Behavior Models and Verification

Lecture 10

Jan Kofroň, František Plášil
Today

- Infinite families of finite-state systems
- Bounded model checking
 - HW verification
Infinite / Bounded Model Checking

Markov chains
Timed automata
Labelled transition system

Kripke structure

Model

start
empty

open

close

heat

closed

Model checker

Property specification

$AG(\text{start } \rightarrow \text{AF heat})$

Property satisfied

Property violated

Error report

Jan Kofroň, František Plášil, Lecture 10
Infinite families of finite states systems
Finite model checking is fine
- we know that generally model checking infinite state spaces is undecidable

But: Protocols and circuits specification can be parameterized, e.g.:
- size of int in multiplication unit of CPU
- number of processors connected to bus
- ...
Infinite families

Indeed, it would be handy to reason about such parameterized designs (models)

Formally – infinite family of systems:

\[\mathcal{F} = \{M_i\}_{i=1}^{\infty} \]

For temporal formula \(f \) verify that:

\[\forall i: M_i \models f \]

This is generally still undecidable, though
Having indexed specification, indexed formulae would be fine as well

Indexed CTL (ICTL)
- formula indexed by integer
- i-th formula applies to i-th component

ICTL allows for expressing: $\land_i f(i)$ and $\lor_i f(i)$
- and also: $\land_{j \neq i} f(j)$ and $\lor_{j \neq i} f(j)$
Token ring example

- Simple token ring algorithm
 - n – non-critical section, t – keeping token,
 c – critical section, r – receive token, s – send token
- One process Q and several P_i of this type
 - Q initially in t, P_i initially in n
Synchronous $Q \parallel P$ composition, natural synchronizing on s and r resulting in τ
Token ring family: $\mathcal{F} = \{Q \parallel P_i\}_{i=1}^\infty$

- Desired property: $\bigwedge_i \text{AG} (c_i \Rightarrow \bigwedge_{j \neq i} \neg c_j)$
 - i.e., if process i is in critical section, then no other process is
Invariants

- Let $\mathcal{F} = \{M_i\}_{i=1}^{\infty}$ be family of structures
- Let \geq be reflexive, transitive relation on structures
- **Invariant I** is structure such that
 \[\forall i : I \geq M_i \]
- Properties that can be checked are determined by \geq:
 - bisimulation (strong preservation: $I \models f \iff M \models f$)
 - simulation preorder (weak preservation: $I \models f \Rightarrow M \models f$)
 - language equivalence (strong preservation)
 - language preorder (weak preservation)
Token rings of size n and of size 2 are in simulation preorder.

So for any CTL property f it is sufficient to verify:

$$(P \parallel Q) \models f$$
Lemma: Let \geq be a reflexive, transitive relation and let \parallel be a composition operator that is monotonic w.r.t. \geq. If $I \geq P$ and $I \geq I \parallel P$, then $\forall i: I \geq P^i$, where $\mathcal{F} = \{P^i\}_{i=1}^\infty$.

\parallel is monotonic w.r.t. \geq $\iff \forall P_1, P'_1, P_2, P'_2: P_1 \geq P'_1 \land P_2 \geq P'_2 \Rightarrow P_1 \parallel P_2 \geq P'_1 \parallel P'_2$
More systematic approach

• This is more like:
 “This holds once we have the relation”
 than
 “How to find the relation”

• Finding a suitable relation is hard, not possible in automatic way
 ▪ recall: the problem is undecidable in general
Bounded model checking
Bounded model checking

- Let $M = \{S, I, R, L\}$ be Kripke structure
- Define predicate $Reach(s, s')$ iff $R(s, s')$
- Define $[M]^k = \bigwedge_{i=0}^{k-1} Reach(s_i, s_{i+1})$
- $[M]^k$ contains states reachable in k steps
- Idea: Look for counterexamples made of k states
Bounded model checking

\[M, \lnot \varphi \]

\[k = 0 \]

\[\lnot \varphi \text{ satisfiable in } [M]^k \]

\[\text{YES} \rightarrow M \models \lnot \varphi \]

\[\text{NO} \rightarrow k < \text{threshold} \]

\[\text{inc}(k) \]

\[\text{YES} \rightarrow \]

\[\text{NO} \rightarrow M \not\models_{k} \lnot \varphi \]
Bounded model checking

\[k = 5 \]
Mean: Construction of formula describing the transitions in the program
 - and trying to reach assertion violation, i.e., violation of $\text{AG } p$
 - checking for satisfiability of the formula
 - using SAT solver
SAT solvers

- Tools taking logical formula and deciding whether it is satisfiable
 - whether there is satisfying assignment of free variables
 - formula in conjunctive normal form (CNF)
 - can contain quantifiers \rightarrow harder problem
 - NP-complete problem
 - if satisfiable \rightarrow satisfying assignment
 - if not \rightarrow unsat core (subset of formula’s clauses)
First step is unwinding loops (to cover the bound)

1: int i=4;
2: int s=0;
3: while (1) {
4: s+=i;
5: if (i>0)
6: i--;
7: assert(s<10);
8: }

...
Example

1: int i=4;
2: int s=0;
3: s+=i;
4: if (i>0)
5: i--;
6: assert(s<10);
7: s+=i;
8: if (i>0)
9: i--;
10: assert(s<10);
11: assert(s<10);
12: ...

\[
\begin{align*}
 f_1: & \ (pc_1 = 1) \land (i_2 = 4) \land (pc_2 = 2) \\
 f_2: & \ (pc_2 = 2) \land (i_3 = i_2) \land (s_3 = 0) \land (pc_3 = 3) \\
 f_3: & \ (pc_3 = 3) \land (i_4 = i_3) \land (s_4 = s_3) \land (pc_4 = 4) \\
 f_4: & \ (pc_4 = 4) \land (i_5 = i_4) \land (s_5 = s_4 + i_4) \land (pc_5 = 5) \\
 f_5: & \ (pc_5 = 5) \land (i_6 = i_5) \land (s_6 = s_5) \land (pc_6 = 6) \\
 f_6: & \ (pc_6 = 6) \land \left(\left((i_6 > 0) \land (i_7 = i_6 - 1) \right) \lor \left((i_6 \leq 0) \land (i_7 = i_6) \right) \right) \\
 & \land (s_7 = s_6) \land (pc_7 = 7) \\
 f_7: & \ (pc_7 = 7) \land (s_7 \geq 10) \land (pc_8 = 8) \\
 f_8: & \ (pc_8 = 8) \land (i_9 = i_8) \land (s_9 = s_8 + i_8) \land (pc_9 = 9) \\
 f_9: & \ (pc_9 = 9) \land (i_{10} = i_9) \land (s_{10} = s_9) \land (pc_{10} = 10) \\
 f_{10}: & \ (pc_{10} = 10) \land \left(\left((i_{10} > 0) \land (i_{11} = i_{10} - 1) \right) \lor \left((i_{10} \leq 0) \land (i_{11} = i_{10}) \right) \right) \\
 & \land (s_{11} = s_{10}) \land (pc_{11} = 11) \\
 f_{11}: & \ (pc_{11} = 11) \land (s_{11} \geq 10) \land (pc_{12} = 12) \\
\end{align*}
\]
• Assertion expressions negated
• Main formula:

\[\bigwedge_{i=0..k} f_i \]

• Satisfying assignment is found \(\rightarrow \) assertion is violated
• If not, we know that there is no assertion violation in \(k \) steps
HW application: Four-bit adder

\[X_3 \ X_2 \ X_1 \ X_0 \]

ADDER

\[A \]

\[B \]

\[S \]

\[C_{\text{in}} \]

\[C_{\text{out}} \]

\[C_0 = 0 \]
HW implementation of addition operation (1-bit):

A, B – input bits, C_{in}, C_{out} – carry bits, S – output
Logical representation of BIT-ADDER

\[
\begin{align*}
((A \land B \land C_{in}) & \Rightarrow (S \land C_{out})) \land \\
((\neg A \land B \land C_{in}) & \Rightarrow (\neg S \land C_{out})) \land \\
((A \land \neg B \land C_{in}) & \Rightarrow (\neg S \land C_{out})) \land \\
((A \land B \land \neg C_{in}) & \Rightarrow (\neg S \land C_{out})) \land \\
((\neg A \land \neg B \land C_{in}) & \Rightarrow (S \land \neg C_{out})) \land \\
((\neg A \land \neg B \land \neg C_{in}) & \Rightarrow (S \land \neg C_{out})) \land \\
((A \land \neg B \land \neg C_{in}) & \Rightarrow (S \land \neg C_{out})) \land \\
((\neg A \land \neg B \land \neg C_{in}) & \Rightarrow (\neg S \land \neg C_{out})) \\
((\neg A \land \neg B \land \neg C_{in}) & \Rightarrow (\neg S \land \neg C_{out}))
\end{align*}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C_{in}</th>
<th>S</th>
<th>C_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Evaluation of S

\[S_0 = A_0 \text{ xor } B_0 \]
\[C_{out,0} = A_0 \text{ and } B_0 \]
\[S_1 = A_1 \text{ xor } B_1 \text{ xor } C_{out,0} \]
\[C_{out,1} = \left((A_1 \text{ xor } B_1) \text{ and } C_{out,0} \right) \text{ or } (A_1 \text{ and } B_1) \]
\[S_2 = A_2 \text{ xor } B_2 \text{ xor } C_{out,1} \]
\[C_{out,2} = \left((A_2 \text{ xor } B_2) \text{ and } C_{out,1} \right) \text{ or } (A_2 \text{ and } B_2) \]
\[S_3 = A_3 \text{ xor } B_3 \text{ xor } C_{out,2} \]
\[C_{out,3} = \left((A_3 \text{ xor } B_3) \text{ and } C_{out,2} \right) \text{ or } (A_3 \text{ and } B_3) \]
Evaluation of S

\[
S_0 = A_0 \text{xor} B_0
\]
\[
C_{out,0} = A_0 \text{ and } B_0
\]
\[
S_1 = A_1 \text{xor} B_1 \text{xor} C_{out,0}
\]
\[
C_{out,1} = \left((A_1 \text{xor} B_1) \text{ and } C_{out,0} \right) \text{ or } (A_1 \text{ and } B_1)
\]
\[
S_2 = A_2 \text{xor} B_2 \text{xor} C_{out,1}
\]
\[
C_{out,2} = \left((A_2 \text{xor} B_2) \text{ and } C_{out,1} \right) \text{ or } (A_2 \text{ and } B_2)
\]
\[
S_3 = A_3 \text{xor} B_3 \text{xor} C_{out,2}
\]
\[
C_{out,3} = \left((A_3 \text{xor} B_3) \text{ and } C_{out,2} \right) \text{ or } (A_3 \text{ and } B_3)
\]
In each step, one bit of S and one carry bit are computed.

To reason about any bit, four steps are enough. E.g., if we are interested in $C_{out,3}$ setting some flags.

That means that from the model of hw we can easily set the threshold for bounded model checking.
Bounds are not that limiting...

- We obtain a minimal counterexamples
 - always the shortest found first
- Connected with loop invariants, properties of infinite paths can be verified
 - this way, unbounded (infinite) models can be analyzed
 - though not really model-checked
- If we manage to traverse entire state space, it is actually equal to unbounded MC
A step further

- If we manage to prove that particular number of steps covers all the states, we can even verify!
- This is called “unbounded model checking”