Behavior Models and Verification

Lecture 10

Jan Kofroň, František Plášil
Today

- Infinite families of finite-state systems
- Bounded model checking
 - HW verification
Infinite / Bounded Model Checking

Markov chains
Timed automata
Labelled transition system
Kripke structure

Model

Property specification

Model checker

Property satisfied

Property violated

\(AG(\text{start} \rightarrow AF \text{heat}) \)
Infinite families of finite states systems
Infinite families

- Finite model checking is fine
 - we know that generally model checking infinite state spaces is undecidable

- **But:** Protocols and circuits specification can be parameterized, e.g.:
 - size of int in multiplication unit of CPU
 - number of processors connected to bus
 - ...

Infinite families

• Indeed, it would be handy to reason about such parameterized designs (models)

• Formally – infinite family of systems:

\[F = \{M_i\}_{i=1}^{\infty} \]

• For temporal formula \(f \) verify that:

\[\forall i: M_i \Vdash f \]

• This is generally still undecidable, though
Having indexed specification, indexed formulae would be fine as well

Indexed CTL (ICTL)
- formula indexed by integer
- \(i\)-th formula applies to \(i\)-th component

ICTL allows for expressing: \(\wedge_i f(i)\) and \(\vee_i f(i)\)
- and also: \(\wedge_{j \neq i} f(j)\) and \(\vee_{j \neq i} f(j)\)
Token ring example

- Simple token ring algorithm
 - n – non-critical section, t – keeping token,
 - c – critical section, r – receive token, s – send token

- One process Q and several P_i of this type
 - Q initially in t, P_i initially in n
Token ring example

- Synchronous $Q \parallel P$ composition, natural synchronizing on s and r resulting in τ
Token ring family: \(\mathcal{F} = \{Q \parallel P_i\}_{i=1}^{\infty} \)

Desired property: \(\bigwedge_i \text{AG}(c_i \Rightarrow \bigwedge_{j \neq i} \neg c_j) \)

i.e., if process \(i \) is in critical section, then no other process is
Invariants

- Let \(F = \{M_i\}_{i=1}^{\infty} \) be family of structures
- Let \(\geq \) be reflexive, transitive relation on structures
- Invariant \(I \) is structure such that
 \[
 \forall i: I \geq M_i
 \]
- Properties that can be checked are determined by \(\geq \):
 - bisimulation (strong preservation: \(I \models f \iff M \models f \))
 - simulation preorder (weak preservation: \(I \models f \Rightarrow M \models f \))
 - language equivalence (strong preservation)
 - language preorder (weak preservation)
Token rings of size n and of size 2 are in simulation preorder

So for any CTL property f it is sufficient to verify:

$$(P \parallel Q) \models f$$
Lemma: Let \geq be a reflexive, transitive relation and let \parallel be a composition operator that is monotonic w.r.t. \geq. If $I \geq P$ and $I \geq I \parallel P$, then $\forall i: I \geq P^i$, where $\mathcal{F} = \{P^i\}_{i=1}^{\infty}$.

\parallel is monotonic w.r.t. $\geq \iff \forall P_1, P'_1, P_2, P'_2:\n$$P_1 \geq P'_1 \land P_2 \geq P'_2 \Rightarrow P_1 \parallel P_2 \geq P'_1 \parallel P'_2$
More systematic approach

- This is more like:
 “This holds once we have the relation”
 than
 “How to find the relation”

- Finding a suitable relation is hard, not possible in automatic way
 - recall: the problem is undecidable in general
Bounded model checking
Let $M = \{S, I, R, L\}$ be Kripke structure

Define predicate $\text{Reach}(s, s')$ iff $R(s, s')$

Define $\llbracket M \rrbracket^k = \bigwedge_{i=0}^{k-1} \text{Reach}(s_i, s_{i+1})$

$\llbracket M \rrbracket^k$ contains states reachable in k steps

Idea: Look for counterexamples made of k states
Bounded model checking

\[M, \neg \varphi \]

\[k = 0 \]

\[\neg \varphi \text{ satisfiable in } [M]^k \]

\[\text{inc}(k) \]

\[k < \text{threshold} \]

\[M \models \neg \varphi \]

\[M \not\models_k \neg \varphi \]
Bounded model checking

$k=0$
Bounded model checking

$k=1$
Bounded model checking

$k=2$
Bounded model checking

$k=3$
Bounded model checking

\[k = 4 \]
Bounded model checking

\[k=5 \]
Mean: Construction of formula describing the transitions in the program
- and trying to reach assertion violation, i.e., violation of $AG \ p$
- checking for satisfiability of the formula
 - using SAT solver
SAT solvers

- Tools taking logical formula and deciding whether it is satisfiable
 - whether there is satisfying assignment of free variables
 - formula in conjunctive normal form (CNF)
 - can contain quantifiers \rightarrow harder problem
 - NP-complete problem
 - if satisfiable \rightarrow satisfying assignment
 - if not \rightarrow unsat core (subset of formula’s clauses)
1: int i=4;
2: int s=0;
3: while (1) {
4: s+=i;
5: if (i>0)
6: i--;
7: assert(s<10);
8: }
Example

First step is unwinding loops (to cover the bound)

```
1: int i=4;
2: int s=0;
3: while (1) {
4:    s+=i;
5:    if (i>0)
6:        i--;
7:    assert(s<10);
8: }
```
Example

1: int i=4;
2: int s=0;
3: s+=i;
4: if (i>0)
5: i--;
6: assert(s<10);
7: s+=i;
8: if (i>0)
9: i--;
10: assert(s<10);
11: assert(s<10);

\[
\begin{align*}
 f_1: & (pc_1 = 1) \land (i_2 = 4) \land (pc_2 = 2) \\
 f_2: & (pc_2 = 2) \land (i_3 = i_2) \land (s_3 = 0) \land (pc_3 = 3) \\
 f_3: & (pc_3 = 3) \land (i_4 = i_3) \land (s_4 = s_3) \land (pc_4 = 4) \\
 f_4: & (pc_4 = 4) \land (i_5 = i_4) \land (s_5 = s_4 + i_4) \land (pc_5 = 5) \\
 f_5: & (pc_5 = 5) \land (i_6 = i_5) \land (s_6 = s_5) \land (pc_6 = 6) \\
 f_6: & (pc_6 = 6) \land \left(((i_6 > 0) \land (i_7 = i_6 - 1)) \lor ((i_6 \leq 0) \land (i_7 = i_6)) \right) \\
 & \land (s_7 = s_6) \land (pc_7 = 7) \\
 f_7: & (pc_7 = 7) \land (s_7 \geq 10) \land (pc_8 = 8) \\
 f_8: & (pc_8 = 8) \land (i_9 = i_8) \land (s_9 = s_8 + i_8) \land (pc_9 = 9) \\
 f_9: & (pc_9 = 9) \land (i_{10} = i_9) \land (s_{10} = s_9) \land (pc_{10} = 10) \\
 f_{10}: & (pc_{10} = 10) \land \left(((i_{10} > 0) \land (i_{11} = i_{10} - 1)) \lor ((i_{10} \leq 0) \land (i_{11} = i_{10})) \right) \\
 & \land (s_{11} = s_{10}) \land (pc_{11} = 11) \\
 f_{11}: & (pc_{11} = 11) \land (s_{11} \geq 10) \land (pc_{12} = 12)
\end{align*}
\]
Example

1: int i=4;
2: int s=0;
3:
4: s+=i;
5: if (i>0)
6: i--;
7: assert(s<10);
8: s+=i;
9: if (i>0)
10: i--;
11: assert(s<10);
...

\[f_1: (pc_1 = 1) \land (i_2 = 4) \land (pc_2 = 2) \]
\[f_2: (pc_2 = 2) \land (i_3 = i_2) \land (s_3 = 0) \land (pc_3 = 3) \]
\[f_3: (pc_3 = 3) \land (i_4 = i_3) \land (s_4 = s_3) \land (pc_4 = 4) \]
\[f_4: (pc_4 = 4) \land (i_5 = i_4) \land (s_5 = s_4 + i_4) \land (pc_5 = 5) \]
\[f_5: (pc_5 = 5) \land (i_6 = i_5) \land (s_6 = s_5) \land (pc_6 = 6) \]
\[f_6: (pc_6 = 6) \land \left(((i_6 > 0) \land (i_7 = i_6 - 1)) \lor ((i_6 \leq 0) \land (i_7 = i_6)) \right) \land (s_7 = s_6) \land (pc_7 = 7) \]
\[f_7: (pc_7 = 7) \land (s_7 \geq 10) \land (pc_8 = 8) \]
\[f_8: (pc_8 = 8) \land (i_9 = i_8) \land (s_9 = s_8 + i_8) \land (pc_9 = 9) \]
\[f_9: (pc_9 = 9) \land (i_{10} = i_9) \land (s_{10} = s_9) \land (pc_{10} = 10) \]
\[f_{10}: (pc_{10} = 10) \land \left(((i_{10} > 0) \land (i_{11} = i_{10} - 1)) \lor ((i_{10} \leq 0) \land (i_{11} = i_{10})) \right) \land (s_{11} = s_{10}) \land (pc_{11} = 11) \]
\[f_{11}: (pc_{11} = 11) \land (s_{11} \geq 10) \land (pc_{12} = 12) \]
Assertion expressions negated

Main formula:

\[\bigwedge_{i=0..k} f_i \]

Satisfying assignment is found \rightarrow assertion is violated

If not, we know that there is no assertion violation in k steps
HW application: Four-bit adder

\[
\begin{array}{c}
X_3 & X_2 & X_1 & X_0 \\
\cdots & & & \\
A & B & \text{adder} & A \\
S & \text{adder} & & S \\\nX_3 & X_2 & X_1 & X_0 \\
\end{array}
\]

\[C_{0} = 0\]
HW implementation of ADDER

- HW implementation of addition operation (1-bit):

A, B – input bits, C_in, C_out – carry bits, S – output
Logical representation of BIT-ADDER

\[
\begin{align*}
(A \land B \land C_{in}) & \Rightarrow (S \land C_{out}) \\
(\neg A \land B \land C_{in}) & \Rightarrow (\neg S \land C_{out}) \\
(A \land \neg B \land C_{in}) & \Rightarrow (\neg S \land C_{out}) \\
(A \land B \land \neg C_{in}) & \Rightarrow (\neg S \land C_{out}) \\
(\neg A \land \neg B \land C_{in}) & \Rightarrow (S \land \neg C_{out}) \\
(\neg A \land B \land \neg C_{in}) & \Rightarrow (S \land \neg C_{out}) \\
(A \land \neg B \land \neg C_{in}) & \Rightarrow (S \land \neg C_{out}) \\
(\neg A \land \neg B \land \neg C_{in}) & \Rightarrow (\neg S \land \neg C_{out})
\end{align*}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C_{in}</th>
<th>S</th>
<th>C_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Evaluation of S

\[
S_0 = A_0 \text{ xor } B_0 \\
C_{out,0} = A_0 \text{ and } B_0 \\
S_1 = A_1 \text{ xor } B_1 \text{ xor } C_{out,0} \\
C_{out,1} = \left((A_1 \text{ xor } B_1) \text{ and } C_{out,0} \right) \text{ or } (A_1 \text{ and } B_1) \\
S_2 = A_2 \text{ xor } B_2 \text{ xor } C_{out,1} \\
C_{out,2} = \left((A_2 \text{ xor } B_2) \text{ and } C_{out,1} \right) \text{ or } (A_2 \text{ and } B_2) \\
S_3 = A_3 \text{ xor } B_3 \text{ xor } C_{out,2} \\
C_{out,3} = \left((A_3 \text{ xor } B_3) \text{ and } C_{out,2} \right) \text{ or } (A_3 \text{ and } B_3)
\]
Evaluation of S

$S_0 = A_0 \text{ xor } B_0$

$C_{out,0} = A_0 \text{ and } B_0$

$S_1 = A_1 \text{ xor } B_1 \text{ xor } C_{out,0}$

$C_{out,1} = \left((A_1 \text{ xor } B_1) \text{ and } C_{out,0} \right) \text{ or } (A_1 \text{ and } B_1)$

$S_2 = A_2 \text{ xor } B_2 \text{ xor } C_{out,1}$

$C_{out,2} = \left((A_2 \text{ xor } B_2) \text{ and } C_{out,1} \right) \text{ or } (A_2 \text{ and } B_2)$

$S_3 = A_3 \text{ xor } B_3 \text{ xor } C_{out,2}$

$C_{out,3} = \left((A_3 \text{ xor } B_3) \text{ and } C_{out,2} \right) \text{ or } (A_3 \text{ and } B_3)$
Evaluation of S

\begin{align*}
S_0 &= A_0 \text{ xor } B_0 \\
C_{out,0} &= A_0 \text{ and } B_0 \\
S_1 &= A_1 \text{ xor } B_1 \text{ xor } C_{out,0} \\
C_{out,1} &= (A_1 \text{ xor } B_1) \text{ and } C_{out,0} \text{ or } (A_1 \text{ and } B_1) \\
S_2 &= A_2 \text{ xor } B_2 \text{ xor } C_{out,1} \\
C_{out,2} &= (A_2 \text{ xor } B_2) \text{ and } C_{out,1} \text{ or } (A_2 \text{ and } B_2) \\
S_3 &= A_3 \text{ xor } B_3 \text{ xor } C_{out,2} \\
C_{out,3} &= (A_3 \text{ xor } B_3) \text{ and } C_{out,2} \text{ or } (A_3 \text{ and } B_3)
\end{align*}
Evaluation of S

\[S_0 = A_0 \text{ xor } B_0 \]
\[C_{out,0} = A_0 \text{ and } B_0 \]
\[S_1 = A_1 \text{ xor } B_1 \text{ xor } C_{out,0} \]
\[C_{out,1} = \left((A_1 \text{ xor } B_1) \text{ and } C_{out,0} \right) \text{ or } (A_1 \text{ and } B_1) \]
\[S_2 = A_2 \text{ xor } B_2 \text{ xor } C_{out,1} \]
\[C_{out,2} = \left((A_2 \text{ xor } B_2) \text{ and } C_{out,1} \right) \text{ or } (A_2 \text{ and } B_2) \]
\[S_3 = A_3 \text{ xor } B_3 \text{ xor } C_{out,2} \]
\[C_{out,3} = \left((A_3 \text{ xor } B_3) \text{ and } C_{out,2} \right) \text{ or } (A_3 \text{ and } B_3) \]
Evaluation of S

\[S_0 = A_0 \text{xor} B_0 \]
\[C_{out,0} = A_0 \text{ and } B_0 \]
\[S_1 = A_1 \text{xor} B_1 \text{xor} C_{out,0} \]
\[C_{out,1} = \left((A_1 \text{xor} B_1) \text{ and } C_{out,0} \right) \text{ or } (A_1 \text{ and } B_1) \]
\[S_2 = A_2 \text{xor} B_2 \text{xor} C_{out,1} \]
\[C_{out,2} = \left((A_2 \text{xor} B_2) \text{ and } C_{out,1} \right) \text{ or } (A_2 \text{ and } B_2) \]
\[S_3 = A_3 \text{xor} B_3 \text{xor} C_{out,2} \]
\[C_{out,3} = \left((A_3 \text{xor} B_3) \text{ and } C_{out,2} \right) \text{ or } (A_3 \text{ and } B_3) \]
Four bits model

- In each step, one bit of S and one carry bit are computed.
- To reason about any bit, four steps are enough.
 - E.g., if we are interested in $C_{out,3}$ setting some flags.
- That means that from the model of hw we can easily set the threshold for bounded model checking.
Bounds are not that limiting...

- We obtain a minimal counterexamples
 - always the shortest found first
- Connected with loop invariants, properties of infinite paths can be verified
 - this way, unbounded (infinite) models can be analyzed
 - though not really model-checked
- If we manage to traverse entire state space, it is actually equal to unbounded MC
A step further

- If we manage to prove that particular number of steps covers all the states, we can even verify!
- This is called “unbounded model checking”