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1. Introduction

1.1 Motivation

Despite the fact that the simulation of ocean water is a problem that has been
well explored in the past decades and multiple models have been proposed by the
scientific community, most of these models are suitable only for a specific part
of the problem as a whole. On one hand, simulation of deep ocean waves was
proved to be a problem that can be simulated with solid results using approaches
based on gathering empirical data and transforming the ocean surface to comply
with the data. The most famous method of simulating deep ocean waves is
called the Tessendorf method, and its core is in taking a spectral model based on
measurements done by weather buoys and transforming the spectral distribution
into a fixed size height-field using inverse fast Fourier transform (FFT). The
method is usable in real-time for very large water surfaces, but falls short when
confronted with more complex water behaviours, such as interaction with floating
objects, stormy conditions or shallow water wave simulation.

On the other hand, physically correct methods based on Navier-Stokes equa-
tions of fluid motion (NSE) have been shown to be able to produce complex and
visually pleasing results, but the downside of the method is its high performance
cost. This performance cost coupled with the huge volumes of water required
for simulating an ocean convincingly make the method impractical to use for
ocean simulation, especially in the context of real-time applications. However,
the method is capable of handling a much more diverse set of cases – it can be
used to simulate the shore and ocean floor influence on the approaching waves
and can also be relatively easily modified to allow flooding of a previously dry
area or interaction with buoyant objects.

These two methods have historically been developed and used mostly sepa-
rately – the simulation engine was either based on some variant of the Tessendorf
method, or on approximating the solution to the Navier-Stokes equations of fluid
motion (or their derivatives, e.g. Shallow Water Equations, also known as Saint
Venant Equations in their 1D variant). It is also apparent that the two methods
have many complementary properties – the Tessendorf method is fast, tile-able
and known to produce good results for open water scenes, but lacks in physically
correct behaviour, especially near the shore, while the physically correct methods
based on NSE are very accurate, but cannot be easily used for large scenes and
carry an inherent performance overhead.

The purpose of this thesis is therefore in attempting to combine these two
methods to create an adaptive scheme that allows for simulating large ocean
scenes containing islands, using the Tessendorf method where applicable and
transitioning to physical methods near to the shoreline and in other cases where
the Tessendorf method would be unable to reproduce the water dynamic real-
istically. The transition between the methods must be as close to seamless as
possible. No combined system was covered in [1], and the authors actually ex-
pressed a belief that such a system will emerge in the following years; however,
to the best of our knowledge, no such system was described in any paper yet.
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1.2 Thesis Goals

As stated above, the primary goal of the thesis is to combine deep and shallow
water simulation methods into a system offering the advantages of both. To
this end, we will research the most popular methods used for deep and shallow
ocean simulation described in scientific literature and present a review of these
methods, including their advantages and disadvantages from various viewpoints.
We will then define criteria that must be taken into account when choosing the
subset of these methods to combine, and then perform the selection itself based
on these criteria. We will further propose a combination scheme for these meth-
ods and implement a pilot application including the selected methods and their
combination.

However, the thesis also has several secondary goals. First, both the selec-
tion of the methods and their implementation should be done with eye towards
game industry usage – the pilot application should ideally tend towards real-time
framerates, at least on cutting-edge hardware. Second, the application should
also isolate the used models from rendering as much as possible, to allow easy
modification of used models or selection of another model altogether. To achieve
this, we will propose and use a common way of rendering the resulting geometry
regardless of the method being used. The application also needs to include basic
support for data storage (such as reading terrain data from hard drive), basic
rendering, and also a level of detail (LOD) system.

1.3 Technology

To provide reasonable results in terms of real-time usability of the method, the
pilot implementation will be implemented in C++ using Microsoft Visual Studio
2012 and its compiler, which is the language and compiler used for most AAA
games being developed in the game industry. We will also try to take advantage of
modern technologies such as the DirectX 11 API, programmable HLSL shaders
and general purpose graphics processing unit computing (GPGPU computing)
via Nvidia CUDA in order to maximize the performance of the application.

1.4 Organization

This thesis is organized into several sections. First, we will summarize the pre-
vious research in the field of ocean simulation using information from selected
papers. We will then move on to describing the available simulation methods in
more detail, and then propose the scheme for combining the results gained from
the chosen methods, defining the criteria we place on this combined system and
justifying the method selection in the process. We will then move on to other
important aspects of our combined solution, such as space organization and a
level of detail scheme using modern GPU-side hardware tessellation. We will also
include the technical documentation for our pilot application. Finally, we will re-
view the performance results of the application and conclude with summarizing
the results of our combination method, and propose future modifications.
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2. Previous Work

In this chapter we present the research of available ocean simulation techniques.
We start by a general review of all methods based on a survey research paper by
E. Darles et al., following its structure and adopting its method categorization,
then move on to detailing the work of Jerry Tessendorf which serves as a standard
publication on the inverse FFT based deep water simulation method. We will
then illustrate the potential of combining various methods and mention the per-
formance problems of using the computational fluid dynamics (CFD) approach
by reviewing the implementation and real-time focused system paper by Jensen
and Goliáš before focusing solely on CFD method in the form of SWE (Shallow
water equations), in particular the variant used by Chentanez and Müller.

2.1 Reviewing Known Methods

The principal paper on ocean simulation is a review of all known methods to
date, compiled in 2010 by E. Darles, B. Crespin, D. Ghazanfarpour and J.C.
Gonzato [1]. The paper contains methods used for the simulation itself, render-
ing, and various additional effects such as foam and spray. The authors divide
the wave simulation methods into two categories based on the area of occurrence
– deep ocean waves and shallow water waves – and describe the relevant methods
separately. In order to ease the understanding of this thesis, we have adopted a
similar classification of the methods and use it as a frame of reference in the next
chapter. We have however renamed the categories from ”Deep Ocean Waves”
and ”Shallow Ocean Waves” to ”Empirical” and ”Physical”, respectively. This
is because we believe that the methods by themselves are not defined by their
usage but rather by the nature of the operations composing them, as we can the-
oretically use a physical method for deep ocean simulation on current hardware,
even though the performance costs make such an approach unsuitable.

Ocean Simulation

The first part of the paper focuses on deep ocean waves, and describes two main
method categories for solving this problem. The first approach is based on directly
calculating the position of each point of surface approximation using parametric
equations, the second uses spectral model to describe the ocean surface and in-
verse Fast Fourier Transform (FFT) to generate the heightfield based on these
data. The paper also discusses suitability of the methods for GPGPU implemen-
tation and various modifications to offset the disadvantages of the methods, such
as artificially skewing the shape of the waves to make them appear more choppy,
and generating water sprays where applicable.

In the next part of the paper, the authors discuss the methods for simulating
waves in shallow water. The approaches outlined in the previous chapter are
reported as being unsuitable for shallow water simulation due to their inability to
respond convincingly to various more complex situations. The primary method
for simulating shallow water waves is based on the Navier-Stokes equations of
fluid motion, which represent a physically correct description of viscous fluid
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flow. To find an approximate solution of the equations in a given environment,
the equations are discretized using one of two discretization schemes. The first
scheme, called Eulerian in the literature, divides the simulation space in a 2D or
3D grid of cells, with each cell holding the properties of the fluid and calculations
being performed on a per-cell basis, representing the fluid moving from cell to
cell. The second approach, called Lagrangian, uses particle systems to represent
the fluid, with each particle carrying a small volume of fluid and holding the fluid
properties. While both approaches can be used for simulating the ocean volume,
a common solution is using the Eulerian method for the surface generation itself,
with the addition of Lagrangian particles representing the small scale details such
as water spray. As with the deep water methods, the authors discuss various
modifications to the general scheme, which are too detailed for the purpose of
this thesis.

Another important scheme discussed here is a restriction of the NSE to water
columns called the Shallow Water Equations, also known as the Saint-Venant
Equations in its 1-dimensional variant. The restriction assumes that the hori-
zontal scale of the fluid volume is much greater than the vertical scale and that
fluid properties do not vary with depth for a specific water column. This allows
a simplification to a 2D grid instead of a full-fledged 3D grid simulation, bring-
ing a solid performance boost. The simplification of course brings some realism
problems as well, but is generally favored as one of the more real-time capable
NSE-based methods. All simulation methods mentioned up to this point will be
described in greater detail in the next chapter, including some modifications and
a review of advantages and disadvantages.

Rendering

The second part of the paper deals with realistic ocean rendering and lighting,
as well as a summary of techniques used for generating additional visual effect,
such as foam. Usually, such effects are based either on empirical approxima-
tions, which is the case of a method proposed by Jensen and Goliáš [2], or on
Lagrangian particle systems mentioned above. Generally, such effects are ap-
plied in a post-processing step, based on ocean surface data generated using one
of the methods already described in the preceding paragraphs. The remaining
text in the chapter focuses on lighting itself. As the ocean is an irregular semi-
transparent surface, to simulate the interaction of light with such a surface in a
physically correct manner would require a ray-tracing engine. As such an engine
is usually considered too demanding for real-time usage, implementations usually
resort to approximations of light rays’ reflection and refraction. The paper focus-
es on these methods, ranging from simple environment mapping to multiple-order
approximation schemes, some of which are even taking chemical and biological
properties of the ocean water into account. Overall the paper offers a broad
overview of rendering techniques; however, the paper by Bruneton, Neyret and
Holzschuch [3] offers a complete state-of-the-art ocean rendering system including
lighting LOD methods and seamless transition from geometry to BRDF, making
it the principal paper on ocean rendering for us.

Finally, it is worth mentioning that the review actually notes the separation
of deep water and shallow water simulation methods and predicts that schemes
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attempting to combine the two areas will emerge in the future.

2.2 Simulating Ocean Water Using the Tessendorf

Method

In spite of not really being a research paper but rather a set of course notes, the
work of Jerry Tessendorf [4] has essentially become the defacto standard for un-
derstanding the FFT-based spectral approach, being quoted in most papers based
on spectral methods. The method is also widely referred to as the ”Tessendorf
method” in the community. The notes are more in-depth than most papers are
and offer a solid basis for implementing an FFT ocean simulation.

After a short introduction and definition of the scope of the paper, as well as
some notes about the limitations of the chosen methods, Tessendorf first focuses
on the rendering of the water surface, in particular on the reflection and refraction
of the incident light rays. The algorithm used here is one of the more simple
ones, being a first-order approximation disregarding more than one reflection or
refraction from the surface point. Apart from a helpful discussion of various light
interaction cases, the section offers little information relevant to this thesis.

The second section of the notes is the most important one. Tessendorf ex-
plores ”practical” ocean wave algorithms, which we surmise means ”usable in
real-time” in this context. He first describes the wave simulation based on the
Gerstner theory in detail, illustrating the method first on one wave and then on
multiple waves combined. He then moves on to illustrate the dispersion relation
between the wave frequency and wave vectors, and how to take advantage of this
relation to create a continuous loop of ocean surfaces for animation. He notes
that the same method can be applied to FFT generated surfaces as well before
moving on to explaining the spectrum-based FFT method in great detail. After
first explaining the general idea and the role of FFT in converting the spectral
distribution of the ocean into a spatial domain heightfield, Tessendorf provides
details on the slope calculation and describes a simple oceanographic spectrum
called Phillips spectrum. He also notes the artificial periodicity introduced by
tiling the resulting heightfield, and conditions under which this periodicity is ap-
parent to the viewer. The author included experience-based suggestions for the
value of specific parameters (such as the size of the FFT grid), and discusses
how these affect the visual quality of the outcome. He further provides a set of
experimental results gained by applying the method with various parameters and
shaders. Again, the method itself will be described in detail in the next chapter
of this thesis.

Tessendorf further moves on to detailing a modification of his algorithm – the
method he described up to this point produces waves with rounded tops, which
are suitable for mild weather conditions. This method of creating more ”choppy”
waves is based on applying a displacement field on the resulting surface mesh,
with the calculation of this field dependent on the heightfield result from the
standard Tessendorf approach – the underlying spectrum is not modified, which
means the method can be integrated with existing Tessendorf solutions without
requiring many changes in the original code.

The rest of Tessendorf’s work deals with rendering the resulting surface, sug-
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gesting methods for approximating the reflection and refraction of light on the
water surface, as well as volume effects including caustics and godrays. As before,
while the section offers a comprehensive solution, we would refer to [3] for a fully
detailed lighting and rendering model.

2.3 Deep Water Animation and Rendering

The work of Jensen and Goliáš describes a very comprehensive ocean simulation
and rendering system capable of real-time performance. The model is a mix of
various oceanographic methods, including the Tessendorf method, NSE, SWE
and surface wave models; however, the model is not a combination of these meth-
ods in terms of using them for simulating different spatial areas of the simulation
domain, as is the case with our model. Instead, the methods are used for sim-
ulating surface details of deep water waves on different scales vertically, i.e. the
shapes of the waves are created using the Tessendorf method, NSE are solved in
2D to create a bumpmap that is applied over the surface to simulate fine surface
details and surface waves are used for creating object-generated waves by super-
imposing them over the Tessendorf waves geometry. The work also includes a
section on first-order approximation rendering with the addition of caustics, as
well as a section focused on additional details, particularly foam and spray. The
survey performed by E. Darles et al. mentions this paper mainly in context of
the foam simulation part.

Models and Mixing

The first part of the work deals with surface generation and animation. The bulk
of the simulation is based on the Tessendorf method, using the same approaches
as outlined in [4], including the choppy waves modification. The authors describe
all models comprising the simulation in great detail, including formulas and their
derivations, as well as properties, use cases and limitations of the methods.

The only method included that was not mentioned up to this point is the
”Surface waves” model. The model is even more restrictive than SWE, assuming
fixed depth across the whole simulation domain in addition to the restrictions
already imposed by SWE. The result is a method that is too simple to accurately
simulate deep and shallow water waves, but can be used for small scale details
and interaction with floating objects. The method is reportedly very fast.

The work then moves on to the actual mixing of the models. As we have
mentioned above, the combination is performed in terms of levels of detail, not
geographic circumstances; the method therefore remains a strictly deep-water
simulation method. In addition to using the Tessendorf method for generating
the geometry, the method uses 2D NSE calculation to generate surface details in-
dicative of turbulent surface tension, applying them as a bump map. The authors
considered whether to use SWE or Surface waves for waves generated by inter-
action with floating objects and eventually decided to go with the Surface waves
model, as they felt it produced better looking results in this specific scenario. The
actual combination of the Tessendorf method and the Surface waves consists of a
superimposing the results of Surface waves simulation over the ocean geometry.
While not physically correct in any sense, this works presumably because of the
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differing scales of the waves, with the Surface waves being much smaller than the
Tessendorf geometry.

As the generation of waves by the buoyant object is only half of the ocean –
object interaction, the authors next focus on simulating the buoyancy of an object
and the effect the surface waves have on its movement. As with everything else
in this work, the focus is on real-time usability, with the core idea being the
approximation of the floating objects by multiple patches, and the calculation of
buoyancy forces for each patch. The calculated force is then applied to the object
using the traditional methods of rigid body dynamics. The generation of surface
waves is done by applying damping and displacement directly to the relevant
cells. The authors note that with correct parameter selection, both splash and
trail waves can be achieved.

Rendering, Foam and Spray

The rest of the work deals with rendering and graphical details. The render-
ing uses the standard first-order lighting approximation, but contains interesting
additional effects such as caustic surface details and godray simulation. As this
thesis is not primarily focused on rendering, we will not go into the details here.
We will note however, that while the rendering methods proposed here are only
first approximation of the lighting, the results look convincing and the additional
details presented here add to the visual impact of the ocean surface.

The final section of the paper deals with foam and spray. The spray is im-
plemented using standard particle systems, for the foam however, authors note
that while using particle system as well would be an option, the performance
cost might be noticeable. To maintain the real-time focus of their approach, the
authors propose a method based on generating a foam texture in real-time and
then overlaying this texture over the ocean texture using additive alpha blend-
ing. The amount of foam is defined per vertex and interpolated in pixel shader,
and is used as a transparency factor for blending with the ocean texture. The
spawning and dissipation of foam is based on the slope difference of the vertex
and its neighbours – in case the difference is less than a chosen negative limit,
the foam factor is increased, generating more foam, otherwise the foam amount
is decreased by a constant, resulting in gradual linear dissipation of the foam.

2.4 Shallow Water Simulation

The paper Real-time Simulation of Large Bodies of Water with Small Scale De-
tails [5] by Chentanez and Müller from Nvidia focuses solely on SWE-based meth-
ods. The paper is motivated primarily by the inability of classical SWE imple-
mentations to simulate water effects that can not be modelled using a heightfield.
The authors therefore choose to combine a standard SWE solver and particle
systems to overcome this limitation. This system can therefore be seen as com-
bination of Eulerian and Lagrangian approaches to NSE space discretization. In
addition, the authors propose several modifications to the SWE solver that allow
for higher simulation stability and reacting to boundary conditions, which is the
part of the work that is of particular interest to us in context of this thesis.
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Solving SWE

The first part of the paper described the SWE method and the solver used in
the simulation. The authors note that while the use of implicit integration in
SWE has been shown to produce unconditionally stable results, such methods
are very demanding performance-wise. They have therefore chosen to use ex-
plicit integration methods and take extra steps to increase the stability of the
simulation.

The authors opt for using the standard staggered grid configuration (as illus-
trated in Figure 2.1), where the properties of the fluid are stored at the centers
of the cells, while the velocity components are stored at the faces separating the
two neighbouring cells. The self-advection of the velocity field is solved using the
MacCormack integration method with a fallback to the common Semi-Lagrangian
method, for more information on which the authors refer to [6]. The explicit in-
tegration scheme the authors used for integrating changes in height and velocity
is described directly and in enough detail to allow reproduction of the system.

The next section of the paper describes the modifications that were applied to
the standard SWE solver. The first of these is the treatment of boundary condi-
tions. The method allows for marking arbitrary cell face as reflective – such a face
will have velocity set to 0 and will not be updated during the velocity integration
step. The authors also dynamically mark the cells satisfying certain conditions
as reflective, simulating the situation where the terrain height of neighbouring
cell lies higher than the water surface of the current cell. In addition to reflective
faces, the authors also introduce absorbing faces. The core idea is in applying
damping to waves approaching the absorbing face so the waves reaching the faces
have negligible amplitudes. We take note of this approximation of absorption and
use it for the SWE-Tessendorf transition border further in the thesis in Chapter
5.3.1.

Figure 2.1: Illustration of the Marker and Cell (MAC) configuration of the Eule-
rian grid, with fluid properties being represented by blue circles and blue and red
arrows representing the horizontal and vertical velocity components, respectively.
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Stability Improvements

The authors then move on to describing the stability enhancements they have
introduced into the SWE solver, defining various clamping ranges for different
simulation parameters. The first stability improvement is clamping the height
of the fluid in a cell to non-negative values, which can sometimes appear due
to floating point inaccuracies. The authors also limit the velocities to a certain
magnitude based on the cell spacing and timestep, as well as placing artificial
limitations on wavelengths and amplitudes in deep water scenarios. While noting
that these modifications reduce the quality of the results in some scenarios, the
authors apparently consider the tradeoff worthwhile.

Eulerian to Lagrangian Simulation

The rest of the paper deals with the combination of the SWE solver with a particle
system approach. The core idea is that the system automatically detects unstable
heightfield shapes and turns them into Lagrangian particles carrying the fluid
properties. Upon contact with either the terrain or water surface, the particles
are again absorbed into the SWE simulation domain. While the proposed method
is very well described and seems to offer visually appealing results, especially in
the scenario of simulating vertically moving bodies of water, such as waterfalls,
it is out of the scope of this thesis.

Open Water Simulation

The work also includes a short section on surrounding the SWE simulation with
Tessendorf method surface; however, the scenario in which this combination takes
place offers several liberties. First and foremost, there is no interaction at all
between the two domains – the Tessendorf result does not impact the SWE in
any way, and the SWE uses damping for the waves approaching the border. We
also assume that linear interpolation is used between the method results from a
rendering perspective – this is hard to determine however, as the authors do not
go into much detail, and only include a small screenshot of the scenario, as it is
only a marginal case for a work primarily focused on rivers.
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3. Simulation Methods

After presenting the review of available methods and some state-of-the-art mod-
ifications in the previous chapter, we move on to the simulation methods them-
selves. As we have mentioned before, we use a similar categorization to that in
the work of Darles et al. [1], only changing the names of the categories to better
reflect our point of view. We will describe each method in greater detail than we
have done in the previous chapters and include a paragraph detailing its known
advantages and disadvantages for each method.

3.1 Empirical Methods

This category contains methods based either on empirical formulas or on historical
oceanographic measurements. The survey by Darles et al. [1] uses the name ”Deep
water waves” for this category due to the typical usage of its representatives in
simulating large deep water surfaces and their inability to simulate shallow water
phenomena.

3.1.1 Parametric Equations

First approach used for simulating ocean surface is based on the idea that the
surface can be approximated by a set of particles representing a height-field,
and that the motion of each particle of this surface can be directly described by
equations dependent on time and horizontal position variables. The method is
first used by Max in [7], where the equation used for representing a single particle
motion is based on evaluating a series of sinusoids of various amplitudes. The
height (y coordinate) at time t of a particle with horizontal coordinates x and y
is computed as given:

h(x, z, t) = −y0 +
Nw∑
i=1

Aicos(kixx+ kiZz − wit) (3.1)

where x and z are coordinates of a surface point, t is the simulation time
and y0 the height of the surface at rest. An individual wave is described by its
amplitude Ai, its wave vector ki and its pulsation wi. The shape of a wave is
in this case determined by the product of wave amplitude Ai and the norm of
the wave vector Ki. For realistic motion, the product p = AiKi must be either
less than 0.5 (resulting in a trochoid movement) or equal to 0.5 (resulting in a
cyclical movement). The exact process of calculating the wave vector has seen
some research in the literature, with the original paper using an assumption of
infinite depth and calculating the magnitude of the wave vector as follows:

Ki = 2π/

√
gLi

2π
(3.2)

where g is the gravitational constant and Li the wavelength of i-th wave.
An alternative formula for calculating the wave vector has been proposed by

Peachey [8]. The author builds upon Airy Wave Theory and introduces a depth
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parameter, thus removing the limitation of the original equation. The modified
equation is as follows:

Ki = 2π/

√
gLi

2π
tanh

2πd

Li

(3.3)

where d is the depth of point related to the bottom of the sea.
Another parametric approach described in the literature is based on the Ger-

stner wave theory. This theory is a ocean wave approximation first derived by
Frantǐsek Josef Gerstner in 1804, its first recorded usage in computer graphics ac-
cording to [4] being in the work of Fournier and Reeves [9]. The Gerstner theory
describes the motion of a surface particle due to a single wave using the following
set of equations:

x = x0 − (k/|k|)Asin(k · x0 − ω(kt), (3.4)

y = Acos(k · x0 − ω(k)t). (3.5)

|k| = 2π/λ (3.6)

ω(k) =
√
g · |k| (3.7)

where k is the wave vector, t the current simulation time, A the amplitude,
x the horizontal position of a surface point, x0 its horizontal position at rest, ω
the frequency of the wave and λ the wavelength. These equations can be easily
modified to allow simultaneous effects of multiple waves, as shown in [4].

According to the survey by Darles et al. [1], Fournier and Reeves modify this
model by replacing the circular motion of the particle used in Gerstner theory
by an elliptic motion and also add dependency on the topological changes in
the seabed. Additional papers have researched this model, adding modifications
allowing for greater realism, such as Gonzato and Le Saëc [10].

Overall however, the method of using parametric equations doesn’t hold many
advantages. Tessendorf reports that the oceanographic literature tends to down-
play Gerstner wave theory (a prominent representant of the parametric approach)
due to its low realism, and favors the spectral approaches described in the fol-
lowing chapter [4]. This makes sense, as the parametric methods are by nature
a rough approximation, as opposed to spectral methods, which are generally
based on empirical measurements gained from real-world ocean environments,
and methods such as NSE, which offer physically correct surface calculation.
However, the parametric approach reportedly allows for far greater direct control
of the resulting surface shape than the spectral methods [11].

3.1.2 Spectral Approach

The Tessendorf Method

In contrast to the parametric approaches outlined above, the spectral model does
not concern itself directly with the position of each point. Instead, the model
describes the distribution of wavelengths and amplitudes appearing under specific
conditions (describing the weather, type of ocean, etc.). By itself, such a model
can not be used to generate the shape of the ocean surface. However, when
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combined with an inverse Fast Fourier Transform capable of transforming the
data from the spectral domain to the spatial domain representing essentially the
uniformly spaced signal samples, this model is capable of generating fixed-size
surface tiles.

Currently, the most popular spectral methods are all originally based on the
work of Jerry Tessendorf, in particular on his course notes ”Simulating ocean
water” [4] introduced in the previous section. The method has been widely used
both in the movie industry, where it was famously used to animate the ocean
in the movie Titanic, and in computer graphics simulations. Even in its original
form, the Tessendorf method, as it is widely called, was capable of reaching real-
time framerates, albeit with relatively small grid size of 64 (Titanic used a grid of
2048). Since the introduction of this method, not only has the hardware improved,
but several methods for increasing the performance of the Tessendorf method have
been proposed, either using GPGPU computing for the FFT calculation, resulting
in a respectable speedup, or implementing LOD methods to only calculate what
is necessary. Currently, some implementations are capable of using the grid size
of 1024 on a consumer-range hardware. Further increases in the grid size are
complicated however, as the floating point inaccuracies reportedly influence the
quality of the results starting from the size of 2048, as reported in the Tessendorf
implementation presentation by Nvidia [12].

Properties of the Tessendorf Method

One of the advantages of the Tessendorf method is its inherent tile-ability. Be-
cause of the properties of the Fourier Transform, the opposite edges of the height-
field will always be symmetric. This allows us to place two heightfields adjacent
to each other without producing a visible seam, or crack in the geometry. This
ability to tile the ocean surface indefinitely (at least theoretically) plays an im-
portant role in the usability of the method, as it allows simulating large ocean
surfaces without the need for additional computations. There is a tradeoff how-
ever, as the artificial periodicity introduced by the tiling becomes visible when
viewed from further away. There are ways to offset this effect, such as using LOD
methods to adapt the size of the grid to the observer distance, or introducing a
noise function to hide the periodicity. Some implementations, such as [12], have
successfully used Perlin noise to remove the regular appearance of the surface.

As it was described until now, the Tessendorf method is capable of synthesizing
a fixed-size heightfield grid of convincing ocean surface at time t0. However, as
the method is primarily intended for use in audio-visual media such as movies
and videogames, the surface synthesis on its own is not enough – we also need
a way to convincingly animate the said surface. In his original text, Tessendorf
proposes an animation method that produces solid results and has been used in
more or less unchanged form ever since. The animation is based on phase-shifting
the waves in the original spectrum based on the difference of current time and t0,
thus creating the illusion of movement for a particular wave. Since we are phase-
shifting a wave with a fixed wavelength, each wave will also eventually return
to its original configuration, creating a loop. The entire surface is therefore also
looped after a fixed amount of time.
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Oceanographic Spectrum

While the conversion from the spectral domain to spatial domain remains vir-
tually the same across all variants of the method (disregarding implementation
details such as the usage of GPU for FFT calculations), multiple oceanograph-
ic models have been experimented with in the literature. In his original notes,
Tessendorf used the Phillips spectrum, notable for its easy description. While
the same spectrum remains in use in many implementations, some authors have
suggested the use of other, more sophisticated spectra. Apart from the tradition-
al Pierson-Moskowitz spectrum, literature fairly often references the JONSWAP
(JOint North Sea WAve Project) spectrum. As the JONSWAP was developed
based on empirical measurements of fetch-limited seas and was built to simulate
the same seas, it includes the fetch length 1 as a parameter. In the work of Lee
at al. [11], another spectrum has been suggested for use in the field of ocean
simulation. The TMA (Texel, Marson, Arsole) spectrum is an extension of the
JONSWAP spectrum, introducing another parameter for the depth of the sea.
While the authors of the paper note that the TMA is superior to more simple spec-
tra such as Phillips and Pierson-Moskowitz due to having more user-controlled
parameters, the actual benefit for simulating ocean waters is debatable, as the
spectral methods are unsuitable for simulation of shallow waters regardless of the
spectrum used, due to their inability to accurately react to the seabed and the
shore. However, using such a spectrum might be useful for some LOD approach-
es, as well as for situations outside the ocean simulation field, such as modelling
lakes or ponds.

Summary

To summarize the advantages of the Tessendorf method, the method by itself is
very fast in comparison with both the parametric approaches and the physically-
based methods while producing fairly convincing results for deep water scenarios.
The properties of the Fast Fourier Transform also mean that the resulting surface
is tile-able, making large ocean scenes possible, while at the same time allowing
for visually pleasing animation loop using phase shifts. The disadvantages of the
method are also quite apparent. The way the heightfield is generated means that
the user can control the appearance of the surface only via the spectral parame-
ters, if any are present for the chosen spectrum, not directly as is the case with
parametric methods. As the surface shape is dependent only on the underlying
spectra it is also very hard to modify the method to allow any additional influ-
ence over the ocean surface, such as reacting to floating objects or the the terrain
itself. While some papers have tried to overcome these limitations (e.g. Jensen
and Goliáš have included an approximation of two-way object-ocean interaction),
these modifications are almost always very limited.

1The length of the surface over which the wind has blown
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3.2 Physical Methods

Unlike the empirical approaches, physically-based methods are not specific to
simulation of ocean waters, but instead follow common physical principles. In
general, it can be observed that with the ongoing evolution of consumer-range
hardware, interactive applications are slowly moving away from the specialized
empirical methods to universal physical engines that drive most of the interactions
in the simulated world. An example of this trend can be seen in the field of rigid
body dynamics, where the general physical solvers are now standard for most
of AAA videogame and movie titles. In the case of ocean surface simulation
however, the performance cost of simulating the entire body of water is still too
high to completely replace the empirical methods. In this chapter, we present
some general methods from the field of Computational fluid dynamics, as well as
their restrictions tailored specifically for ocean surface waves.

3.2.1 Navier-Stokes Equations

The primary method from the field of CFD is based on the set of equations
known as the Navier-Stokes equations of fluid motion. The equations are derived
by applying Newton’s second law to continuous fluid motion and are known to
describe viscous fluid flow. In the case of in-compressible fluid, which is the
case usually assumed for large continuous bodies of fluid [1], the equations are
simplified to the following form:

ρ

(
∂v

∂t
+ v · 5v

)
= −5 p+ µ52 v + f (3.8)

5v = 0 (3.9)

Where ρ is the density of the fluid, v its velocity, t time, p its pressure, µ its
viscosity and f other body forces. The first equation represents the application
of Newton’s second law and guarantees the conservation of momentum, while the
second guarantees the conservation of mass.

While the NSE together capture the dynamic behaviour of viscous fluid flow
from a theoretical standpoint, the actual solving of the equations is a very com-
plicated matter, as these are a set of high-order partial differential equations.
The literature therefore commonly resorts to discretizing the equations both in
time and space to find an approximate solution [2]. As a detailed review of all
methods used for approximating the NSE would require at least the scope of a
scientific paper, we will resort to describing only the most common methods and
those relevant to this thesis. Specifically, we will make no further mention of the
particle-based Lagrangian discretization mentioned in the review of the survey
by E. Darles et al., and we will focus solely on the grid-based Eulerian approach
which is the common choice for ocean simulation in the literature.

The Eulerian approach of space discretization is based on a cell model – the
simulation space is divided into uniformly-sized cells possibly containing some
small volume of the fluid, and the calculations are performed on a per-cell basis.
Two configurations are common in the literature – the collocated grid configura-
tion, where both the fluid properties and the velocity vectors are stored at the
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center of the cell, and the staggered grid model, often referred to as the MAC
(Marker and Cell) configuration. Of the two configurations, MAC has seen more
widespread use recently, as the collocated grid configuration allegedly suffers more
from stability problems. In the staggered grid model, only the fluid properties
are stored at the cell center, and the velocities are stored at the boundary faces
dividing the neighbour cells. For visual comparison of the two grid configurations,
see Figure 3.1

Figure 3.1: Comparison of the collocated (left) and staggered (right) Eulerian
grid configuration, with fluid properties being represented by blue circles and
blue and red arrows representing the horizontal and vertical velocity components,
respectively.

As for time discretization, the most important factors influencing the quality
of the result are the selection of integration scheme and the length of the time
step. Both of these factors are in essence a tradeoff between speed and accuracy,
and must therefore be chosen and implemented carefully in a real-time media
such as a video game. Several integration schemes have been used for discretiz-
ing the NSE, the most common of these being the Semi-Lagrangian integration
scheme. Essentially being an application of the backwards-Euler integration to
particle-based simulation, the scheme has very good performance and is thus of-
ten used in situations calling for real-time framerates. The system proposed by
Jos Stam [13] is an oft-quoted example of Semi-Lagrangian integration. Another
widely used integration scheme potentially providing more accurate results is the
MacCormack scheme, which is described in [6].

The properties of NSE are highly dependent on the exact scenario and the
chosen discretization. In general however, it can be said that the NSE imple-
mentations fully capture the complex behaviour of viscous fluid flow [1], directly
allowing for many effects that are unattainable with the empirical methods, such
as separation of the fluid from the main body, flooding of previously dry areas,
interaction of multiple fluids with one another, easy integration of two-way inter-
action with floating objects, etc. Unfortunately, providing such a complex fluid
simulation also means that solving the equations is a notoriously hard problem.
Jensen and Goliáš report the existence of solvers capable of o(n4) time complex-
ity, but state that even this is too demanding for real-time purposes [2]. When
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considering the huge volumes of water that would need to be simulated in the
case of the ocean (including the entirety of its depth), it becomes obvious that
the NSE can not be reasonably expected to run in interactive framerates in the
case of the ocean.

3.2.2 Shallow Water Equations (Saint-Venant)

The Shallow Water Equations, also known as the Saint-Venant equations are
derived from the full Navier-Stokes Equations of fluid motion. First used by Kass
and Miller [14], the SWE take a simplified approach to simulation the ocean
surface. As opposed to full NSE, which use uniform grid of cells across the whole
3D simulation domain, the SWE consider only a 2D range of cells, with each cell
holding as a property the height of the fluid column instead of the fluid density. A
visual comparison of the way the SWE divide and interpret the simulation space
compared to the NSE can be seen in Figure 3.2. The reduction at the core of the
SWE depends on several assumptions. First and foremost, it is assumed that the
fluid shape can be modelled using heightfield – thus eliminating any possibility
of vertically separated fluid bodies and indeed most fluid effects based on vertical
velocity. Second, fluid properties usually carried in the NSE cells, such as the
fluid density, pressure and velocity, are assumed to be constant across the whole
fluid column. It is worth noting that while the method only models the horizontal
velocity of the fluid, the vertical velocity is also simulated, albeit indirectly, by the
height property changes ∆h of each cell. Finally, the horizontal scale is assumed
to be larger than the vertical scale, making the method less accurate and stable
for deeper regions, hence the name. A form of SWE as used in [5] is as follows:

Dh

Dt
= −h5 ·v (3.10)

Dv

Dt
= −g5 η + aext (3.11)

where h is the height of the fluid, D is the material derivative operator, g is
the gravitational constant, η = h + hterrain is the absolute surface height, v is
fluid velocity and aext represents external acceleration due to other forces.

Due to being in essence their restriction, the SWE share many traits with
the NSE implementation-wise. Same approaches are applied to discretizing the
equations in space and time. In particular, the SWE are almost always solved
using the Eulerian grid approach, with the same configuration possibilities as in
the NSE case. The typical implementation as being described in [5] consist of
three steps, first self-advecting the velocity field itself, and then integrating the
height and velocity forward in time. As with the NSE, the prevalent integration
schemes for real-time application seem to be the Semi-Lagrangian approach used
by Stam, and the MacCormack second-order scheme.

Unlike the NSE, the assumptions made in the SWE derivation make the
method much more suitable for generating the ocean surface shape, as it is pos-
sible to simply use the fluid height values to generate the heightfield, whereas
the literature has seen a lot of research regarding a visually convincing way of
generating the surface based on the result of NSE calculations [1].
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Figure 3.2: Visualization of the way the SWE (red) divide the simulation domain
space compared to the NSE (blue).

Overall, the SWE seem like a good compromise between accuracy and per-
formance. Despite losing the ability to simulate all fluid phenomena, especially
under-surface flows and tensions as well as breaking waves, the method still ex-
hibits the most important properties of the NSE, such as ability to react to terrain
and floating objects. The 2D restriction allows us to dramatically reduce the com-
putational complexity of the problem as well as its size, resulting in much better
performance. However, as the method is devised for shallow water simulations,
it can not be used as the only method in a large scale ocean surface simulation,
the performance considerations of such an approach notwithstanding.

3.2.3 Surface Waves

For the sake of a complete review, we mention another method derived from the
NSE. The Surface waves are a model that takes the simplification of SWE even
further, assuming fixed depth across the whole simulation domain in addition to
the restrictions introduced by the SWE. The method is described in the work by
Gomez [15] and mentioned in Jensen and Goliáš [2], who use it as a supplemen-
tary model for generating small object-induced surface waves in addition to the
large-scale ocean surface generated by the Tessendorf method. The form of the
equations as used by Jensen and Goliáš is this:
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∂2h

∂t2
= |V |2

(
∂2h

∂x2
+
∂2h

∂y2

)
(3.12)

where |V | is the velocity of the wave across the surface, h is the height of the
water surface, t is the time and x and y the horizontal coordinates.

While the model is too simplified to allow any meaningful interaction with
terrain, the relatively lightweight character of the method performance-wise and
the ease of implementation make it suitable for small-scale details and surface
interaction in the manner explored by Jensen and Goliáš. Apart from that use
case however, the methods mentioned up to this point appear superior in most
regards.
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4. Method Criteria

Having described the most popular methods in the field of ocean simulation, we
now present the criteria we have formulated for the selection of two methods to
be used in this thesis for our combined model, the exact form of the selected
methods along with the reasons for choosing them.

4.1 Defining the Criteria

1. Large-scale Capability As the primary goal of the thesis is to simulate
large ocean waters, the selection of methods must be appropriate for such usage.
This limitation means that we can not, for example, base the entire model on
NSE, as the volumes of water required to simulate deep ocean surface would be
huge, not to mention the inefficiency of such approach.

2. Ability to React to Terrain in a Physically Convincing Manner
The main problem with most existing deep ocean simulation implementations is
their inability to correctly model the interaction with terrain features such as the
seabed and the shoreline. The combined system we propose needs to be capable
of simulating the complex effects of such an interaction in a manner that appears
realistic to the observer.

3. Ability to Be Easily Integrated with Existing Approaches and Sys-
tems As we are basing the combined model on existing methods with a lot of
research behind them, it is desirable that we keep the interoperability with the
modifications and improvements of these methods. For example, the combined
model should not be designed in such a way as to break the commonly used LOD
approaches and other modifications in the relevant fields of study.

4. Real-time Capability The system must also support real-time usage, at
least in theory, as the selection of methods for the combination is done with
eye towards game industry usage. Choosing methods that we can not reason-
ably expect to allow modifications enabling real-time usage on current high-end
machines is therefore not advisable.

4.2 Choosing the Methods

Based on the criteria presented in the preceding chapter, we have decided to base
our combined model on two methods. We have chosen the Tessendorf method
for simulating the general surface of ocean due to its popularity in the ocean
simulation community, proven real-time capability and well-explored possibilities
of simulating virtually infinite ocean surfaces. By itself, the Tessendorf method
therefore satisfies all criteria except 2. Ability to React to Terrain in a Physically
Convincing Manner. Judging by the information provided in the survey [1], the
Tessendorf method can be used to accurately and convincingly model deep ocean
waves. Its limitations lie in the inherent inability to react to the terrain, as well as
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any other objects interacting with the water surface. To offset these limitations
and achieve the criteria, we need a physically correct method, along with a way
of combining the results into one surface.

The choice of the exact physical method is more complicated. We need a
method that is capable of capturing the complex behavior of ocean near the
shore, but we also need the method to be as fast as possible to facilitate real-
time usage. While it is theoretically possible to simulate ocean interaction with
Navier-Stokes Equations, and such an approach is proven to provide dynamic
results [1], the performance cost makes it unsuitable for real-time application,
as noted in [2]. We must therefore turn our attention to the simplified versions
of the NSE. The most prominent of these are the Shallow Water Equations. As
we have described in the chapter dealing with the methods themselves, SWE
reduce the complexity of the problem by assuming much larger horizontal scale
than vertical scale, and instead of having uniformly-sized 3D cells, SWE deal with
whole columns of water, thus restricting the size of the problem to two dimensions.
While having some limitations, especially in the case of simulating more violent
weather conditions where vertical movement of water and breaking waves become
much more important, SWE have been shown to accurately model shallow water
waves for non-violent ocean surfaces. SWE also operate on a uniform 2D grid
of cells, which makes synthesizing the resulting heightfield to a similar format
to that provided by the Tessendorf method easier than in the case of full NSE
simulation. On the other hand, while SWE have been shown to be applicable
in real-time, usually this was done on a spatially limited area. We are therefore
unsure if SWE will not still be too computationally expensive in a combined
model.

As for the exact form of the methods, we have decided not to include any
additional modifications of the Tessendorf method, such as the choppy waves
version often used for rough weather conditions. It should however be possible
to include this and other modifications of the methods in the future, as the core
approach is still the same. The SWE method is based on the work of Chentanez
and Müller [5]with some additional modifications introduced to allow external
influence from the Tessendorf method. The next chapter discusses the implemen-
tations and the modifications required in greater detail.
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5. Combined Model

Having selected the methods to be used in our combination scheme, we can now
move on to detailing our combination scheme itself. We will first describe the
implementation of the selected methods, basing this implementation on the rel-
evant papers and resources. We will then move on to our combination model
itself, describing the transitioning between the two methods as well as the modi-
fications we have had to incorporate to allow the transitioning without breaking
the simulation.

5.1 Tessendorf Implementation

The implementation of the Tessendorf method follows standard steps outlined by
Tessendorf in his original publication [4] and is also based on the implementation
from [16]. The Phillips spectrum is used as the model for generating the spectral
distribution of waves due to the popularity it has in various papers and systems
using the Tessendorf method. However, the spectral model can easily be swapped
with another, as it is only used during the initial computation of the heightfield
in Fourier domain at time 0. We can therefore also consider using other spectral
models, such as JONSWAP or perhaps TMA in the future, as suggested in [11].
The Phillips spectrum is defined as follows:

Ph(k) = A
e(−1/(|k|L)

2)

|k|4
|k ·w|2 (5.1)

where A is the wave shape parameter, L = W 2/g defines the limit of wave
size based on wind speed W and gravitational constant g. The vector k is the
wave vector and w represents the wind direction.

The primary application-controlled parameter of the Phillips spectrum is the
wind direction w and wind speed represented by W . Using the Phillips spectrum,
we can define the values of the heightfield in the spectral domain at time 0:

h̃0(k) =
1√
2

(ξr + iξi)
√
S(k) (5.2)

where ξ is a random Gaussian number, with ξr and ξi being its real and imag-
inary components, respectively. S(k) is the underlying oceanographic spectrum,
i.e. in our case Ph(k). To animate this static heightfield, we use the method
Tessendorf proposed in his original work. This method is based on the dispersion
relationship between wave vectors and the frequency of the wave. For deep wa-
ter waves (assuming infinite ocean depth), the relationship is known to take the
following form:

ω(k) =
√
g|k| (5.3)

where ω(k) represents the wave frequency of a given wave vector. Using the
given dispersion relationship, we use the equation from [4] to gain the spectral
heightfield representation at time t as follows:
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h̃(k, t) = h̃0(k)eiω(k)t + h̃∗0(−k)e−iω(k)t (5.4)

where ∗ represents the conjugation operation. This modified spectrum at time
t can then be transformed using the inverse FFT algorithm, resulting in an array
of complex values whose real components represent the desired heights of the
surface described by the transformed spectrum.

From a technical viewpoint, we have opted for using the Nvidia CUDA tech-
nology to calculate the FFT operations as fast as possible. CUDA contains a
library called cufft which provides high-level functions for performing the trans-
form, we only need to provide the data. We start by creating the initial Fourier
domain heightfield at time 0 on the CPU, using the relationships described above.
We then allocate a suitably sized memory block on the GPU and copy the initial
heightfield to this memory block, storing the CUDA pointer. We also allocate
memory for the spectrum at time t and create a cufft plan handle to allow FFT
transforms using the supplied GPU memory pointers in the future. During each
frame, we then create a modified heightfield at time t using the original heightfield
from time 0 and the wave dispersion relationship, as proposed by Tessendorf. The
creation of this new spectrum is performed entirely on the GPU using custom
CUDA kernel. We then feed the modified spectrum to the cufft library function
providing complex to complex inverse FFT transformation based on our defined
cufft plan. The resulting heightfield in spatial domain is then gained by taking
only real components of the inverse FFT operation.

Note that unlike the original Tessendorf’s implementation, we are not using
the calculated heightfield to assign heights to a set of vertices. Instead, we are
storing the resulting heightfield in a texture further referred to as the Tessendorf
heightmap. This modification allows us to later use the Tessendorf results in the
domain shader to displace the newly created dynamic vertices. In addition to
the heightmap, our method also requires the presence of a normalmap specifying
the normal vector distribution of the surface. We use another custom CUDA
kernel and provide it with the spatial representation of the heightfield at time
t using the heightmap and the spacing of the pixels when converted to world
space. The actual generation of the normals uses a standard Finite difference
method [17], basing the approximation of the surface slope on the heights of
surrounding elements (represented by the neighbouring pixels) and the spacing.

It is also important to mention that the textures cannot be used simultane-
ously by the CUDA driver and Direct3D 11. Before accessing the textures from
CUDA, the textures must be registered as CUDA resources and mapped for use.
After all CUDA work on a texture is complete, the texture must be again un-
mapped to allow Direct3D 11 to bind the texture to the graphics pipeline. The
basic results of the Tessendorf implementation can be seen in Figure 5.1. As we
have not taken any steps to counter it, the implementation contains tiling peri-
odicity common to the unmodified Tessendorf method. The periodicity is visible
from certain points of view, but is negligible when the camera is near the surface.
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Figure 5.1: Screenshots of the Tessendorf method from the pilot application.
Periodicity is visible in the screenshot on the right.

5.2 SWE Implementation

We have chosen to base the SWE implementation on the paper by Chentanez
and Müller from Nvidia. Not only do the authors describe the system in high
detail, they also include modifications meant to improve the stability of the SWE
solver, and propose a way of dealing with open-water boundary conditions. The
authors opt for using the MAC grid configuration and explicit integration, as
they state that the implicit integration methods are too demanding for real-time
usage. They base their system on the following form of the SWE:

Dh

Dt
= −h5 ·v (5.5)

Dv

Dt
= −g5 η + aext (5.6)

where h is the height of the fluid, D is the material derivative operator, g is
the gravitational constant, η = h + hterrain is the absolute surface height, v is
fluid velocity and aext represents external acceleration due to other forces.

The authors refer to another full paper for the implementation of the velocity
self-advection, suggesting the use of the MacCormack second-order integration
scheme. For the sake of implementation simplicity, we have instead opted for
the standard Semi-Lagrangian advection, as implemented, for example, by Stam
[13]. This velocity advection scheme works in the fashion of backwards Euler
integration – instead of taking the current velocity of a particle and integrating
it forward in time, the velocity is inverted, and an approximate point of origin in
the previous frame is calculated. As the point of origin will usually lie between
four sample points contained in the grid, we calculate the original velocity value
using bilinear interpolation based on the four values in the adjacent grid points,
as illustrated on Figure 5.2. The resulting value is then used as the new velocity
value of the particle. It is worth noting that the velocity advection scheme is
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Figure 5.2: Illustration of Stam’s advection scheme. In the first step, the current
velocity of the particle (red) is inverted (blue) and used to find the approximate
point of origin. In the second step, approximation of the point of origin velocity
is found using bilinear interpolation based on the velocities of the surrounding
grid elements (blue). The final interpolated velocity (green) is then assigned as
the new velocity for the particle.

separated from the rest of the calculations, and could be easily replaced by a
more accurate one, should the need arise.

The implementation employs a time-splitting technique, first advecting the
velocity field of the fluid, and then integrating the height and velocity forward
in time. For solving the height integration, the authors rewrite the Equation 5.5
and discretize it into grid cells:

∂h

∂t
= −5 ·(hv) (5.7)

∂hi,j
∂t

= −

(
(h̄u)i+ 1

2
,j − (h̄u)i− 1

2
,j

∆x
+

(h̄w)i,j+ 1
2
− (h̄w)i,j− 1

2

∆x

)
(5.8)

where u and w are the horizontal, resp. vertical components of the velocity
field, ∆x is the spacing of grid cells and h̄ represents an estimate height value
at a point corresponding to the placement of a velocity component. The authors
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suggest using the upwind cell height value for calculating h̄ instead of using the
average of the two cells, claiming that this choice results in more stable simulation
and better results. We have experimented with both options while developing our
implementation, and can support this claim in general – using the average indeed
often introduces unwanted oscillations. Formally, the values of h̄ are defined as
follows:

h̄i+ 1
2
,j =

{
hi+1,j if ui+ 1

2
,j ≤ 0,

hi,j otherwise
(5.9)

h̄i,j+ 1
2

=

{
hi,j+1 if wi,j+ 1

2
≤ 0,

hi,j otherwise
(5.10)

Finally, the height is integrated explicitly based on the calculated values using
basic forward Euler integration:

hi,j =
∂hi,j
∂t

∆t (5.11)

The velocity integration is based on taking the fluid gradient into account as
follows:

ui+ 1
2
,j+ =

(
−g
∆x

(ηi+1,j − ηi,j) + aext
x

)
∆t (5.12)

wi,j+ 1
2
+ =

(
−g
∆x

(ηi,j+1 − ηi,j) + aext
z

)
∆t (5.13)

This step can be intuitively interpreted as the implementation of the com-
municating vessels principle – the velocities are updated in order to balance the
water surface of neighbouring cells at the same total height, regardless of the
underlying terrain.

In addition to the basic implementation outlined above, we have also included
several of the stability improvements suggested by the authors, clamping the
height of the fluid to positive values in each simulation step, as well as limiting
the magnitude of the velocity components to a value calculated as follows using
a user-defined parameter α:

maxu,maxw = α
∆x

∆t
(5.14)

Another stability improvement proposed by the authors is artificially limiting
the fluid height taken into account during the height integration step. The original
value of h̄ is modified by subtracting an adjustment value hadj:

hadj = max

(
0,
h̄i+1,j + h̄i−1,j + h̄i,j+1 + h̄i,j−1

4
− h̄max

)
(5.15)

where h̄max is defined as follows using a user-defined parameter β:

h̄max = β
∆x

g∆t
(5.16)
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Despite using these modifications, we have also encountered an artifact caus-
ing cells near the shore to develop unstable oscillations. This same artifact caused
a sort of repelling effect in cases where the velocities would be oriented away from
the shore. In the end, we have found that this artifact was caused by the velocity
integration step, where the change in velocity is calculated based on the total
height difference between the two cells, regardless of whether any fluid was actu-
ally present in the source cell. In combination with floating point precision errors,
this velocity was then advected during the Semi-Lagrangian integration step, ef-
fectively appearing as a repelling force. The authors probably did not encounter
this problem due to using the MacCormack integration scheme. We have fixed
the problem by specifically setting velocities to 0 in the case the velocity would
draw fluid from an empty cell.

5.3 Combining the Methods

The first important step in combining the two methods is in determining where
to use which method. The terrain layout of our system is represented by terrain
heightmaps loaded from the hard drive, with each heightmap corresponding to
one tile in the world space (more on tiles in Chapter 6.1). During the tile loading,
this heightmap (or the absence thereof) determines whether the tile will contain
SWE cells or will be a pure Tessendorf tile. The SWE cells for the tile being
loaded are generated with the consideration of the terrain heightmap data – cell
terrain heights are set to the corresponding values read from the heightmap.

To allow for visually convincing combination of the SWE and the Tessendorf
method, it is necessary to solve several problems. First we must find a way to
simulate open water boundary conditions in the SWE in such a way that waves do
not reflect off the boundary, which is the standard behavior of the SWE solver we
have implemented. Since the Tessendorf method is by its very nature dependent
only on the spectral model underneath, it is virtually impossible to project any
SWE results back into the Tessendorf surface. However, converting the method
results from the Tessendorf to the SWE representation is possible, albeit hard to
implement in a physically correct manner. We must also first determine where
to apply which type of transition. Currently, this is implemented in per-tile way;
while this makes the method transition more visible, it is also more convenient
for standard representations of heightmap data, as these are most often based
on encoding only the terrain above the sea level. Generating the cells only for
certain shallow depth levels, as was originally intended, thus becomes impractical.
However, we have included a section on implementing these changes in Chapter
9.

For a given SWE tile, we must therefore first assign the transition methods to
each side of the tile. For the sake of simplicity, we assume that this hypothetical
SWE tile borders with pure Tessendorf tiles on all sides, as in the case of sharing a
border with another SWE tile, no method transition is required; we must merely
ensure correct communication between the tiles during the physical updates. For
a surrounded SWE tile, we first use basic goniometric functions to calculate
the wind vector. Assuming the vector is situated at the center of the tile, we
then assign SWE-Tessendorf transition to the tile sides towards which the wind
vector is points, and Tessendorf-SWE transition to the sides the wind vector is
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Figure 5.3: Visualization of how the wind direction impacts the creation of tran-
sitioning borders and damping zones of a tile. Blue borders represent Tessendorf-
SWE transition, while red borders represent SWE-Tessendorf transition in the
form of damping zones.

originating from. Generally, when the wind vector is not aligned with any of the
axes, the transition distribution will be two by two, in the case of axis alignment,
three sides will be using SWE-Tessendorf transition, and only one Tessendorf-
SWE transition, as illustrated on Figure 5.3.

5.3.1 SWE-Tessendorf Transition

Unlike the other transition direction, the transition from the SWE to FFT is
occasionally mentioned in the literature. However, as we have mentioned earlier,
it is virtually impossible to influence the results of the Tessendorf method in any
other way than by modifying the spectrum, or by directly displacing the resulting
heightfield, both of which is impractical, mainly from the realism standpoint.
Modifying the spectrum for a specific tile would also deprive us of the advantage
of only having a constant number of FFT calculations per frame, as well as break
the tile-ability of the entire approach. The problem is therefore usually reduced
to making sure the SWE part of the system is equipped for dealing with the
boundaries in a manner that is in accordance with the laws of physics, i.e. that
the borders do not reflect the outgoing waves back into the simulation domain.

Our implementation uses the same concept as outlined in the work of Chen-
tanez and Müller [5] – the SWE cells nearest to the transition borders are outfitted
with a damping field, gradually smoothing out waves approaching the border. It
is important to note that care must be taken in choosing the damping factors, as
large values will make the damped zone act like a wall, essentially replicating the
reflection effect we are trying to smooth out. On the other hand, if the damping
factor is too small, the damping zone will be incapable of sufficiently suppressing
the waves approaching the border. In our pilot application, the damping factors
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are set as follows:

damp(i) = (|i− size/2| − size/2− 10))/200 (5.17)

where i is the distance of the cell from border in terms cell units and size
is the size of the SWE tile side in cell units. This selection behaves well during
the simulation itself, but introduces small wave artifacts after the initialization.
Only cells with within 10 cell units from the border are damped.

5.3.2 Tessendorf-SWE Transition

In contrast to the SWE-Tessendorf transition, we can actually directly influence
the SWE surface, even if such an action is questionable from a purely physical
standpoint. However, we are faced with several difficulties. First and foremost,
the input data we are obtaining from the Tessendorf method border are limited
only to a heightfield representing the surface. While it would be theoretically
possible to decompose the FFT-generated heightfield back into its separate wave
components, not only would it be contrary to the whole purpose of using the
Tessendorf method in the first place, it would probably not make the problem
any easier, as there is still no direct mapping between the wave components and
the SWE properties. Thus we will base the transition only on the heightfield
values at the border as well as the physical parameters of the scene, such as wind
direction.

We have tried out several approaches of converting the heightfield to SWE cell
values. The core problem of the Tessendorf-SWE transition is that we are modi-
fying a physically correct system on the basis of purely empirical data, which can
easily break the stability of the physical system. To allow the transition between
the methods, we have introduced a new concept into the SWE solver implemen-
tation, further referred to as the ”fixed-height cells”. The fixed-height cells are
excluded from the height-integration step, making them entities not conforming
to the underlying physical system. Fixed height cells do however take part in
the velocity integration step, which enables them to influence the surrounding
cells without changing themselves. This also induces a hidden problem that is
described and solved in Chapter 5.3.3. On the whole however, the fixed-height
cells provide us with a way of influencing the SWE system without breaking it too
much, even though extra steps must be taken to compensate for the non-physical
volume gain. Having defined the fixed-height cells, we can now describe our ex-
perimental methods of transitioning from the Tessendorf method to SWE. The
methods we used perform a variety of operations, including modifying heights of
the cells, velocities of the cells and even using full-scale interpolation with the
Tessendorf method.

Height Copy

In our first method, we use the wind direction to find which borders require
the Tessendorf-SWE direction using the method described above, and then mark
the first row of cells along each border as fixed-height cells. In each frame of
the simulation we then access the texture describing the Tessendorf heightfield
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and sample the heights corresponding to the fixed-height cells on the Tessendorf-
SWE border and assign these as new heights of the relevant cells considering
their underlying terrain height. The fixed-height cells along the other borders are
permanently set to the default water level – zero.

Wind Velocity Fixing

Another approach we have tried is fixing also another parameter of the borderline
cells – the velocities. Our expectation was that such a modification might result
in a flow forming between the transition border, effectively simulating the water
volumes moving to and from the system. This flow did form, but the results were
not visually pleasing – as the velocities on the borders were constant, they quickly
overtook the velocities forming as a result of the fixed-height cells, making the
water move in much larger masses. In addition, the larger volumes of water lost
and gained made it harder for the mass conservation step to counter, resulting in
a situation where the water level was slightly skewed in the direction of the wind.

Full Tile Interpolation

We have also attempted to use a full-tile Tessendorf interpolation in addition to
the standard border heightmap copy. In this case, all cells in the tile would re-
ceive height changes without being fixed-height. The copying from the Tessendorf
data needs to be done using linear interpolation, otherwise the SWE tile ends up
being essentially a low-resolution copy of the Tessendorf tile. The copy step can
therefore be interpreted as slowly forcing the cell configuration into a rest state
defined by the Tessendorf heightmap. However, even for small factors the impact
on the cell structure is significant, but in a negative way – the constant stabiliza-
tion tends to blur the SWE effects without providing much additional detail. We
have therefore decided that such an approach is counterproductive, even though
it makes the difference between SWE and Tessendorf tiles slightly harder to spot.
To achieve a similar effect without compromising the SWE simulations, we would
suggest overlaying the Tessendorf data over the SWE results in a purely visual
way, such as in the domain shader. The comparison of the height-copy method
and tile-wide interpolation can be seen in Figure 5.4

Multi-cell Height Copy

The last approach we have taken was to use a larger array of fixed-height cells
to transition from the Tessendorf surface, hoping for a better reproduction of
the surface details in the SWE systems. This modification did very little to
change the result – in fact, as only the neighbouring cells are taken into account
during the height and velocity integration step, it is impossible for these cells
to influence the result in any other way than by velocity advection. In order to
be advected however, the velocities inside the non-fixed cells and the simulation
timestep would need to be large enough to skip the neighbouring cells during
the advection step. However, the timestep is usually as small as possible in a
SWE solver to allow for accurate integration and to avoid stability issues that
commonly arise. Also, we are of the opinion that even if the advection did indeed
pull the fixed-height cell array velocities into the simulation, the velocities would
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Figure 5.4: Screenshot comparison of the Full tile interpolation (left) and Height-
copy (right) methods from the pilot application.

be off and would actually introduce more problems into the system – the cells
would have fixed height but not fixed velocities, meaning that the velocities would
be updated without affecting the resulting heights. As we describe in Chapter
5.3.3, this introduces problems even for one row of fixed-height cells bordering
with a standard row of cells, let alone for a whole array of fixed-height cells.

Interpreting the Results

In the end, it turns out that the approach with most promise is the first one,
using only one row of cells to transfer the Tessendorf heightfield for the border
each frame. While this may seem counter-intuitive, it is actually quite reasonable
when we consider what we have mentioned before – any modifications to the SWE
system to enable the transition are in some way violating the underlying physical
properties of the system, essentially introducing inaccuracies and unrealistic be-
havior. The less changes we make each frame the better, as this makes it easier
for the system to deal with the artifacts we have introduced. However, we are
still interested in performing more experiments with velocity modifications in the
future, as we believe the effects could be more dynamic.

Conditional Damping

In addition to approaches outlined above, we must also take steps to ensure
the boundary does not act as a reflective wall, similar to the problem in the
SWE-Tessendorf transition. However, we cannot use the same damping field, as
not only the waves approaching the border would be smoothed out, so would
the incoming waves we are trying to create. To this end, we have modified the
damping fields to allow for a special case we have called ”conditional damping”.
This modification represents a damping field that only smooths out the affected
cells if the relevant velocities satisfy a predefined condition. The condition for
smoothing out directly depends on the wind direction, and thus gradually smooths
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out the waves moving against the wind and approaching the source boundary from
inside the SWE domain.

5.3.3 Mass Conservation

The SWE solvers as implemented in the literature are usually closed systems – no
fluid leaves the simulation domain, and none enters. However, in the design of the
transition methods described above, we have taken steps that are directly modify-
ing the configuration of the SWE system both by damping out the waves using the
damping field, and generating additional water volumes on the Tessendorf-SWE
transition borders. These steps reflect the open-water situation of the simulation
scenario to some degree, in particular the water leaving and entering the system,
respectively. However, we cannot guarantee that the modifications represent a
physically correct situation, as the outside system is not governed by the rules of
physics and the damping fields function in a purely empirical way. In particular,
by directly modifying the heights of the cells in a non-physical matter, we may
have violated the conservation of mass, as the sum of fluid leaving and entering
the systems is not guaranteed to be zero. We must therefore take extra steps to
ensure that conservation of mass is enforced.

To this end, we have modified the height integration algorithm as described in
[5] and the SWE solver itself by including additional steps. Before the calculations
themselves, during the initial population of the CellManager data (see 7.3.6), we
sum the height volumes of all non-empty cells that do not have a fixed height
(as is the case with cells bordering with the Tessendorf-SWE transition) and
store this number as the ”correct” fluid volume in the system. While integrating
the height across the cells, we then sum all current fluid heights of the cells,
calculating the current fluid volume. If the current fluid volume differs from the
correct fluid volume by a value larger than a certain constant, we modify each
integrated height value by multiplying it by the ratio between the volumes. This
ensures that the sum of new cell heights across the SWE simulation is equal to
the correct volume, stabilizing the system. Note that the integrated values are
modified before they replace the current height values, limiting the impact the
inaccuracies have on the system as a whole. The calculation of the height factor
and its effect on cell heights can be formulated using the following formulas:

ActiveCells = {c|c ∈ Cells, h(c) > 0, active(c),′ (fixed(c))}, (5.18)

hf =
Hcanon∑

c∈ActiveCells

, (5.19)

hnew(c) = max(0, h(c)hf ) (5.20)

where hf is the height factor, h(c) is the height of cell c and hnew(c) is the
replacement height of the cell. Functions active(c) and fixed(c) represent the
active and fixed-height cell properties, respectively.

It is also important to ensure that the velocities lying on the boundaries
between standard cells and fixed-height cells behave in a reasonable manner. In
particular, it is desirable that no velocity ever indicates fluid movement into a
fixed-height cell. While the mass conservation mechanism is in theory capable of
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Figure 5.5: Visualization of the problem arising when velocities between fixed-
height cells (red) on the borders and standard cells (blue) are not corrected. The
algorithm first transfers height property from the standard cell without raising the
height of the fixed-height cell in the height integration step. The mass conserva-
tion step then raises the heights of all standard cells (including the one pictured)
to account for the fluid loss. This raises the height of the cell (possibly even to
higher point than before due fluid loss in other parts of the system), which is then
used to further increase the velocity of the fluid escaping the simulation (dark
blue arrow).

compensating for the fluid that would be leaving the system in this way, this very
action might create an explosive chain reaction that would eventually result in
an utterly non-physical surface. The exact nature of this problem is illustrated
on Figure 5.5 – with the height of the cells neighbouring with the fixed-height
cells being higher, the velocity integration detects this slope and sets velocities
for a ”downhill” flow. As the source cell loses fluid but the fixed-height cell
never gains it, the overall system loses a potentially significant amount of fluid.
The mass conservation system responds to this loss by raising the heights of all
nonempty cells by a factor required to achieve the original volume, as described
above. However, this includes the cell neighbouring with the fixed-height cell,
again increasing the height difference and thus the velocity integrated for the
flow, resulting in even more fluid leaving the system next frame. Ultimately this
escalates in a situation where most of the fluid is concentrated in several ”blobs”
and the system is oscillating between fluid loss and compensation. To counter
this, we have modified the velocity integration step to test for such scenarios and
set the velocity component compromising the system in this way to zero.

5.3.4 Blending

After the simulations of all involved methods are finished and the results are
stored in a texture, the result blending takes part. As will be mentioned further
on in Chapter 6.4, all remaining combination operations are applied on the GPU
in the form of shader programs. Theoretically, the result combination is a special
texture blending operation. After first generating the surface sampling points
based on the observer position and other level of detail parameters, the shader
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Figure 5.6: Visualization of the blending operations. For each vertex being gen-
erated by the domain shader, each texture is sampled using the same surface
coordinates. The results from the heightmaps and normalmaps are then interpo-
lated based on the factor sampled from the blendmap.

program calculates the height of each of these sampling points. The shader is
provided with the two textures representing the results of the methods, and a
third ”blendmap” texture. The blendmap texture is either loaded from the drive
alongside the terrain heightmap or generated in the tile loading step and defines
the ratio of influence the simulation methods have on the height for the entire
surface. Currently, as it is necessary to encode only two methods, the ratio can
be encoded into a single floating point value, representing a linear interpolation
factor, but the exact way of creating and interpreting the blendmap is easy to
modify in case of changes.

As the heightmap by itself is insufficient to describe a smooth surface rea-
sonably, the blending shader must also be provided with two normalmaps repre-
senting the normal vector distribution on the surface in the standard encod-
ed way, i.e. representing a normalized vector xyz by a pixel with values of
red = (x + 1)/2, green = (y + 1)/2, blue = (z + 1)/2 and alpha = 1. These
normalmaps must be created by the methods themselves and updated whenever
there are changes to the heightfield. The blending step then also interpolates be-
tween the normals in the same way as between heights, using the blending factor
loaded from the blendmap as a parameter for linear interpolation. The entire
blending sequence is described in Figure 5.6.

5.3.5 Limitations

The method as proposed above suffers from several limitations. First and fore-
most, the square shape of the SWE cells makes it hard both to generate waves for
wind directions that are misaligned with the coordinate axes as well as to hide
the tiling visually. The second problem can be alleviated to a certain degree by
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using a suitable blendmap, but the first is harder to counter. In Chapter 9.2 we
outline a modification that would allow for arbitrary border shapes, ideally based
on another future modification, depthmaps (see 9.1).

The result also suffers from the lack of detail in the SWE domain. This is
caused by the fact that the SWE tiles have lower resolution than the Tessendorf
tiles, being sized only 128 by 128 cells. This means 16 384 cells per tile which
is essentially a limit of what the current implementation is capable of simulating
with reasonable framerates. Note however that no special optimizations were
implemented, and it should be possible to reach much larger cell counts in future
versions. Another improvement might lie in moving the SWE implementation
to the GPU, we would however expect some complications in this effort. The
possible move to the GPU is also discussed in Chapter 9.4.

5.3.6 SWE Initialization

There are situations where we must initialize the SWE system to some default
configuration, one of these being the startup itself, and the other a situation where
the tile converts from the default pure Tessendorf representation used for tiles that
contain terrain, but are too far from the observer, to the SWE representation used
near the observer. In such a scenario, using a flat surface as default would be
jarring to the observer, and it would also take a lot of time before the system is
filled with at least some waves, because they need to travel from the border. As
such, we have decided to initialize the SWE system based on the Tessendorf data
– despite quickly degrading to a wavy surface unrelated to the original Tessendorf
source, this provides some texture to the tile, making the conversion less abrupt,
as well as giving the incoming waves time to form.
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6. Level of Detail (LOD)

As we are trying to focus our experimental methods on usability in real-time,
it was necessary to include some form of level of detail methods in the pilot
application, preferably in such a way as to be independent of the underlying
methods. While the methods used are not the most advanced the literature has to
offer, this is due to the LOD methods being a separate and extensive field of study
on their own. Implementing the state-of-the-art LOD algorithms is therefore out
of the scope of this thesis. We have however tried to take advantage of modern
techniques that have emerged only recently due to technological advances, as
well as the properties of methods themselves, to propose a level of detail scheme
capable of reasonable application speedup.

6.1 Tiles and Range Culling

The first element of the level of detail scheme comes from the properties of the
Tessendorf method, as well as the hardware limitations of the graphic cards.
As is described above, the Tessendorf algorithm produces a fixed-size tileable
heightmap describing the surface of a given square-shaped part of the ocean.
Additionally, we need to represent and store the description of the terrain data,
both above the water level and below, ideally with fast lookup times of terrain
height value for a specific set of coordinates.

To solve this, we have elected to artificially partition the world space into
a uniform grid structure of elements, which we refer to as tiles. This allows us
to perform many operations that would otherwise be costly performance-wise or
much harder to implement. First, the terrain data can now be represented by a
texture representing the height of the terrain in the same way as the Tessendorf
heightmap does for the water. Not only does this allow us to treat terrain ge-
ometry similarly to the water geometry, it also provides us with an easy way of
persisting and loading the terrain data, as we can simple store DDS (Direct draw
surface) textures on the disk as the simulation content. As the representation
of terrain using the heightmaps is very widespread, it also makes the application
easy to integrate with existing solutions and data.

In addition to these conceptual advantages, the division of world space into
tiles also provides us with the first basic LOD method. As we can detect the tile
that is nearest to the camera position, we can limit the range of the tiles that
the TerrainManager (see Chapter 7.3.5 for more detail) request to be drawn to
a certain neighbourhood of the ”current” tile. The size and shape of the neigh-
bourhood can be easily modified according to FPS (frames per second) results
and limitations of the camera (e.g. we don’t need to render many tiles when we
limit the maximum height the camera can be placed at).

While the tile approach is used for the water and terrain geometry, note that
simulation objects are not required to adopt it as well. The world is capable of
holding any number of simulation objects, including updating and drawing them
with the rest of the world. However, the pilot application does not contain any
LOD methods for non-tile based objects, which means that they will all be drawn
regardless of camera position and any other circumstances, unless they implement

37



some kind of LOD scheme themselves (e.g. at least aborting the draw call in case
of large distance from the camera). Unless a complex LOD scheme such as a
quadtree or octree spatial division algorithm is applied, it is therefore advisable
to include a very limited amount of simple non-tile objects.

6.2 Near / Far Model

As the calculations performed by the SWE tiles are demanding, we have included
two versions of simulation objects per tile – a ”near” and ”far” model . For
pure Tessendorf tiles, both of these are the same tessellated patches using the
shared Tessendorf heightmap. For SWE-based tiles, the near model contains a
simulation object capable of processing the SWE calculations in the near mode,
and a standard shared Tessendorf patch in the far mode. The actual rendering
of the near or far model is based directly on the distance to the observer. The
SWE patch itself keeps track of when it was last drawn, and if the difference
between current time and last draw time is larger than a given constant, all
updating of the patch is postponed, and the patch is marked as requiring a reset.
The delay is introduced to prevent cases where quick camera movements would
rapidly activate and deactivate the patch, resetting the simulation each time.
Note that the deactivation based on last draw call also means that a patch is
deactivated after not being in the observer field of view for a while due to the
view-frustum culling modification described in the next section. The actual reset
procedure was described above – the SWE cells in the patch are initialized from
the Tessendorf heightmap.

6.3 View-Dependent LOD

6.3.1 View-frustum Culling

While the range-based tile culling reduces the amount of actual tiles being drawn,
it does so depending only on the observer position, not the matrices describing
what can actually be seen by the observer – even tiles behind the camera are
still sent to the graphics card and get processed in the entire device pipeline
up to the pixel shader stage, where they are discarded due to not being in the
visible space. This is usually very wasteful, as processing each tile includes a lot
of operations, including tessellation and heightmap sampling. To address this
issue, we perform the same test that eventually discards the pixels of objects
outside the visible space before the pixel shader stage, but we perform it on a
per-object basis on the host before actually requesting any additional draw calls.
The method itself is called View-frustum culling and in essence combines six
half-plane tests per point to find out if a point lies inside or outside the view-
frustum, as illustrated in Figure 6.1. The frustum itself is constructed from the
view and projection matrices, and the testing itself is done in the world space.
As our tiles are objects that are naturally square-shaped heightfields, we can use
axis aligned bounding box (AABB) to easily represent its world space position.
While drawing the range-culled tiles, we construct a view-frustum for the current
camera position and orientation and then test the bounding box containing each
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Figure 6.1: Visualization of the view-frustum (blue) of the camera and the effect
it has on rendering the tiles. Tiles intersecting the view-frustum (red) will be
rendered, while the other tiles (white) will be discarded.

tile for intersection with the view-frustum. If the bounding box intersects the
view-frustum, the corresponding tile is drawn, otherwise it is discarded. The
bounding boxes themselves are created during the tile creation and stored among
other per-tile data.

Despite limiting the amount of onscreen triangles representing the water sur-
face to a fixed number using the range based tile culling and then further reducing
this amount via view-frustum culling, both of these methods represent a crude
LOD scheme, as they operate only on boolean values indicating whether a tile
should or should not be drawn. Tiles being drawn far away from the observer
will have the same level of detail as those directly in front of the camera. To
address this issue, we have included another LOD pass in the rendering scheme
using progressive mesh tessellation.

6.3.2 Tessellation

The core idea is to store and display the tile geometry in the lowest level of
detail by default, and only create the higher levels dynamically where needed,
as indicated by the observer position in world space. This process is essentially
inverse to traditional LOD methods which store multiple levels of detail generated
either programmatically from the highest detailed geometry, or created directly
by the artist to accurately represent the object. Since we are rendering the surface
of an ocean, we are in essence approximating a smooth surface using a number
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Figure 6.2: Illustration of the effect the view-dependent tessellation has on the
tile vertex structure.

of sampling points defined by a heightmap. While the Tessendorf method mostly
uses uniform fixed-size grid to sample the surface, this has arisen from the natural
mapping of vertices to the FFT-generated heightmap, and is not the only way to
sample the surface.

The tessellation itself is performed on a per-tile basis and the control of the tile
tessellation is not influenced by any surrounding objects, only observer position.
The lowest level of detail for a tile may consist of only four vertices, or of multiple
four-point patches, depending on how we want to model the furthest tiles, but
also on how much detail we require in the nearest tiles 1. The exact algorithm
for calculating the tessellation factors will be presented in the next section; it
is worth noting however, that it can be changed very easily to support various
other cases. An example visualization of four tiles being tessellated based on the
camera position can be found in Figure 6.2.

6.3.3 Cracking

One problem that is often associated with using tessellation as a LOD scheme is
the creation of cracks in the surface where adjacent meshes meet due to T-vertices.
However, in the case of ocean water, we can take steps to ensure that the resulting
surface is waterproof. First, we need to avoid having different heightmap data
for the two adjacent edges. For Tessendorf tiles, this is automatically satisfied,

1HW tessellation factors have built-in limits, so the subdivision granularity depends on the
original geometry. For integer mode, the factor ranges are 1-64. For more information see [18]
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Figure 6.3: Illustration of the cracking problem in tessellation. Due to sampling
the same heightmaps and using same tessellation factors for the adjacent edges,
our tiles don’t have this problem.

as the periodicity property guaranteed by Tessendorf method ensures the same
height for the borders. For tile edges representing the boundary between the two
methods, the property must be satisfied artificially by copying the height values
for border SWE cells from Tessendorf and using linear interpolation. Next, we
need to avoid the creation of T-vertices on the tile edges. We can satisfy this
requirement by basing the edge tessellation factor calculation directly on the
position of the vertices comprising the edge. As the vertex positions are the same
for both edges, the tessellation factors will be the same, and the newly created
vertices will be overlapping as well. Since the vertices will also sample the same
height from the heightmap, the surface will appear to be smooth. An illustration
of adjacent tile tessellation can be found in Figure 6.3.

6.4 Hardware Tessellation

6.4.1 Overview

Both in the design and implementation of the LOD scheme outlined above, we
have tried to take advantage of the capabilities of modern graphics cards. Since
we have opted for using Direct3D 11 in our pilot implementation, we have access
to hardware-accelerated tessellation integrated in most modern GPU units via
the hull and domain shaders. The host can therefore treat each water tile as a
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Figure 6.4: Comparison of the traditional graphics pipeline (left) and the
tessellation-enabled pipeline (right). The arrows illustrate how the graphical
data flow through the pipeline, while the lines represent the access to read-only
data stored in buffers set by host code.

square patch of control vertices (or multiple patches) and leave the process of
using tessellation to provide sufficient view-dependent detail to the GPU.

After first binding the shaders and heightmap parameters via material system
(for more information see Chapter 7.5 of technical documentation) and provid-
ing tessellation-capable vertex data, the process itself can start. In addition to
standard vertex shading and pixel shading, the pipeline now contains two more
stages. The hull stage is responsible for setting the parameters of the hardware
tessellator and preparing the control point data for use with the domain shader.
The control points are then fed to the hardware tessellator, which generates new
vertices on the GPU and interprets them as a surface. The visual comparison of
the two pipeline configurations is illustrated in Figure 6.4.

Before moving on to describing the two new shaders, let us first discuss the
impact the tessellation has on the standard pipeline setup. Because we want to
base our tessellation algorithm on the position of the viewer, the input vertices
of the hull shader need to be still based in world space, not screen space. We
must therefore modify the vertex shader, which precedes the hull shader in the
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tessellation pipeline, to only apply world transformation on the geometry. The
pixel shader now follows the domain shader in the pipeline, not the vertex shader,
we must therefore take care that the data layout is consistent across these two
stages.

6.4.2 Hull Shader and Domain Shader

As we base the tessellation on a square shape, the hull shader input will be four
patch control points. To allow basing the tessellation on the viewer position, the
shader is provided with the world space coordinates of camera. To work correctly,
the hull shader has several responsibilities to maintain. First, it must create the
output control point data, which is mostly directly based on the input control
points received from the vertex shader. Second, it must set the tessellator pa-
rameters. This includes the output topology that is to be generated, as well the
type of partitioning. The partitioning type directly controls how the subdivision
behaves and Direct3D 11 offers four options: fractional odd, fractional even, in-
teger and pow2. We have chosen the integer partitioning as it corresponds to
how the heightfield is traditionally modelled in most of the Tessendorf method
implementations. The final task of the hull shader is to calculate the tessellation
factors for each triangle edge in the input primitive using the defined constant
function. As we are using the quad domain, we need to set four factors for each
outside edge, and two factors for the inner edge tessellation. Our method of cal-
culating the tessellation factors is essentially a shifted linear falloff function of
the point position in world space :

Tf (p) = clamp(MAXDETAIL− |o− p| − 200

10
, 1,MAXDETAIL) (6.1)

where clamp is a function clamping a value to a certain range, p is the position
of the point in world space, o is the position of the observer and MAXDETAIL
is a constant representing maximum tessellation factor. A graph illustrating the
progression of tessellation factor based on the distance from the observer can be
found in Figure 6.5.

As the factor function is a function of only one world space position, we
calculate the factors for outside quad edges as factor function of the point lying
in the middle of the line segment connecting the points. For the inside edge
factors, we first calculate the center of the patch and then transform it using the
factor function.

After the hardware tessellator partitions the patch based on the calculations
in the hull shader, the domain shader is executed once for each resulting vertex.
The domain shader must set the vertex properties accordingly to the control
point data and domain position (a two dimensional coordinate specifying the
position on a surface defined by control points). In our case, we use bilinear
interpolation to generate horizontal position and texture coordinates for the new
vertex, and then use the texture coordinates to sample the heightmap, normalmap
and additional textures that are provided to the domain shader. For example,
in the blending variant of the shader, there would be two heightmaps and two
normalmaps alongside a blendmap texture. The calculated surface height is then
used to displace the vertex along the y axis. The final task of the domain shader
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Figure 6.5: Graph describing the dependency of the Tessellation factor (vertical
axis) on the distance from the observer (horizontal axis).

is to perform the world space to screen space transformation that usually falls to
the vertex shader in a traditional pipeline configuration.
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7. Technical Documentation

In this chapter of the thesis we briefly describe the project properties and architec-
ture of the pilot application in such a detail as to allow sufficient and reasonably
fast understanding of the principles behind it, with the goal of enabling future
modifications and improvements of the application. We also detail the process
of changing the simulation methods themselves and quick incorporation of new
methods using the material systems, as we consider these an important aspect of
the implementation.

7.1 Project Structure

The application is a standard Qt window application consisting of one main
window named ”ocean”, the layout of which was created using the Qt Designer.
As with all Qt windows, the main window consists of multiple files, some of which
are generated by the Qt library during compilation. These files are contained in
the ”Generated Files” filter. Apart from the standard C++ filters containing
the header files, source files and resource files, the application further contains
additional file types, with corresponding filters gathering these files together.
Specifically, the application contains a Qt form file mentioned above in the filter
”Form Files”, files compiled using Nvidia CUDA in the filter ”CUDA Kernel
Files” and HLSL shaders in the filter ”Shader Files”. For the header and source
files, we have included additional filters grouping together the files sharing a
common ancestor, such as cameras and materials.

7.2 Dependencies

The project depends on several libraries and frameworks which are required for
successfully building the application. The following libraries were used in the
application.

7.2.1 Qt GUI Framework

For basic presentation and controls the project requires a GUI library. The li-
brary chosen is the well known Visual C++ GUI library named Qt Project. The
application was developed and built with the version 5.2.1 of the Qt library, which
can be found on the following website: http://download.qt-project.org/archive/
qt/5.2/5.2.1/

7.2.2 Direct3D 11 (via WindowsSDK 8.0)

The project uses Microsoft Direct3D 11 for rendering the scene. Direct3D is cur-
rently part of the Windows SDK, which is shipped with Microsoft Visual Studio
2012 and higher. For deployment purposes, Direct3D 11 should be available on all
versions of Windows from Windows 7 onward. The application uses the built-in
Visual Studio 2012 shader compilation tools, so no additional tools are required
for this task.
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7.2.3 Nvidia CUDA

The GPGPU computing library by Nvidia is used for calculating the FFT trans-
formations, heightfield and normal textures, and additional computationally de-
manding tasks. The specific version of CUDA used in the project is 5.5, which
is currently outdated, as it was replaced by version 6 while the project was be-
ing developed. The SDK for version 5.5 can still be found on https://developer.
nvidia.com/cuda-toolkit-55-archive.

7.2.4 DirectX Toolkit (DirectXTK)

Additional library used in the project is the DirectX Toolkit created by Shawn
Hargreaves and other members of Microsoft. The library provides several higher-
level abstractions for working with DirectX 11, some of which are based on the
discontinued XNA library. The toolkit also includes some basic classes supple-
menting the removed DXGI functionality and can be found on http://directxtex.
codeplex.com/. The compiled libraries are also included in the project.

7.2.5 DirectX Texture Tool (DirectXTex)

The last library used in the project is a companion library to DirectXTK, provid-
ing methods for loading and processing textures via the WIC2 interface. The li-
brary is hosted on codeplex and includes basic documentation: http://directxtex.
codeplex.com/. The compiled libraries are also included in the project.

7.3 Overall Architecture

This section includes brief documentation for the most important classes in the
project. Some of the more complicated class hierarchies are discussed separately
in the following chapters.

7.3.1 Ocean

The highermost architectural class in the application is the Ocean class, represent-
ing the actual application window. The class extends the Qt class QMainWindow,
and is directly instantiated and activated in the application entry point. Apart
from presenting the window and its controls to the user, and processing user input
by delegating it down the chain of responsibility to the relevant parts of the ap-
plication, the class also contains a QTimer object with 0 interval, which is bound
to the update method of the D3DWidget class described below. This allows the
D3DWidget instance to control the frequency of its updates and draws indepen-
dently. The visual representation of the window is contained in the ocean.ui file
and should only be edited using the Qt Designer.

7.3.2 D3DWidget

The D3DWidget class represents a Qt widget capable of rendering a Direct3D
surface and updating the state of the application. The most important part of
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the class is the update method, which is being called during each update of the
window, as was mentioned above. The update method controls the timing of
actual work by trying to reach a fixed amount of frames per second, and the
same number of updates. Total elapsed time since last frame must therefore be
greater than ∆t, defined by this simple relationship:

∆t = 1000.0/TargetFPS (7.1)

TargetFPS is a numerical constant contained in D3DWidget currently set to
60. The end result is that while the application is running normally, there will be
approximately TargetFPS number of update and draw calls. If the computations
done in the update section are too performance heavy, the application will run
as fast as possible.

Most of the actual work that should be done during the update and render calls
is delegated further to separate objects. The D3DWidget merely holds references
to these objects and calls the relevant methods where necessary. In particular, the
class contains a single owning reference (modelled using the unique ptr template
class) to instances of TerrainManager, Renderer and Camera. It also contains a
vector of ISimObject references, which represents physical objects contained in
the simulation world.

For processing the user input, D3DWidget uses the Qt slot system. The
slot system allows different widgets in the window to react to each other by
binding actions with reactions. The actual set of methods available for bind-
ing is marked by keyword ”slots”. For more information, see Qt documen-
tation (http://qt-project.org/doc/qt-4.8/signalsandslots.html along with http:
//qt-project.org/wiki/New Signal Slot Syntax) and the header of D3DWidget.
The slots in D3DWidget are used mainly to allow changes to the camera place-
ment and simulation mode.

7.3.3 ISimObject

The abstract class ISimObject provides an interface for updating and drawing
simulation objects. Depending on abstraction in this case allows us to easily
create and insert a new type of object into the world, provided we implement
the required methods correctly. In particular, the draw method should make no
assumptions about the state of the Renderer object, meaning it is mandatory to
set the material states during each draw call. The pilot implementation contains
several implementations (extensions) of the ISimObject, such as the SWEPatch,
TessPatch and more.

7.3.4 Renderer

The Renderer class represents an object used for hiding some of the complexity of
working with Direct3D device, providing instead a set of relatively simple methods
for rendering the simulation objects. The initialization of the device itself is done
in the constructor of the class via the method createDevice, immediately followed
by the initPipeline method, which takes care of view-port creation, basic device
state management, as well as the creation of the backbuffer. The depth-stencil
buffer creation was separated into the initDepthStencilBuffer method.
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Rendering itself is initiated via a call to the render method, which receives
an instance of the Camera class as well as a vector of ISimObjects. The Renderer
performs basic preparation of the device state, and then simply delegates to the
draw methods on the provided ISimObjects, eventually presenting the render
result.

The Renderer also serves as the manager of the available IMaterial objects,
and allows the retrieval of a specific Material using the getMaterial method.

7.3.5 TerrainManager

The TerrainManager class is responsible for storing the geographic terrain and
water data, as well as taking care of the generation of shared water surface tex-
tures generated by the Tessendorf method. The class takes care of texture creation
and CUDA initialization in the constructor, using the SharedTexture structure to
store data about the textures accessible by both Direct3D and CUDA kernels.

In the calls to update, TerrainManager uses CUDA kernels to create textures
describing the heightfield and normal map of the resulting Tessendorf surface. In
order to allow writing to D3D textures, the textures need to be mapped for CUDA
usage before the kernel execution. The kernels themselves use linear memory
to store the results, which is then copied to the CUDA array representing the
mapped texture. The exact process of generating the texture has been outlined
in the algorithmic section of this thesis. In addition to generating the shared
Tessendorf texture, the TerrainManager also triggers update methods for tiles
requiring the SWE calculations as well as copying the Tessendorf heightfield data
to corresponding SWE cells where necessary before unmapping the graphical
resources, thus again allowing Direct3D to access the textures.

As for the draw method, the TerrainManager draws only tiles which are within
a fixed distance to the camera as well as within the view-frustum. Both the water
and terrain geometry is rendered for each tile to be drawn, provided that the tile
contains both. In many cases, the terrain part of the tile will be non-existent,
which is represented by being set to nullptr value.

The actual access to tile data is always done via the getTile method, which
provides the tile data based on the supplied coordinates. The tiles themselves
are instances of the TileData class, and are stored using a hash-based cache. The
cache contains a fixed amount of buckets, and solves the hash function collision
by chaining the tiles together. If no TileData is present in the cache for the
requested coordinates, the corresponding TileData will be created transparently
and added to the cache.

The creation of TileData is in itself fairly complicated, as the TerrainManager
needs to load a texture from the drive storage, and use this texture both as a
heightmap for the terrain component and as a source of SWE cells for the water
simulation. The loading of heightmap is done using the DirectXTK function
CreateDDSTextureFromFile; however, we still need the normal map to allow for
at least a basic form of rendering. The normal map is generated using the same
CUDA kernel that is used for generating the Tessendorf normal map.

Next, the cells for SWE are created when necessary. Instead of the al-
ready mentioned function CreateDDSTextureFromFile, we use the function Load-
FromDDSFile defined in DirectXTex. The reason for this is that this method
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creates a CPU-side representation of the texture, which allows us to easily access
the pixel values in the texture from the host. We then create a new instance of
CellManager class, and fill it with cells using the method addCell, setting the cell
properties such as height and terrain height based on the data in the texture.

Finally, the complete TileData object is gained by combining the water and
terrain objects into one structure, which is then returned as the result of the
getTile operation.

7.3.6 CellManager

The CellManager class is responsible for storing a set of FlowCells and allowing
access to them. The primary purpose of the class is to hide the exact implemen-
tation of the cell storage, allowing for easy changes. Currently, the FlowCells are
stored in a pre-resized vector, which results in very fast lookup times, but ineffi-
cient memory usage in case of sparse fields. However, the implementation hiding
would theoretically allow us to, for example, use caching by cell coordinates when
necessary.

7.3.7 FlowCell

The FlowCell class represents a single SWE cell, storing the fluid properties such
as water height and terrain height in the cell center, and the velocities in the cell
boundaries. Since the changes to fluid properties must be usually applied together
across the whole cell grid, the cells allow for storing modified values for later usage
in the newHeight, newVelocityX and newVelocityZ fields. The changes can be
applied on demand using the applyVelocityChanges and applyChanges methods.

7.3.8 Cameras

The abstract class Camera provides methods and some fields necessary for de-
scription of a 3D space camera. The primary purpose is therefore in storing the
two standard 3D transformation matrices, the view matrix and projection ma-
trix. The projection matrix depends only on the projection type and view-port
properties and can therefore usually be set only once during the creation of the
camera. The view matrix depends on the position and orientation of the cam-
era, and must be therefore updated as these values change. This modification is
hidden from the camera user, who can access the matrices only as const values.
Instead, the matrix changes are applied transparently in the implementation of
the virtual methods in the classes extending the Camera.

The BasicCamera class extends the Camera, implementing the methods in a
way that is common to most cameras, i.e. taking care of keeping the parameter
ranges within specified values in the setter methods, as well as introducing the
abstract recalculatePosition method that triggers the modification of the view
matrix. This allows the classes extending the BasicCamera to focus only on how
this modification is performed.

There are two classes extending the BasicCamera. The CenteredCamera is
a camera observing the origin of the world space, i.e. the vector (0, 0, 0). The
camera therefore allows both horizontal and vertical rotation around the origin as
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well as zooming. The CenterdCamera was used initially during the development
and has been later replaced by FreeCamera, which allows arbitrary movement
in the world space, along with rotation. To this end, the FreeCamera contains
methods moveForward and moveBackward as well as getDirection, in addition to
those methods inherited from the BasicCamera and Camera.

For a complete overview of the relationships between cameras, see Figure 7.1.

7.4 Swapping Models

As the primary purpose of the application to allow experimentation with different
ocean simulation models, we have tried to decouple the simulation part of the
process from the rendering as much as possible. On the other hand however,
going too far in the separation could potentially result in a notable performance
loss. To avoid this, the separation goes only as far as to allow easy modifications
of the existing methods and their addition, but without any design decisions that
could massively influence the performance.

The core idea for allowing easy modification is to unify the way in which the
geometry is generated from the models, and to delay the actual surface creation
for as long as possible. In our implementation, we have chosen to take advantage
of the cutting-edge hardware tessellation on the GPU, which essentially means
that no specific geometry is passed from the host to the graphics device. In-
stead, we pass a set of vertices (usually called patch in the tessellation context)
and the hull and domain shaders generate the actual surface vertices and assign
their properties, including position. The details are explained in the Chapter 6.4;
however, the choice of hardware tessellation has impact on the swapping of the
models. Essentially, the shaders need to read the height and normal data from
a Direct3D texture. We have therefore elected to make the heightmap and nor-
malmap stored in a texture the unified model for all simulation methods. This
generalization is reasonable, as while generating a Direct3D texture might not
be the natural choice for some methods and may require additional processing,
all methods must generate the heightfield in some form sooner or later. This
approach also allows us to use the same level of detail methods for all water ge-
ometry, irrespective of what method was actually used to generate the geometry
in the first place.

The actual placement of the implementation of the new method depends on
the method itself. In theory, if the data and calculations differ for each tile,
the easiest way is to create a new implementation of ISimObject via extending
it and overriding its methods, as is the case with, for example, the SWETess-
Patch class. Next, it is necessary to change the creation of TileData in the
TerrainManager::getTile method to use the new implementation, at least in those
cases that require it. As the TileData provides the water model to other parts of
the system only in the form of an ISimObject pointer, no changes need to be done
to the usage. Note however that the new implementation must correctly set the
material for rendering and also provide the simulation result in the corresponding
form in its implementation of the draw method.

The approach outlined above is well suited for methods that generate unique
data per tile, such as the SWE and NSE physical approaches. It is however
unsuitable for methods that perform the same calculations regardless of data
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and share the resulting heightfield across many tiles, which is the case of the
Tessendorf method. In this case, we would suggest taking the same steps we have
taken with our Tessendorf implementation – the actual calculation is performed
in the TerrainManager itself, and the texture is bound to the material shared
between the tiles. This ensures that no unnecessary operations are performed
during the update and draw passes.

7.5 Materials

To further aid the decoupling of rendering and simulation parts of the application,
we have introduced a material system. Apart from hiding the low-level imple-
mentation dealing with setting the Direct3D states and working with shaders, the
material system also has a secondary purpose in facilitating easy code reuse and
allowing new simulation objects and methods to be quickly integrated without
having to implement full rendering pipeline usage.

The most important abstraction in the material system is the IMaterial ab-
stract class. The class contains a single abstract method apply, which requires
instances of Renderer and Camera classes as parameters. As the material can
access the Direct3D device and device context via the Renderer instance, the
materials have full control over all aspects of rendering. To apply a material,
simulation objects need to request a reference from the Renderer class manag-
ing the materials. The getMaterial method performs a lookup based on a string
identifier and returns a pointer to the material masked as the abstract IMaterial
class. The downside to this approach is that before the specific properties of the
material can be accessed, the instance received from the Renderer by using the
getMaterial method needs to be cast to the specific extension of IMaterial. As
this cast is inherently unsafe, it can result in run-time errors and unpredictable
behavior; fortunately however, this kind of class mismatch can only be created
due to coding error, and will be immediately obvious during the first render of
the new object.

The classes implementing IMaterial must therefore take care primarily of
setting up the graphics pipeline – setting shader objects for the relevant stages
of the pipeline, preparing the buffer objects for the shaders and binding them to
the graphics pipeline. Note that the responsibility for correct pipeline setup lies
with the author of the extending material class, who must also take care that
the pipeline configuration is consistent with its usage in the simulation objects,
e.g. rendering primitives of one of the tessellation patch types requires also the
binding of hull and domain shaders in the corresponding stages, otherwise the
rendering pass will result in Direct3D errors. The same goes for vertex types –
the vertex data provided by the geometry must contain all values required by the
shader, in the same order and using the correct semantics.

The pilot implementation currently contains several classes extending the
IMaterial class. The base of all other material classes is the abstract Materi-
al class, which contains basic loading of pixel and vertex shaders, input layout
description creation as well as the pixel and vertex buffer creation and assign-
ments. Two classes inherit from the Material class. ClassicMaterial represents a
traditional pipeline configuration, with only vertex and pixel shaders being active,
requiring the provided primitives to be one of the traditional types, e.g. triangle
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list or triangle strip. TessMaterial on the other hand represent a tessellation-
enabled pipeline, indicating that hull and domain shaders should be used and
that the primitives supplied to the material for rendering need to be of one of
the types supporting tessellation. Another two classes extend the TessMaterial.
The TerrainMaterial class is a simple extension using a different pixel shader,
but is otherwise identical. The BlendMaterial introduces three additional tex-
tures (SWE heightmap and normalmap, along with a blendmap) for use with the
blending domain shader, as described in the Chapter 7.7. For a better illustration
of the relationships between the various materials, see the class diagram in Figure
7.2.

7.6 Input Data

While we have mentioned that the terrain data are loaded from a hard drive, we
have not specified the exact form that is required for the data to be processes
accordingly. All data must be in the folder ”Content” located in the current
working directory of the application. The height of each terrain tile is controlled
by a texture named ”X-Y.dds”, depending on the coordinates of the tile. This
texture must be in the Direct Draw Surface (DDS) file format compatible with
Direct3D 11. The pixel format must be 32 bits per channel ABGR floating point
format. These same basic limitations apply to a pre-made blendmap for a tile,
with the only difference being that the texture name is now ”bX-Y.dds”, with the
”b” prefix indicating that this is a blendmap, not a heightmap texture. Neither
the heightmap nor the blendmap are necessary for displaying a tile – a missing
heightmap results in a pure Tessendorf tile, and a missing blendmap defaults to
linear interpolation along the tile borders.

7.7 Rendering

As the rendering is not the focus of this thesis, and is in fact a field of study of its
own, we have included only a simple rendering and lighting implementation. Nev-
ertheless, we feel obligated to at least mention the structure and steps taken for
the rendering and lighting in this chapter dedicated to technical documentation,
as it is information relevant to anyone wishing to modify the application.

The exact configuration of the graphics pipeline depends on the used material.
As was mentioned before in Chapter 6.4 and Chapter 7.5, using hardware tessella-
tion changes the role of the vertex shader and delegates some of its responsibilities
to the domain shader. The pilot application therefore contains two versions of
vertex shader – OceanVertex and OceanVertexTess. OceanVertex performs the
transformation from world space to screen space, whereas the OceanVertexTess
leaves this to the domain shader and merely passes the vertices in world space to
the hull shader. The hull shader is contained in the OceanHull shader file and is
only used when the tessellation is active, calculating the per-patch constants and
control points, both of which has been described above in Chapter 6.4.

As we require domain shaders both for the case with and without blending,
there are two versions of domain shaders as well. As was mentioned above, the
primary role of the domain shader is to interpret the surface represented by the
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vertices from the hull shader and transform the resulting vertices to screen space.
The OceanDomain shader implements this by using bi-linear interpolation to find
the texture coordinates of the vertex, and then sampling the heightmap and nor-
malmap to find the properties of the resulting vertex, before transforming its
position to screen space. When blending is activated, the OceanDomainBlend
shader is used instead, extending the parameters of the shader by including addi-
tional heightmap, normalmap and blendmap. The process of blending was already
described above – a floating point blending factor is read from the blendmap and
linear interpolation is applied both to the displacement defined by the heightmaps
and the normal vectors.

The final stage of the rendering pipeline is defined by the pixel shader. The
application contains two pixel shaders – OceanPixel and TerrainPixel. The Ter-
rainPixel shader is used for rendering matte geometry, such as terrain, and uses a
variant of the Phong shading algorithm [19]. The OceanPixel instead implements
an approximation of the Fresnel term and uses it to combine a reflective color
with a refractive color, representing a very simple first-order approximation of the
two principal ocean lighting components. As the application does not contain a
skybox, the reflective color is a constant. In a more complex scenario, we would
have to introduce an environment map and sample it to get reflective color, as
suggested in [2].
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Figure 7.1: Class diagram describing the camera hierarchy. Note that only the
most important fields and methods are included.
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Figure 7.2: Class diagram describing the material hierarchy. Note that only the
most important fields and methods are included.
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8. Performance

In this section we briefly present the performance results of our pilot implementa-
tion, along with identification of several bottlenecks and suggestions for improving
the performance in the future versions of the method implementation.

8.1 Environment

The measurements were taken on a machine consisting of Intel Core i5 2500K
CPU, 16 GB RAM and an Nvidia GTX 760 class GPU. All of the measurements
were taken in the Release configuration and cannot be interpreted in any other
context.

8.2 Results

The pilot implementation is somewhere below the real-time framerates in terms of
performance. The chief factor governing the overall performance is the size of the
SWE grid used in the SWE tile. With a size of 64 cells per tile, the application
reaches about 40 frames per second, which can be reasonably described as a real-
time capable value. The 64 grid resolution is not very visually appealing however,
so we instead use the size of 128 in the pilot application. While only reaching
about 25 frames per second, the results are much better while the animation is
still reasonably fluid. While the value of 25 frames is not real-time capable, we
believe that with improvements in LOD schemes and implementation of various
parts of the application, the method can be made into a truly real-time capable
solution usable for example in the game industry.

8.3 Main Bottlenecks

To identify the main bottlenecks of the application, we have used performance
analysis tools available in Visual Studio 2012. The approach taken was sampling,
where the performance analyzer takes snapshots of the application at regular
intervals, recording the call stack at the sampled point as well as the current
function and line being executed. As expected, the bulk of the most expensive
operations is performed in the SWE simulation. In particular, we have identified
several key bottlenecks that slow down the simulation as a whole.

The first important bottleneck is the CellManager::getCell method with about
15% of exclusive samples. This observation suggests that while our decision to
separate the implementation of the cell memory storage from the SWE might
have been correct from the design perspective, as it, for example, allows for
the usage of hashed access to cell values, it was an incorrect decision from the
performance point of view. While the method is not demanding on its own, its
widespread use in the SWE simulator means that it is called very often. We would
therefore suggest that future implementations rather sacrifice the modifiability of
the code and use an inline replacement of the getCell method merely converting
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the coordinates of the cell to an index into a linear array memory. Extra effort
would be required to enable interaction between two SWE tiles.

Another bottleneck in the application appears to be the integration itself
contained in the method SWEPatch::performIntegration. This was expected, as
the integration step has to perform multiple passes over the entire SWE domain,
accessing surrounding cells and performing a lot of computations in the process.
The method usually amounts to about 15% of exclusive samples. We expect
that increasing the performance of the step without radically changing it would
be complicated. Some possibilities worth exploring are attempting to eliminate
branching, inlining calls to simple functions and combining the height and velocity
integration steps together (even though this will also fairly reduce the readability
of the code).

The standout bottleneck of the application appears to be in the implemen-
tation of the SWEPatch::finalize method, which is responsible for copying the
temporary height and velocity values to the current height and velocity fields
for all cells, as well as generating normal vectors for the surface geometry. Apart
from doing a lot of work on its own with 10% of exclusive frames, the method also
calls the virtual method copyToGPU, which is responsible for copying either the
vertex or texture data to the GPU and takes additional 6% of exclusive samples.
In terms of inclusive samples, which means mostly calls to CUDA and Direct3D
functions, the overall inclusive cost of the finalize method is about 23%. The
method could be improved in several ways, the most promising of which appears
to be the move to the GPU.

8.4 Increasing Performance

Apart from the modifications outlined above, it is our belief that while compli-
cated, moving the SWE implementation to the GPU might dramatically improve
the performance of the application. Such a move would mean that the costly
step of interpreting the vertex data as textures and copying these textures to the
GPU could be avoided altogether, as the textures could be accessed directly on
the graphics card. The massive GPU parallelization and the nature of the SWE
cell-based data suggests that there could be a significant increase in performance
of the computations as well. This modification is described in more detail in the
next chapter of the thesis, including discussion of several potential complications.
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9. Future Modifications

In this section we present possible future modifications of our combination method
and the accompanying pilot application we would like to focus on in the future,
and those that we believe might improve the method either in terms of the result
quality or performance. For each modification we consider what changes would
need to be incorporated into the current form of our combination method, what
problems or limitations it might solve, and what complications we expect to arise.

9.1 Depthmaps

One approach we have considered originally was to use a texture describing the
shape of the ocean floor (we will refer to such texture as a ”depthmap” from
now on) to initialize the cell heights and also as an influence in generating the
blendmaps for tiles. However, we have found that such textures are hard to come
by – most heightmaps representing islands and other ocean-related terrain only
contain the terrain above the sea level. We have therefore abandoned the origi-
nal idea in favor of using hand-made blendmaps and repositioning the available
heightmaps vertically to be partially submerged. While this produces reasonable
results, we still believe that using complete depthmaps will produce result of su-
perior quality compared to the current result. One possible way of getting the
depthmaps would be to use a random terrain generation algorithm or results from
entire terrain generation suites, such as Terragen [20].

Modifying the pilot application to include depthmaps should actually be
straightforward – we need to change the tile loading step in TerrainManager
to read the height data in a different way to include negative terrain heights, set-
ting the cells to the resulting terrain height. In addition, the blendmap creation
would now not consist of loading a blendmap as a separate texture from the drive
or using a simple blendmap based on tile borders, but instead would generate the
blendmap based on the terrain data represented by the heightmap.

Overall, we believe the depthmaps would improve the quality of the result due
to the creation of more natural blendmaps as well as cell terrain height values.
This would allow the SWE to respond to the shape of the seabed, which would
produce more dynamic behavior of the water surface. One problem that would
need to be addressed is finding the best values for parameters controlling the cell
and blendmap creation, i.e. which depths are considered infinite and how the
depths impact the creation of the blendmap.

9.2 Irregular Borders

With the addition of depthmaps it would make sense to be able to define any
shape of the cell sets using irregular cell placement instead of a fixed grid, as
is the case with the current implementation. Such irregular SWE cell sets have
been occasionally used and described in the literature. The core idea is to use a
hash function to control the actual placement of cells in the memory. As we have
anticipated the possibility of implementing this hashmap scheme, the actual rep-
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resentation of the cell memory is hidden and cells are uniformly accessed via the
CellManager class. Implementing this modification would therefore theoretically
consist only of modifying the way CellManager works with cells and modifying
the cell generation in the tile loading step. However, note that the current im-
plementation takes advantage of the grid placement to facilitate fluid transfer to
and from neighbouring tiles – the hash table implementation would need to find
another solution to this problem.

Another aspect of using irregular borders as opposed to the fixed grid is that
it becomes harder to decide which part of the shape is ”inside” (requiring the
placement of the cells) and which is ”outside” (pure Tessendorf). It is also harder
to decide where to place the damping fields and the fixed-height cells for method
transition based on the wind direction. We assume that both of these problems
are solvable and we would probably opt for experimenting with some modification
of the sweep line algorithm [21].

In addition to better reflecting the shape of the ocean floor based on the
depthmaps, the irregular borders could be also used to alleviate another limitation
of the current implementation. As the fixed-height cells are currently placed on
tile borders, the transfer of water movement not aligned with the axes suffers
from inaccuracies. We propose to define the transition border in such a way
as to be perpendicular to the wind vector as to allow best transition quality in
the direction of the water movement, as illustrated on Figure 9.1. However, this
introduces some problems, notably that the tile grid would include cell elements
overlapping neighbouring tiles. It would therefore be necessary to find a way
to define the new cells in a reasonable way across the whole scene without any
overlaps.

9.3 SWE LOD Scheme

In the current implementation, the SWE cells have fixed size after their creation,
regardless of the current observer position. While we have included a near and
far model of water and stop updating the SWE cells when applicable, this LOD
approach works only on a boolean basis – the cells are either being updated, or
they are frozen. To improve the performance and scalability of our method, it
would be advisable to include some form of view-dependent LOD method for the
cells as well. A good starting point would be the system described in [22], but
more research would be required before selecting a LOD method best applicable
to our situation, as well as requiring a considerable effort to incorporate into the
combined method and pilot application.

9.4 SWE GPU Conversion

In the current implementation, the SWE solver runs entirely on the host CPU. In
addition to lacking any parallelism, this placement of the solver also means that
each SWE patch must copy several textures to and from the GPU each frame,
introducing a significant performance overhead. Considering the fact that the
updating of the SWE solver consists of applying several numerical steps across
a set of cells, it stands to reason that the GPU might provide a good environ-
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Figure 9.1: Example of irregular border shape used in place of the current square-
shaped model corresponding to a tile. The original tile cells are blue, while the
new cells are white and the fixed-height cells are red.

ment for such calculations and that moving the SWE to the GPU would result
in notable performance improvements. However, implementing such a change
would also present several problems. While the cells represent individual entities
and could therefore naturally be mapped to threads on the GPU, the integration
and advection steps require data from the neighbouring cells. As accessing global
memory without any pattern is a notoriously costly operation in context of GPG-
PU computing, an important aspect of the SWE to GPU conversion would be
designing a cell storage scheme that could take advantage of the coalesced loading
1 property of the GPU. We would suggest starting with converting the current
pitched memory representation of the cell grid into 2D blocks corresponding to

1GPU device attempts to minimize global memory access by performing load and store
instructions for entire thread blocks, where applicable. Most efficient way of grouping threads
is therefore organizing the memory accessed by a thread block as a continuous segment. For
more information, see [23].
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Figure 9.2: Proposed memory placement of cells in case of moving the SWE
implementation to the GPU. Differently colored cell sets correspond to thread
block sizes on the GPU, and are placed together in the global GPU memory
array to better support coalesced loading.

the size of a thread block on the GPU, as illustrated on Figure 9.2.
Another problematic aspect of the conversion would be branching. Branching

is another operation that is costly on the GPU, as the GPU thread blocks essen-
tially have to perform all variants that are required by the threads in the block.
This should be solved by replacing branching with arithmetical operations where
applicable and by ensuring that the amount of branching variants in a block is
minimal. Fortunately, in the current form of our method the properties that
influence branching (such as damping and fixed-height properties) are distribut-
ed fairly regularly and only on the edges of the grid, which should mean that
they slow down only a limited amount of thread blocks adjacent to the border,
depending on the size of the block.

When used in conjunction with irregular borders, the conversion would be-
come a harder problem due to several assumptions becoming invalid. As the cell
placement in memory would now be subject to a hash function, it would be hard
to ensure that the coalesced loading is used properly, and the fixed-height cells
might also be contained in many blocks. In fact, it might be advantageous to
abandon the hashmap entirely in favor of wasting memory but reducing the ran-
domness of global memory access, effectively storing the entire grid with special
”null cells” located at coordinates outside the boundary defined by fixed-height
cells. Overall, we believe that while the conversion to GPU might prove problem-
atic, the potential performance gain is worth at least attempting the modification
in the future.
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9.5 Better Rendering

While rendering is not a significant part of this thesis, we believe that including
a realistic ocean lighting model would dramatically improve the overall look and
feel of the system. The most interesting paper we have read on the subject is the
recent work of Brunetton, Neyret and Holzschuch [3] as it describes a complete
rendering and lighting system including LOD methods and offers some visually
impressive results. The rendering system is built for the Tessendorf method which
uses tiles, and should therefore be applicable to our combined solution with some
modifications. Implementing such a complex lighting and LOD system including
the method-specific modifications must be expected to take a lot of time though,
even though we believe the results would be worth the effort.

In addition to lighting, it is possible to include additional effects such as foam
and spray. Our combined method might actually be easily extensible to include
these phenomena, as the cells in the SWE domain provide physical parameters
that can be used to indicate the generation of these effects, e.g. cells with a lot
of incoming fluid can be expected to produce sprays. For the Tessendorf domain,
it is possible to use approaches suggested by Jensen and Goliáš in [2].
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10. Conclusion

In this thesis we have attempted to outline an approach for combining a selection
of methods used for simulating deep water and shallow water waves in order
to end up with a system having the favorable properties of both empirical and
physical approaches. To our knowledge, no system containing the conversion
from the Tessendorf method to SWE domain is described in the literature, so we
were initially unsure if the idea of combining the methods was feasible in the first
place. Nevertheless, we wanted to explore the possibility, as we believe such a
system could be capable of offering a visible quality improvement over approaches
currently used for ocean simulation in the game industry.

To achieve this goal, we have performed a survey of currently existing popular
ocean simulation methods based on multiple relevant papers and analyzed these
methods from the viewpoint of the combination method we were trying to create.
Then we defined the criteria we are focusing on and selected the two methods
based on these criteria. We have implemented the two methods and the combined
system, detailing the modifications that were required to enable the combination
and the combination scheme itself. The resulting method is capable of simu-
lating large ocean surfaces using the Tessendorf method while transitioning to
SWE approach near terrain objects, showing a visible influence the Tessendorf
method has on the SWE domain. The SWE simulation near the shore is a full-
fledged physical simulation having all the favorable properties associated with
such approaches, such as high interactivity and accuracy.

Of the methods we tried, we have found that the most appealing results were
obtained by the method with least influence on the physical SWE solver. We have
speculated that this is because any changes that are externally applied on the
SWE domain are by their very nature introducing physically incorrect behavior
and inaccuracies into the simulation. We have formulated a hypothesis that the
less physical properties are changed in the transition between the methods, the
more physically correct the result will be, based on this observation.

We have also designed a LOD scheme applicable regardless of what methods
were used to generate the surface, defining and using a common data storage
method in the form of textures representing the height and normal data of the
resulting surface. We have taken an approach of deferring the combination of the
methods until the last possible moment, allowing us to use hardware tessellation.

Technologically, we have attempted to take advantage of modern technologies
such as Direct3D 11, Nvidia CUDA GPGPU computing toolkit and hardware
tessellation using domain and hull shaders, taking the extra time to learn these
technologies and methods in order to maximize the relevance of the result.

To conclude, we believe that our combination method has shown the potential
of the idea of combining the methods that were historically used separately into
one system. While the current version of our combination method and the pilot
application has some limitations, notably the inaccuracies when dealing with
diagonal wind directions and the low limit of grid size usable for real-time, we
have shown a list of future modifications that we would like to implement next
and that we believe should improve the system in these areas. In time, we see our
combination method evolving into a complex real-time system offering both the
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advantages of physical methods along with the Tessendorf large-scale capability.
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List of Definitions and
Abbreviations

FFT Fast Fourier Transform
NSE Navier Stokes Equations of fluid motion
SWE Shallow Water Equations
GPGPU computing General purpose graphics processing unit computing
AAA game Video-game with big budget and promotion, general-

ly funded by a distributor
LOD Level of Detail, used in context of various levels of

simulation and rendering
AABB Axis-aligned Bounding Box
DDS Direct Draw Surface
CUDA Compute Unified Device Architecture
MAC Marker and Cell, grid configuration used in space dis-

cretization of the NSE
JONSWAP Joint North Sea Wave Project, oceanographic spec-

trum
TMA Texel, Marson and Arsole, oceanographic spectrum
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Attachments

A. Structure of the accompanying CD

Following structure is used for organization of the CD included with this thesis:

• Binaries – Folder containing compiled binary files including content re-
sources and DLLs for easy deployment.

• Content – Folder containing example content data. This folder must be
copied to the application folder.

• DLLs – DLL files that must be present in the application root folder before
running.

• Source – Folder containg complete sources of the project.

• Thesis.pdf – The thesis itself, including technical documentation and appli-
cation requirements.

• readme.txt – A readme file

B. Application Requirements

The requirements for running the application are as follows:

• Intel i5 2500K or faster

• Nvidia GTX 760 or faster, including Direct3D 11 and CUDA support
(NOTE: the manufacturer of the GPU must be Nvidia, to enable CUDA).

• 4 GB RAM

• Newest CUDA and Nvidia GPU drivers

• Installed and configured Qt 5.2.1 x86 (may be bypassed in some cases by
using the enclosed DLLs)

• Windows 7 SP1 or newer

For compiling the application, additional requirements apply:

• Microsoft Visual Studio 2012

• Installed Windows SDK 8.0

• Installed CUDA SDK

• Installed Qt 5.2.1 x86 SDK

See the technical documentation section of the thesis for a guide on getting
these SDKs.
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