CTL, LTL model checking is fine
→ sometimes however time is important
To model behavior of real-time systems over time, in 1994, Alur et al proposed

Timed Automata
Timed Automata

Markov chains
Timed automata
Labelled transition system
Kripke structure

Model

Property specification

$AG(\text{start} \rightarrow AF \text{heat})$

Model checker

Property satisfied

Property violated
Finite automaton accepting infinite words

A word is accepted if

- An accepting state is visited infinitely many times (standard case)
- A state from each accepting set is visited infinitely many times (generalized case)

Büchi automaton accepting \((a+b)^* a^\omega\)
Timed languages

Timed sequence $t = t_1 t_2 t_3 \ldots$ is an infinite sequence of time values $t_i \in \mathbb{R}$, $t_i > 0$ satisfying:

1. **Monotonicity**, i.e., $\forall i \geq 1: t_i < t_{i+1}$
2. **Progress**, i.e., $\forall t \in \mathbb{R}, \exists i \geq 1: t_i > t$

Timed word is a tuple (s, t), where

- s is an infinite sequence of symbols
- t is a timed sequence (above)
Timed automaton – example

In addition to Büchi, finite set of real variables representing clocks (below: x)

- Initially set to 0, all incrementing at the same speed
- Can be reset to 0 at any transition
- Transition only allowed if the condition upon clocks holds
- Accepts timed words

Example of Timed automaton
Clock constraints

For a set X of clocks, the set $\Phi(X)$ of clock constraints δ is defined:

$$\delta := x \leq c \mid c \leq x \mid \neg \delta \mid \delta_1 \land \delta_2,$$

where x is a clock in X and c is a constant in \mathbb{Q}.
A (nondeterministic) timed automaton A is a tuple $(\Sigma, S, S_0, C, E, F)$, where

- Σ is a finite alphabet,
- S is a finite set of states,
- $S_0 \subseteq S$ is set of initial states,
- C is a finite set of clocks,
- $E \subseteq S \times S \times \Sigma \times 2^C \times \Phi(C)$ is transition relation, where 2^C specifies the clocks to be reset, and $\Phi(C)$ is clock constraint over C,
- $F \subseteq S$ is the set of accepting states.
The automaton below accepts the language:

$$L = \{(abcd)^\omega, t) \mid \forall j.((t_{4j+3} < t_{4j+1} + 1) \land (t_{4j+4} > t_{4j+2} + 2))\}$$
Properties of TA

Question: Is the class of timed regular languages closed under:
- Finite union?

Answer: Yes

Proof: Since the TA are nondeterministic, union is represented by disjoint union of particular automata. (Similar to Büchi automata)
Properties of TA

Question: Is the class of timed regular languages closed under:
- Intersection?

Answer: Yes

Proof: Simple modification of intersection of Büchi automata
Recall: \(\bigcap \) definition for Büchi automata

Let \(A_1 = (\Sigma, S_1, S_{01}, \Delta_1, F_1) \) and
\[A_2 = (\Sigma, S_2, S_{02}, \Delta_2, F_2) \] be Büchi automata.

We define the product Büchi automaton to be
\((\Sigma, S, S_0, \Delta, F) \), where:

- \(S = S_1 \times S_2 \times \{1,2\} \)
- \(S_0 = S_{01} \times S_{02} \times \{1\} \)
- \(F = F_1 \times S_2 \times \{1\} \)
- \(\Delta \) as follows
Recall: definition for Büchi automata

\[\Delta: \]

- for all \(s, s' \in S_1, t, t' \in S_2, a \in \Sigma, \ i, j \in \{1,2\} \):
 \((s, t, i), a, (s', t', j)\) \(\in \Delta \) iff \((s, a, s') \in \Delta_1 \) , \((t, a, t') \in \Delta_2 \),
 and:
 - a) \(i = 1, s \in F_1 \), and \(j = 2 \), or
 - b) \(i = 2, t \in F_2 \), and \(j = 1 \), or
 - c) neither a) or b) above applies and \(j = i \)
A_1, A_2 are Büchi automata
Recall: Intersection for Büchi automata

\[A = A_1 \cap A_2 \]
Let A_1, A_2 are two timed automata with disjoint set of clocks

Denote $A = A_1 \cap A_2$

Denote C_i the set of clocks

Transitions are $((s_1, s_2, i), (s_1', s_2', j), a, \lambda, \varphi)$

- $(s_1, s_2, i), (s_1', s_2', j), a$ as in the case of intersection of Büchi automata
- $\lambda = \lambda_1 \cup \lambda_2$ is the set of clock to be reset
- $\varphi = \varphi_1 \land \varphi_2$ is the transition constraint
Complement of Timed automaton

Timed automata are **NOT** closed under complement

Even worse – inclusion of timed languages $L(A) \subseteq L(B)$ is **undecidable** problem
Important property

- Recall LTL model checking algorithm

Idea: Construct Büchi B automaton such that B accepts the same language (up to timing) as the timed automaton under consideration
Clock regions I.

For a state \(s \) of timed automaton, by \((s, n)\) denote *extended state*

- \(s \) is a state
- \(n \) is a clock interpretation (i.e., valuation of clock variables)

If \(t \in \mathbb{R} \), \(t = \lfloor t \rfloor + \text{fract}(t) \)
Let $A = (\Sigma, S, S_0, C, E, F)$ be timed automaton

For $x \in C$, by c_x denote largest c such that $x \leq c$ or $c \leq x$ is a subformula of some clock constraints in F

The equivalence relation \sim over clock interpretation $– n \sim n’$ iff all of the following holds:

1. For all $x \in C$, either $\lfloor n(x) \rfloor = \lfloor n’(x) \rfloor$ or $\lfloor n(x) \rfloor > c_x \land \lfloor n’(x) \rfloor > c_x$

2. For all $x,y \in C$ with $n(x) \leq c_x$ and $n(y) \leq c_y$:
 fract$(n(x)) \leq$ fract$(n(y))$ \iff fract$(n’(x)) \leq$ fract$(n’(y))$

3. For all $x \in C$ with $n(x) \leq c_x$, fract$(n(x)) = 0$ iff fract$(n’(x)) = 0$

Clock region for A is equivalence class induced by \sim
Clock regions – example
6 corner regions: (0,0), (0,1), (1,0), …
6 corner regions: (0,0), (0,1), (1,0), …
14 open line segments: 0<x=y<1, 0<x<1 & y=0, 2<x & y=0,…
Clock regions – example

- 6 corner regions: (0,0), (0,1), (1,0), …
- 14 open line segments: 0<x=y<1, 0<x<1 & y=0, 2<x & y=0,…
- 8 open regions: 0<x<y<1, 2<x & 1<y, …
Each region can be characterized by specifying:

1. for each clock x one clock constraint from set:
 \[
 \{ x = c \mid c=0,1,\ldots,c_x \} \cup
 \{ c-1 < x < c \mid c=1,2,\ldots,c_x \} \cup
 \{ x > c_x \}
 \]

2. for each pair of clock x and y such that $c-1 < x < c$ and $d-1 < y < d$ appear in 1. for some c, d whether $\text{fract}(x)$ is less than, greater than, or equal to $\text{fract}(y)$

Note that number of regions is \textbf{finite}
A clock region b is a successor of a clock region a iff for each $n \in a$ there exists a positive $t \in \mathbb{R}$ such that $n + t \in b$.
How to construct the successors of region a?

- If for each clock x satisfies $x > x_c$, then the only successor of a is this region itself.
- Denote C_0 set of clocks such that $x = c$, for a clock $x \in C_0$ in the clock set, successors of a are defined as set b as follows:
 - If $x = c_x$, then b satisfies $x > c_x$, otherwise b satisfies $c < x < c + 1$.
 - For $x \not\in C_0$ the constraint in b is the same as in a.

- If neither of the above applies, then...
Let C_0 be a set of clocks x such that region a does not satisfy $x > c_x$ and for all $y \in C_0$: $\text{fract}(y) \leq \text{fract}(x)$

Let b be the clock region:

- For $x \in C_0$ if a satisfies $c-1 < x < c$ then b satisfies $x = c$, for $x \notin C_0$ the constraint in b is the same as in a.
- For clocks x, y such that $c-1 < x < c$ and $d-1 < y < d$ appearing above, the ordering in b between fractional parts is the same as in a.

Successors of a include a, b and all successors of b.
Informally:

- Successors of a region are all regions that can be directly reached by moving diagonally up, i.e., increasing the time of all clocks
- The successor relation is transitive
Region successors – example

\[y \]

\[0 \quad 1 \quad 2 \]

\[x \]
For a timed automaton $A = (\Sigma, S, S_0, C, E, F)$, corresponding region automaton $R(A)$ is defined:

- States of $R(A)$ are of the form (s, a) where $s \in S$ and a is a clock region.
- Initial states are of the form $(s_0, [n_0])$ where $s_0 \in S_0$ and $n_0(x) = 0$ for all $x \in C$.
- $R(A)$ has edge $((s, a), (s', a'), m)$ iff there is edge $(s, s', m, \lambda, \varphi) \in E$ and region a'' such that
 - a'' is successor of a.
 - a'' satisfies φ.
 - $a' = [\lambda \rightarrow 0]a''$.
Region automaton – example
Lemma: If \(r \) is a \textit{progressive} run of \(R(A) \) over \(s \), then there exists a time sequence \(t \) and a run \(r' \) of \(A \) over \((s,t)\) such that \(r \) equals \([r']\).

- Progressive means that for all clocks there is no bound
- We can consider just progressive runs
 - Proof skipped 😊
Theorem: Given Timed automaton \(A = (\Sigma, S, S_0, \Delta, F) \), there exists Büchi automaton which accepts \(Untime(L(A)) \).

Idea:

1. Construct region automaton \(R(A) \)
2. Set of accepting states \(F' = \{(s,a) \mid s \in F\} \)
3. Omit time
Network of TA

For modeling communicating parts of system in independent way

Each part represented by a single TA

- Communicates with other parts through input/output actions

Composition resulting in parallel synchronous product
Network of TA

```
off
  y:=0
  y>=5
  press?

low
  y<5
  press?

bright
  press?

lamp

idle
  press!

user
```
• A tool for verification of TA models
• Academic, but quite well established and used in industry nowadays
• Allows modeling, verification, simulation
• Successfully applied on communication protocols, multimedia applications, ...
• Available at http://www.uppaal.org/ and http://www.uppaal.com