbolic simulation
 - verification of combinational logic
 - verification of finite-state concurrent systems

- We first introduce binary decision trees
 - ... and then generalize binary decision trees to obtain (ordered) binary decision diagrams
Binary Decision Trees (BDTs)

- Rooted, directed trees
- Two types of vertices
 - Nonterminal
 - Each nonterminal vertex \(v \)
 - is labeled by a variable \(\text{var}(v) \)
 - has two successors:
 - \(\text{low}(v) \) ... variable \(v \) is assigned 0
 - \(\text{high}(v) \) ... variable \(v \) is assigned 1
 - Terminal
 - Each terminal vertex \(v \) is labeled by \(\text{value}(v) \) which is either 0 or 1
Binary Decision Trees (BDTs)

var(u) = a1

low(u) = v

high(u) = w

assignment t: value(t) = 1
Binary Decision Trees (BDTs)

\[\text{var}(u) = a_1 \]

\[\text{low}(u) = v \]

\[\text{high}(u) = w \]

\[\text{Q: What function does this represent?} \]
Binary Decision Trees (BDTs)
Every binary decision tree represents a Boolean formula (Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$).

Our example: two-bit comparator

$$f(a_1, a_2, b_1, b_2) = (a_1 \leftrightarrow b_1) \land (a_2 \leftrightarrow b_2)$$

To decide whether a particular truth assignment makes the formula true or false, proceed like this:

- Traverse the tree from the root to a terminal vertex t
- On the path, in a nonterminal vertex v:
 - If the variable $\text{var}(v)$ is 0, then the next vertex on the path from the root to the terminal vertex will be $\text{low}(v)$
 - If the variable $\text{var}(v)$ is 1, then the next vertex on the path from the root to the terminal vertex will be $\text{high}(v)$
- $\text{value}(t)$ is the value of the function / formula for this assignment.
Binary Decision Trees (BDTs)

\[a_1 := 1, \ a_2 := 0 \]

\[b_1 := 1, \ b_2 := 1 \]
Binary Decision Trees (BDTs)

a1 := 1, a2 := 0

b1 := 1, b2 := 1
Binary Decision Trees (BDTs)

a₁ := 1, a₂ := 0
b₁ := 1, b₂ := 1
Binary Decision Trees (BDTs)

\[\text{a}_1 := 1, \text{a}_2 := 0 \]
\[\text{b}_1 := 1, \text{b}_2 := 1 \]
Binary Decision Trees (BDTs)

- Not very concise representation for Boolean functions
 - Essentially the same size as truth tables
- Usually a lot of redundancy in such trees
 - Two BDTs T_1, T_2 are isomorphic iff there exists one-to-one and onto function h s.t.
 - h maps terminals of T_1 to terminals of T_2
 - h maps nonterminals of T_1 to nonterminals of T_2
 - for every terminal vertex v, $\text{value}(v) = \text{value}(h(v))$
 - for every nonterminal vertex v
 - $\text{var}(v) = \text{var}(h(v))$
 - $h(\text{low}(v)) = \text{low}(h(v))$
 - $h(\text{high}(v)) = \text{high}(h(v))$
 - In our example: 8 subtrees with roots labeled by b_2, but only 3 are distinct (i.e. not isomorphic)
 - \Rightarrow merging the isomorphic subtrees, we obtain a more concise representation – a binary decision diagram
BDT \rightarrow BDD
Jan Kofroň, František Plášil, Lecture 6
BDT \rightarrow BDD
BDT \rightarrow BDD

Jan Kofroň, František Plášil, Lecture 6
Binary Decision Diagrams (BDDs)

- Rooted, directed acyclic graphs
- Two types of vertices
 - Nonterminal
 - Each nonterminal vertex \(v \)
 - is labeled by a variable \(\text{var}(v) \)
 - has two successors:
 - \(\text{low}(v) \) ... variable \(v \) is assigned 0
 - \(\text{high}(v) \) ... variable \(v \) is assigned 1
 - Terminal
 - Each terminal vertex \(v \) is labeled by \(\text{value}(v) \) which is either 0 or 1
Every vertex v in a BDD determines a Boolean function $f_v(x_1, \ldots, x_n)$

- If v is a terminal vertex
 - $f_v(x_1, \ldots, x_n) = value(v)$
- If v is a nonterminal vertex with $var(v) = x_i$
 - $f_v(x_1, \ldots, x_n) =$
 - $\neg x_i \land f_{low(v)}(x_1, \ldots, x_n) \lor x_i \land f_{high(v)}(x_1, \ldots, x_n)$

A BDD with root r represents the Boolean function $f_r(x_1, \ldots, x_n)$
It is desirable to have a **canonical representation** for Boolean functions

- Two Boolean functions are logically equivalent if and only if they have isomorphic canonical representations
 - simplifies
 - checking equivalence of two formulas
 - checking satisfiability of a formula

Two BDDs B_1, B_2 are isomorphic iff there exists one-to-one and onto function h s.t.

- h maps terminals of B_1 to terminals of B_2
- h maps nonterminals of B_1 to nonterminals of B_2
- for every terminal vertex v, $\text{value}(v) = \text{value}(h(v))$
- for every nonterminal vertex v
 - $\text{var}(v) = \text{var}(h(v))$
 - $h(\text{low}(v)) = \text{low}(h(v))$
 - $h(\text{high}(v)) = \text{high}(h(v))$
Ordered Binary Decision Diagrams (OBDDs)

- By placing two restrictions on BDDs, we obtain a canonical representation of Boolean functions –

Ordered Binary Decision Diagrams (OBDDs)

1. The same order of variables \rightarrow imposing a total ordering on the variables
2. No isomorphic subtrees or redundant vertices \rightarrow applying 3 transformation rules

- Remove duplicate terminals
 - Eliminate all but one terminal vertex with a given label and redirect all arcs to the eliminated vertices to the remaining one

- Remove duplicate nonterminals
 - If two nonterminals u and v have $\text{var}(u) = \text{var}(v), \text{low}(u) = \text{low}(v)$ and $\text{high}(u) = \text{high}(v)$, then eliminate u or v and redirect all incoming arcs to the other vertex

- Remove redundant tests
 - If nonterminal v has $\text{low}(v) = \text{high}(v)$, then eliminate v and redirect all incoming arcs to $\text{low}(v)$
Remove Duplicate Terminals
Remove Duplicate Terminals
Remove Redundant Tests
Remove Redundant Tests
Remove Redundant Tests

Jan Kofroň, František Plášil, Lecture 6
Remove Redundant Tests
Remove Redundant Tests
Remove Duplicate Nonterminals
Remove Duplicate Nonterminals
Ordered Binary Decision Diagrams (OBDDs)

- Transformation procedure
 - Start with a BDD satisfying the ordering property
 - Apply the transformation rules until the size of the diagram can no longer be reduced

- This can be done in a bottom-up manner by a procedure called Reduce (in time which is linear in the size of the original BDD)

- OBDD as a canonical form
 - Checking equivalence = checking isomorphism
 - Checking satisfiability = checking equivalence to the trivial OBDD (only one terminal labeled by 0)
The size of an OBDD can depend critically on the variable ordering.

\[
a_1 < b_1 < a_2 < b_2
\]

\[
a_1 < a_2 < b_1 < b_2
\]
Ordered Binary Decision Diagrams (OBDDs)

- For n-bit comparator
 - $a_1 < b_1 < \ldots < a_n < b_n$
 - 3n + 2 vertices in the OBDD
 - $a_1 < \ldots < a_n < b_1 < \ldots < b_n$
 - $3*2^n - 1$ vertices in the OBDD

- In general
 - Finding an optimal ordering for variables is infeasible
 - Even checking that a particular ordering is optimal is NP-complete
 - There are many functions that have exponential size OBDDs for any variable ordering

- **However:** In practice, using OBDDs to encode Boolean functions, sets, Kripke structures, etc. in many cases saves time and memory
Ordered Binary Decision Diagrams (OBDDs)

- Heuristics for good variable ordering
 - Combinational circuit
 - Related variables should be “close together” in the ordering
 - Variables in a sub-circuit
 - determining the sub-circuit output
 - Depth-first traversal
 - Dynamic reordering
Logical operations with OBDDs

- \(f(x_1, \ldots, x_n) \) – a Boolean function
- **Restriction** of some argument \(x_i \) of \(f \) to a constant value \(b \) (0 or 1)
 - \(f\big|_{x_i=b}(x_1, \ldots, x_n) = f(x_1, \ldots, x_{i-1}, b, x_{i+1}, \ldots, x_n) \)
 - Implementation: depth-first traversal of the OBDD
Logical operations with OBDDs

- Shannon expansion

 $$f = (\neg x \land f|_{x←0}) \lor (x \land f|_{x←1})$$

 Application: efficient implementation of logical operations on Boolean functions represented using OBDDs
Let \ast be an arbitrary two-argument logical operation

- imagine logical AND for instance

- f, f' – Boolean functions

- v, v' – roots of the OBDDs representing f, f'
 - Both OBDDs respect the same variable ordering

- If v is a nonterminal vertex, $x = var(v)$

- If v' is a nonterminal vertex, $x' = var(v')$
Logical operations with OBDDs

- If \(v, v' \) are terminal vertices
 - \(f \ast f' = \text{value}(v) \ast \text{value}(v') \)
 - for instance: \(\text{value}(v) \land \text{value}(v') \)

- If \(v, v' \) are nonterminal vertices and \(x = x' \)
 - \(f \ast f' = (\neg x \land (f|_{x=0} \ast f'|_{x=0})) \lor (x \land (f|_{x=1} \ast f'|_{x=1})) \)
 - The subproblems are solved recursively
 - The root of the resulting OBDD will be a new node \(w \) with \(\text{var}(w) = x \), \(\text{low}(w) \) will be the OBDD for \(f|_{x=0} \ast f'|_{x=0} \) and \(\text{high}(w) \) will be the OBDD for \(f|_{x=1} \ast f'|_{x=1} \)
If \(v \) is a nonterminal vertex and

- Either \(v' \) is a nonterminal vertex and \(x < x' \)
- Or \(v' \) is a terminal vertex

\(f' \) does not depend on \(x \)

- \(f'|_{x\leftarrow 0} = f'|_{x\leftarrow 1} = f' \)

Shannon expansion simplifies to

\[
f \ast f' = (\neg x \land (f|_{x\leftarrow 0} \ast f')) \lor (x \land (f|_{x\leftarrow 1} \ast f'))
\]

- The subproblems are solved recursively
- The root of the resulting OBDD will be a new node \(w \) with \(\text{var}(w) = x \), \(\text{low}(w) \) will be the OBDD for \(f|_{x\leftarrow 0} \ast f' \) and \(\text{high}(w) \) will be the OBDD for \(f|_{x\leftarrow 1} \ast f' \)
Logical operations with OBDDs

- If \(v' \) is a nonterminal vertex and
 - Either \(v \) is a nonterminal vertex and \(x' < x \)
 - Or \(v \) is a terminal vertex
 \[\Rightarrow f \text{ does not depend on } x' \]
 - \(f \mid_{x \leftarrow 0} = f \mid_{x \leftarrow 1} = f \)

\[\Rightarrow \text{Shannon expansion simplifies to} \]
- \(f \cdot f' = \overline{x'} \land (f \cdot f' \mid_{x \leftarrow 0}) \lor (x' \land (f \cdot f' \mid_{x \leftarrow 1})) \)
 - The subproblems are solved recursively
 - The root of the resulting OBDD will be a new node \(w \) with \(\text{var}(w) = x \), \(\text{low}(w) \) will be the OBDD for \(f \cdot f' \mid_{x \leftarrow 0} \) and \(\text{high}(w) \) will be the OBDD for \(f \cdot f' \mid_{x \leftarrow 1} \)
Logical operations with OBDDs

- To prevent the algorithm from being exponential, use dynamic programming
 ➔ polynomial algorithm
- Each subproblem corresponds to a pair of OBDDs that are subgraphs of OBDDs for f, f'
 - Each subgraph is uniquely determined by its root
 - The number of subgraphs in the OBDD for f is bounded by the size of the OBDD for f (similar bound for f')
 ➔ the number of subproblems is bounded by the product of the size of the OBDDs for f and f'
- Result Cache
 - A hash table used to record previously computed subproblems
Representing relations using OBDDs

- If Q is an n-ary relation over $\{0, 1\}$
 - Q can be represented by the OBDD for its characteristic function:
 $$f_Q(x_1, \ldots, x_n) = 1 \text{ iff } Q(x_1, \ldots, x_n)$$

- Let Q be an n-ary relation over a finite domain D
 - Without loss of generality we assume D has 2^m elements for some $m > 0$
 - We encode elements of D using a bijection
 $$\phi: \{0, 1\}^m \rightarrow D$$
 - We construct a Boolean relation Q_b of arity $m \ast n$:
 $$Q_b(< x_1 >, \ldots, < x_n >) = Q(\phi(< x_1 >), \ldots, \phi(< x_n >))$$
 - $< x_i >$ is a vector of m Boolean variables that encodes the variable x_i, which takes values in D
 - Q can now be represented as the OBDD determined by the characteristic function f_{Q_b} of Q_b
Representing Kripke structures using OBDDs

- \(M = (S, R, L) \)
- Encoding \(S \)
 - We assume there are exactly \(2^m \) states
 - \(\phi: \{0,1\}^m \rightarrow S \)
- Encoding \(R \)
 - The OBDD for characteristic function \(f_{R_b} \) of \(R_b(< x >, < x' >) \)
- Encoding \(L \)
 - Typically, \(L \) is defined as mapping from states to subsets of atomic propositions
 - It is more convenient to consider it as mapping from atomic propositions to subsets of states
 - An atomic proposition \(p \) is mapped to the set of states that satisfy it: \(L_p = \{ s \mid p \in L(s) \} \)
 - \(L_p \) is represented using the encoding \(\phi \)
Representing Kripke structures using OBDDs

\[x \]

\[s_1: 0 \]

\[s_2: 1 \]

\[R: \((\neg x \land x') \lor (x \land x') \lor (x \land \neg x') \) \]

\[L: a \rightarrow \{s_1, s_2\}, b \rightarrow \{s_1\} \]

\[\{(0,0), (0,1), (1,0)\} \]