
Masaryk University

Faculty of Informatics

}w��������
��������������� !"#$%&'()+,-./012345<yA|
Inheritance of SOFA Components

Master Thesis

by
Tomáš Opluštil

supervised by
Prof. Ing. Frantǐsek Plášil, DrSc.

Brno, 2002

Acknowledgements

I would like to express my deepest thanks to my supervisor Prof. Ing. Frantǐsek
Plášil, DrSc., from Charles University in Prague, Czech Republic, who assigned
me the subject of this thesis and thus invited me to the world of the cutting-
-edge software engineering research and whose wise guidance supported by his
rich experience helped me not to lose my way in that world.

My warmest thanks go to Assoc. Prof. RNDr. Renata Ochranová, CSc., from
Masaryk University in Brno, Czech Republic, for her immense multilateral sup-
port and encouragement during the whole process of writing this thesis.

I would also like to thank Prof. Markku Sakkinen from University of Jyväskylä,
Finland, for his initial hints concerning inheritance in programming languages.

Declaration

I hereby declare that this master thesis has been written solely by me and that
all the sources I have used in this thesis have been explicitly cited and included
in the bibliographical references.

Brno, April 8th, 2002

i

Abstract

Component software construction has been a very intensively researched branch
of the nowadays software engineering discipline because it seems to be the best
answer to the increasing demands on complexity, reliability, maintainability and
configurability of software systems which is due to its ability to integrate all these
otherwise contradictory requirements. Therefore, a lot of component framework-
s have emerged recently, often as results of theoretical studies in this field.
SOFA/DCUP component model that has been founded and developed by the
Distributed Systems Research Group at Charles University in Prague belongs
to one of the most promising ones. This thesis contributes to this project by
analyzing the assets of incorporating inheritance into each of three main abstrac-
tions of the SOFA’s component specification language CDL, analyzing various
inheritance mechanisms how they suit needs of each of those three abstractions
and proposing and elaborating the particular inheritance mechanisms that suit
best. Also, some other issues concerning SOFA/DCUP, inheritance, program-
ming languages and component software have been discussed in this work.

Keywords

inheritance, SOFA/DCUP, component software, software specifications, archi-
tecture description languages, interface definition languages, object oriented pro-
gramming, programming languages, software engineering

ii

Contents

1 Introduction 1
1.1 The main goal of this thesis and its context 1
1.2 Structure of the rest of this thesis 2

1.2.1 General structure of the thesis 2
1.2.2 Structure of individual chapters 2

2 Analysis of the contemporary software engineering 4
2.1 Principles of software engineering and lessons from its evolution . 4

2.1.1 Software engineering as a computer science discipline . . . 4
2.1.2 Problems of the software lifecycle 5
2.1.3 Recent trends in software engineering 6

2.2 Object oriented programming — fundamentals 6
2.2.1 Object oriented programming: a revolution or an evolution? 6
2.2.2 Nature of the object oriented revolution 7
2.2.3 Class-based object oriented programming languages . . . 8
2.2.4 Object-based object oriented programming languages . . 8
2.2.5 Is object oriented programming worth using? 9

2.3 Component-based software development 10
2.3.1 Definition of software components 10
2.3.2 Motivation for component-based development 10
2.3.3 Specification of component design and component defini-

tion languages . 11
2.3.4 Component architectures 12
2.3.5 Software distribution and component deployment 12
2.3.6 Component assembly and component markets 13
2.3.7 Software versioning & updating 14
2.3.8 Software soundness and its verification 14
2.3.9 Levels of component specifications 15
2.3.10 Résumé of the component notion 15

3 Inheritance in OOPLs — an overview 16
3.1 Motivation for writing this overview 16
3.2 Why to use inheritance . 17

3.2.1 What is inheritance anyway 17
3.2.2 Troubles of inheritance usage 18

3.3 Taxonomies of inheritance . 18
3.3.1 Inheritance usage dichotomy 18
3.3.2 Conceptual modeling and inheritance 19

iii

3.3.3 Conceptual specialization and subtyping 20
3.3.4 Strict vs. nonstrict inheritance 20
3.3.5 Other inheritance taxonomies 21

3.4 Selected issues from techniques of implementing inheritance into
OOPLs . 22
3.4.1 Single vs. multiple inheritance 22
3.4.2 Delegation vs. concatenation 23
3.4.3 Ordered vs. unordered inheritance 23
3.4.4 Dynamic inheritance . 24
3.4.5 Selective inheritance . 24
3.4.6 Mixin inheritance . 24

3.5 Some consequences of this chapter for the inheritance in CDL . . 24

4 SOFA/DCUP framework — an overview 26
4.1 SOFA/DCUP — basic facts . 26

4.1.1 What is SOFA/DCUP component framework 26
4.1.2 Major goals of the SOFA/DCUP project 26

4.2 Component descriptions . 27
4.2.1 CDL and its motivation 27
4.2.2 The CDL basics . 27
4.2.3 CDL interfaces . 28
4.2.4 CDL template frames . 28
4.2.5 CDL template architectures 29

4.3 Behavior protocols in SOFA/DCUP 30
4.3.1 Basic concepts . 31
4.3.2 Particular protocols in SOFA/DCUP 31

4.4 Dynamic Component Updating 32
4.5 Implementation and deployment of the SOFA components 33
4.6 A CDL example . 34

4.6.1 Definition of services . 34
4.6.2 Distribution of services — raw component design 36
4.6.3 Making contracts — particular component design 37

5 Analysis of challenges 39
5.1 The primary objectives . 39

5.1.1 Summarization of preconditions 39
5.1.2 Main directions of the research to follow 40

5.2 General problems related to the solution 41
5.2.1 Problems of type definition 41
5.2.2 Problems of type equivalence 42
5.2.3 Problems of semantics . 43
5.2.4 Problems of subtypes . 44
5.2.5 Problems of protocol canonical form 46

6 Interfaces 47
6.1 Interfaces: basic facts . 47

6.1.1 Evolution . 47
6.1.2 Anatomy . 48
6.1.3 Additional features of interfaces 49

6.2 Inheritance of interfaces in SOFA 50

iv

6.2.1 Why interface inheritance is not straightforward 50
6.2.2 The value of interface inheritance for SOFA CDL 50
6.2.3 The price for addition of interface inheritance to the SOFA

CDL . 51
6.2.4 Interface inheritance aimed at protocol replacement . . . 52
6.2.5 Interface inheritance aimed at protocol modification . . . 54
6.2.6 Interface inheritance in general 56
6.2.7 Complete interface inheritance — the final form 57

7 Frame-level problems 59
7.1 Substitutability of SOFA components 59

7.1.1 Why we need substitutability 59
7.1.2 A simple subtype relation on frames 59
7.1.3 Roles of behavior protocols in substitutability 62

7.2 Inheritance of frames . 63
7.2.1 Inheritance as a pure frame composition — initial reasoning 63
7.2.2 Frame modification and its impact on architectures 64
7.2.3 Frame inheritance with independent provisions and re-

quirements handling . 64
7.2.4 Frame inheritance and frame protocols 66
7.2.5 Mixin inheritance and frames 67
7.2.6 The final proposal for the frame inheritance mechanism . 67

8 Architecture-level problems 70
8.1 Summarization of issues . 70

8.1.1 Substitutability . 70
8.1.2 Inheritance . 71

8.2 Connectivity and conformance of ties 71
8.2.1 Ties between interfaces in a strong subtype relation . . . 71

8.3 Inheritance of SOFA compound architectures 73
8.3.1 Architecture of SOFA architectures 73
8.3.2 Semiformal notation for architectures 73
8.3.3 Architecture inheritance concepts dichotomy 74
8.3.4 Inheritance of architectures of a single component 74
8.3.5 Sound cases of architecture modifications 75
8.3.6 Architecture inheritance across components 76
8.3.7 Architecture combination-based inheritance concepts . . . 77
8.3.8 Architecture combination-based inheritance proposal . . . 78
8.3.9 Architecture enrichment-based inheritance concepts . . . 78
8.3.10 The final proposal for the architecture inheritance mech-

anism . 79

9 Case study: components for passive electronic banking 81
9.1 Passive banking components example 81

9.1.1 The situation to be described 81
9.1.2 Some necessary interfaces 81
9.1.3 Frames for basic passive banking components 83
9.1.4 Using inheritance for combining the services of the passive

banking components . 83
9.1.5 Architecture descriptions of the passive banking components 84

v

9.1.6 Using inheritance for combining the architecture descrip-
tions of the passive banking components 85

9.1.7 Component templates and the inheritance 85

10 Evaluation and conclusion 86
10.1 Related work . 86
10.2 Future work . 87
10.3 Conclusion . 88

vi

Chapter 1

Introduction

There is nothing more difficult to take in hand, more perilous
to conduct or more uncertain in its success, than to take

the lead in the introduction of a new order of things.

— Niccolò Machiavelli (The Prince, 1513)

1.1 The main goal of this thesis and its context

In the last decade, we experience massive development in the area of the IT in-
dustry. The words like e-business, digital economy or e-government have become
buzz-words. Although it is mostly due to the vast progress in technologies and
related computer hardware and network capabilities, this progress necessarily
induces significant changes in the software engineering. Information technolo-
gies have been used in completely new areas by many thousand times more
people than only a decade ago. However, the demands on software systems are
commensurate. Now, sophisticated reliable software systems that fully support
security, dynamic reconfiguration and automatic updating, ensure quality of ser-
vices and take advantage of latest technologies and, at the same time, systems
that are developed quickly and maintainable easily, are demanded. People from
the software industry have been in a quest for the best answer to this challenge
and so far component technologies seem to be the optimal solution.

Several component models have been introduced but neither is fully sat-
isfiable yet and their development is still in progress. One of such component
models called SOFA/DCUP has been in development at the Department of Soft-
ware Engineering at the Charles University in Prague. This thesis can be viewed
as a small part of this effort. The part of this effort consists of analyzing issues
concerning usefulness and practical applicability of inheritance for the Software
Appliances (SOFA) Component Definition Language (CDL) abstractions.

This fact determines the nature of the whole work. We cannot start from
the scratch but we must at least roughly introduce the current situation in
the software engineering, the basic notions from the SOFA/DCUP component
model and basic facts about the inheritance in programming languages, mostly
object oriented.

1

1.2 Structure of the rest of this thesis

1.2.1 General structure of the thesis

Chapters two, three and four are kind of overview chapters that represent a very
important groundwork for our further research. They summarize basic knowl-
edge from the fields which essentially touch subjects of our further work and
they provide readers with the basic information without having to consult the
papers referred. The three main fields of study are as follows: contemporary soft-
ware engineering, inheritance in object oriented programming languages and the
SOFA/DCUP component model. These chapters are not necessarily comprehen-
sive and mostly represent the author’s view of these topics gained from bunch
of papers, however, they contain enough information to understand the rest of
this thesis.

Chapters five, six, seven and eight represent the core of this thesis. They
deal with various problems component systems bring and the chapters six to
eight are devoted to individual SOFA CDL abstractions and the elaboration
of the possibilities of incorporating inheritance into individual SOFA CDL ab-
stractions.

Chapters nine and ten are devoted to evaluations and conclusions.
From the readers’ viewpoint, chapters two, three and four represent compact

units that can be read independently and make sense per se. The remaining
chapters are not recommended to be read without having previously read the
first five chapters (without being really well acquaint with the problems present-
ed in those chapters). Moreover, these chapters are recommended to be read in
order they are written because readers can often find references to previous
parts of the work.

1.2.2 Structure of individual chapters

Chapter two will be devoted to looking back at development in the area of
software engineering, including the component technology. We will try to learn
lessons from history of software engineering and, in the following sections, we
focus on two main approaches in software engineering which seem to withstand
the demands of current fast development in the IT industry: the object oriented
approach and the component-based approach. Even though this chapter may
seem a bit off-topic, we do not recommend readers to skip it because it provides
us with basic trends and directions we should follow in this work and presents
concepts upon which nowadays software technologies rely.

Chapter three is devoted to the notion of inheritance in object oriented pro-
gramming languages. Readers can find there initial explanations of fundamental
theoretical and practical benefits and origins of inheritance followed by two main
sections: One is devoted to various classifications of inheritance from its usage
viewpoint and the other presents various inheritance mechanisms and their vari-
ations that can be used in object oriented programming languages and can be
useful for our thesis. An initial brief evaluation of the presented concepts and
mechanisms in the relation to the SOFA CDL is presented at the end of the
chapter.

Chapter four is devoted to the SOFA/DCUP component model. First, it
introduces fundamental concepts SOFA/DCUP component model is based on

2

and parts it consist of. The major part of this thesis is devoted to the SOFA
CDL, thus readers can get acquaint with the abstractions of SOFA CDL for
which the inheritance should be discussed and other related important things,
such as protocols. This chapter can provide readers with a very basic imagination
of other parts of the project, including Dynamic Component Updating and the
SOFA’s implementation and deployment facilities. At the end of this chapter,
an example how to create a component specification is shown.

Chapter five recapitulates the main objectives and a basic analysis of the
problems we are going to solve from the general viewpoint and, subsequently
some common aspects which are important to be clarified prior dealing with the
concrete problems or some other interesting topics somehow related to the field
of study are discussed. These common aspects include problems of types and
subtypes, problems of semantics, and also a problem o protocol canonical form
is sketched (however, not solved).

Chapter six presents the first and lowest-level abstraction of the three ones
for which we should discuss the inheritance: interfaces. First, the notion of in-
terfaces is introduced, subsequently various advantages and disadvantages of
implementing inheritance into this abstraction are discussed, followed by a pre-
sentation of various aspects of possible implementations of various inheritance
mechanisms. The chapter is concluded by some proposals what inheritance type
seems to be optimal, including some syntax proposals.

Chapter seven presents the second abstraction: component template frames.
First, problems of subtypes and substitutability are presented upon which we
introduce an example of how the formal representation of this abstraction could
look like. Then we discuss possible inheritance from many viewpoints, similar-
ly as in the previous chapter, and, also similarly as in the previous chapter,
some proposals what inheritance mechanism seems optimal and its syntax are
presented.

Chapter eight is devoted to the last abstraction we need to discuss the inhe-
ritance for: component template architectures. After a summarization of main
problem domains that are related to architectures, two main ones are elaborated:
substitutability of subcomponents in architectures and then issues concerning
inheritance in architectures are thoroughly discussed and the inheritance type
that seems optimal is proposed at the end of the chapter. Also some additional
problems are discussed and some additional concepts (problems of ties, initial
formalization of the architecture notion, etc.) are introduced during the elabo-
ration of these main task.

Chapter nine presents an example of specifying software components for
passive banking services. In this example, we take advantage of the proposed
inheritance mechanisms and show that the proposed concepts are viable.

The last chapter brings an evaluation of the current state of the work and
summarizes some further tasks that have to be finished in order to be the work
also practically useful, and research issues that have been initiated in this work
and should be further examined. We also briefly introduce related component
systems and highlight abilities or inabilities of incremental modification of their
abstractions. The conclusion is made at the end of the chapter.

3

Chapter 2

Analysis of the
contemporary software
engineering

Taken by and large, programmers are a rude, irritable, intolerant,
arrogant, insufferable, prejudicial and bigoted lot.

— Dr. Stenley Gill, pioneer of computing

2.1 Principles of software engineering
and lessons from its evolution

Computer science has been undoubtedly the most evolving (and exciting) do-
main of human endeavor for the last fifty years. There is hardly any scientific
area that led in such a short time to so many achievements in both theoretical
and practical fields and whose results changed the face of the world so dramat-
ically.

To understand the objective of this master thesis, we need to look back at the
development in a subdomain of computer science called software engineering,
which is not an exception in the sense of development rapidity mentioned in the
previous paragraph.

2.1.1 Software engineering
as a computer science discipline

Software engineering is quite an empirical discipline. As stated in [Kral–98] or
[KraDem–91], the primary aim of software engineering is to find modus operandi
in creating software of demanded properties and quality and managing the
pieces of software as workable software systems. Proposals for effective methods
concerning software should come out of knowledge of three aspects: hardware,
technological know-how and workflow management (rules of team cooperations,
documentation creation standards, etc.). It is important especially in case of
large-scale enterprise software systems, where demands for security, reliability,

4

efficiency, etc. are very high. Therefore, the whole lifecycle of those software
systems should be controlled and preferably handled in a standardized way to
minimize the risks of failure (in any form). This all brings the development of
large-scale software systems closer to other engineering areas which also deal
with problems of lifecycle phases, quality management, etc. By the way, this
fact is reflected even in the terminology used: for example software architecture
obviously originates in terminology of civil engineering.

2.1.2 Problems of the software lifecycle

The software lifecycle comprises a lot of individual phases, starting with the
phase of analysis of business needs of the organization for which the software
is to be developed, through the software creation itself to the maintenance of
working systems and monitoring the needs of their replacement with new ones.
It is important to realize that the proposed methods, in addition to trying to
automate and standardize as many activities as possible, should also facilitate
the transitions between the individual software lifecycle phases. For dozens of
obvious reasons it is desirable to make the transitions “invisible” (the downside
of the opposite will be shown in next paragraphs).

As we look through the history of software engineering (for example in
[RiSoch–94]), we can find out that individual phases of software development
were often dealt with separately. It all began in the late sixties with the dis-
cussions concerning basic methodologies of software development e.g. top-down
programming, continued with discussions concerning structural programming
and the appropriateness of “goto” and “goto-less” programs in the early seven-
ties, consecutively focusing on the possibilities of verification of software sound-
ness in middle seventies, to return back to the early phases of software lifecycle
discussing how to design and specify pieces of software before they are going
to be programmed (which resulted in modular decomposition, structure charts,
etc).

Naturally, the goal of reaching fine transitions between the individual lifecy-
cle phases and thus advancing on the goal of reducing possible risks associated
with software, could not be achieved this way. To show the consequences, let’s
discuss the case of two important phases of the software lifecycle: software anal-
ysis & design1 and software programming2:

For many years, they had been representing two very different areas with
their own abstractions that had nothing in common except for the fact that the
piece of software had to be programmed according to the specifications obtained
from the analysis & design phase. This fact had a lot of inherent drawbacks:
First, there were different people with their own — in the terminology used in
[Stanic–99] — ideal worlds in their heads working on each of the phases, which
often led to misunderstanding and inconsistencies during the transformation of
the design phase abstractions to the abstractions of the selected programming
language. Second, since the transformation had to be done by hands, it was
slow, and, since a technique called waterfall3(see e.g. [Kral–98]) was the major

1in a closer look, analysis and design are two disticnt phases but for now, we will consider
them as one

2often called coding
3which also has this consequence: once your design specifications are not correct, all other

phases will be useless

5

technique of software development, and, moreover, the software was developed
ad hoc and at once, it was totally inflexible. Such a way of development was, of
course, also expensive and the final software system was very hard to maintain.

2.1.3 Recent trends in software engineering

Meanwhile, along with the rapid development of hardware capabilities, the de-
mands for software capabilities had been increasing and thus software became
larger and larger, which naturally led to bigger demands on efficiency of soft-
ware development and maintenance process. Fortunately, as we have already
mentioned, software engineering can take advantage of hardware advances (and
also workflow management improvements) as-well and thus some first tools, so
called CASEs4, were devised in the early eighties to support software design-
ers’ task to design the software specifications and also (a bit later) IDEs5 to
support developers’ task to implement these specifications. However, since o-
riginally each of these two types of tools focused solely on its own task, which
undoubtedly helped to increase the speed and the quality of these two phases as
such, the transition between them remained still quite coarse and error-prone.
Obviously, a more unified view was needed and object oriented programming
was the first step following this concept.

2.2 Object oriented programming
— fundamentals

Object oriented programming — a topic about which thousands of pages have
been written and other thousands are yet to be written. Therefore, we will focus
merely on main OOP aspects that are significant for better understanding of
concepts we will deal with further in this thesis.

2.2.1 Object oriented programming:
a revolution or an evolution?

Object oriented style of programming is quite an old programming paradigm,
in fact, much older than the first CASEs a IDEs mentioned in the previous
section. Its origins date back to late sixties of the twentienth century when
Simula 67 — the first programming language with object oriented features —
was invented to solve simulation (model building) problems. The need for such
a language originally arose from the need to model objects of the real world
(i.e. physical systems) using some software abstractions. Simula’s main concepts
were further refined in Smalltalk where this approach was originally meant as a
pedagogical tool. But it took two more decades before commercially successful
languages with object oriented features — such as C++, Object Pascal or Java
— appeared and, together with even more recently adopted object oriented
methods of analysis & design of which Unified Modeling Language (UML) is

4which is an acronym for Computer Aided Software Engineering
5which is, in this case, an acronym for Integrated Development Environment

6

the best known, caused the boom of object oriented systems, we experience
today.

As for the question from this subsection’s title: If we have a look at those
commercially successful object oriented languages like C++ or Object Pascal,
the answer is seemingly simple: those languages were in an evolutionary process
derived from C or Pascal, respectively, by adding some new object oriented
features to the language syntax. Programmers are free to decide whether or
not to use these features and even about the extent of their usage6. Such a
reality is in our opinion the real danger to the proper understanding of object
oriented programming because, in our opinion, the object oriented approach to
programming definitely is a revolution, despite the fact that it is often considered
as an evolution only. Now, we will explain why.

2.2.2 Nature of the object oriented revolution

The object oriented programming is often characterized as programming with
taxonomically organized data (e.g. [Meyer–97]), which expresses the fact that
data-centric decompositions of programs are involved, unlike formerly used
action-centric procedural decompositions (as presented in e.g. [Ochran–79]). Ac-
cording to the way data are handled, two main types of OOPLs can be recog-
nized: class-based languages and object-based languages. We will explain those
two notions further in this chapter.

We should notice that this represents the first real attempt to create a link
between the software analysis & design on the one hand and the software pro-
gramming on the other. We should also realize that for the full use of the object
oriented approach, following two conditions are necessary to be satisfied:

1. A programmer must analyze and design the given problem in the object
oriented way.

2. A programming language which has a syntactic support for object oriented
features (abstractions) must be used.

This fact is very clearly documented in the comparison in [OchKoz–93], where
a single problem is solved by three approaches: the procedural one, the object
oriented design only approach and the approach where full object oriented design
plus object language features are involved. Let’s examine the two items: If the
former condition is satisfied only, it is still better for larger systems than when
neither of these is satisfied. For instance, the whole first version of Windows
NT was programmed this way. If the latter condition is satisfied only, then it
is a gross misuse of such an object oriented language because it breaks the
rules of object oriented programming, confuses readers of such a program and
brings more troubles than benefits. Unfortunately, the author of this master
thesis has gained a lot of experience with such programs during his teaching in
introductory object oriented programming seminars.

We can conclude that the fact that you have to think in a completely different
way while creating a real object oriented program (often based upon construc-
tions from procedural languages) is the heart of the matter. The revolution

6of course, there are dozens of experimental OOPLs that force programmers to programm
in the object oriented way but they have kind of little impact outside the academic community

7

involves a completely new approach to programming. Researchers in object ori-
ented field indeed realized this fact as-well and, as emphasized by Prof. Niklaus
Wirth on the occasion of his being awarded honoris causa at Masaryk University
in 1999, the researchers tried to avoid possible misunderstanding by completely
changing the terminology for well-known abstractions from procedural program-
ming (e.g. “procedure call” was renamed as “message despatch”, etc.). But it
did not help much for languages derived from procedural ones mentioned above.
Java, as the third commercially successful OOPL, changed this fact a bit be-
cause it was developed from scratch, however, not all programmers use Java
(especially for its slowness given by its implementation design for the needs of
Internet applications7).

2.2.3 Class-based object oriented programming languages

Class-based languages form the mainstream of object oriented programming.
They are based on the old Aristotle idea of classifing things into categories.
Every class consists of individual things (objects) of the same category. And
that is how class-based languages work: there is an abstraction referred to as
a class which describes a structure (i.e. particularly characteristic features) of
individual concrete objects which can be created (instantiated) from that class.
Therefore, such objects are often refered to as instances of a class. In a bit
different view, each instance (of a class) is characterized by its state which
must be compatible with its mother class specifications but different instances
of the same class can be found at the same time in different states (but, again,
these states must be allowed by the class description). In the terminology of
programming languages, a class is a type and individual objects (instances) of
such a class are variables of that type. The question of types in object oriented
programming languages will also be mentioned in subsection 5.2.1 on page 41.

2.2.4 Object-based object oriented programming languages

Object-based languages represent the more recent and more gradually evolving
part of the object oriented dichotomy. Their main advantages over class-based
languages are simplicity and flexibility. Thus, they represent the response to
the calls of occasional programmers to simplify object oriented programming.
Their characteristic feature is that object-based languages do not have classes
but just simple full-fledged objects. Programmers do not design descriptions
first (classes) and then instantiate them but they just create true objects. In
most object-based languages, every object can serve as a prototype for the cre-
ation of its clones. Such clones can be further modified (each separately). As
pointed out in [CardAb–96], since object-based languages originated in Lisp and
artificial intelligence community, little attention was devoted to creating typed
object-based languages. Therefore, most object based languages are very simple
supporting only the notions of objects and dynamic dispatch; when typed, they
support only object type, subtyping and subsumption8.

From these facts we can conclude that object-based languages are not much
suitable for programming in large, because they lose most advantages appreciat-

7most compilers compile so called bytecode for the Java virtual machine which is subse-
quently interpreted by a Java run-time specific for a particular platform

8we will explain the notions of subtyping and subsumption in 5.2.4 on page 44

8

ed by enterprise, such as reliability, maintainability, and also the interconnection
between the design phase and the implementation phase is limited. Therefore,
most object-based programming languages are valuable only for their theoretical
aspects (e.g. Emerald, Cecil, Omega, Kevo and Self)9. And, since the above men-
tioned properties are considered as essential for the object oriented approach,
some researchers reject object-based languages. For example, Prof. Sakkinen in
[Sakkin–89] claims that to reject classes is to throw the child out with the wash.

In this study, we will take into consideration some interesting inheritance
principles of object-based languages, however, as the nature and purpose of
component systems are much closer to the class-based object oriented languages,
we will not deal with object-based languages anymore.

2.2.5 Is object oriented programming worth using?

We have talked about a new approach to programming, etc. so far, but is this
style really worth using in the real software construction? Well, we think that
in a serious software creation, if it is done well, then definitely yes10. A lot
of books have been written about this matter, e.g. [Meyer–95] is a good one
which deals with the assets of the object oriented approach for enterprise. Now,
we will briefly bring some of them out: The central motto of object oriented
programming is: If you think writing software is difficult, try rewriting software.
The object oriented approach allows us to

• make software analysis, design and implementation seamless

• make better software architectures11

• make programs which more closely correspond to reality (thanks to object
oriented modeling (from the design point of view) and polymorphism (from
the implementation point of view)

• make programs transparent and readable (thanks to coherent design and
the selfishness principle: Tell me not what you are; tell me what you can
do for me!)

• make software extendable and open (by involving inheritance and dynamic
binding)

• make and modify software with a lesser effort

These things altogether make, for serious software usage, software more reliable
(less error-prone, ...) more reusable, more portable, cheaper to maintain and
bring a lot of other benefits.

Of course, while programming “in small”, the need for the initial good de-
sign is something occasional programmers cannot overcome, therefore they often
choose to create their programs procedurally. But this fact cannot degrade the
value of object oriented programming in the eyes of professional programmers.
However, there is still a place for improvements, especially as for the even better

9although e.g. Self is supported by such a big corporation as Sun Microsystems
10especially using class-based languages, see next subsections
11from [Meyer–95]: architecture is an organization to coherent pieces and description of how

these pieces interact with each other

9

cooperation between the design and the implementation phases and the distri-
bution of very large software systems deploying pieces of a system on various
places over the net. These are the main aspects the component based approach
promises to solve.

2.3 Component-based software development

This is a kind of paradoxical situation with component-based development: it
is a much more evolutionary (than revolutionary) step from the object oriented
approach, compared with the case of the relation between the procedural and
the object oriented approaches described above, but it is not essential to use
any object oriented programming language as the underlying technology.

This section, in which we will try to outline the main facts about and princi-
ples of the component software construction, should provide us with the answer
of how this is possible, and it should also mention other things relevant to further
progress of this thesis.

2.3.1 Definition of software components

Component based development is a matter of the last decade; therefore, this
area has been intensively studied and definitions refined. However, let’s cite a
widely accepted and exact enough definition of the component (from Workshop
on Component-Oriented Programming at ECOOP 1996):

A software component is a unit of composition with contractually specified in-
terfaces and only explicit context dependencies. Such a software component can
be deployed independently and it is a subject of composition by third parties

A software system consists of a set of such independently deployed components
which communicate in order to be able to provide intended functionality.

As you could notice, only interfaces (with operations) are mentioned in the
component definition. This is one point, where the concept of components ra-
dically differs from the concept of objects. As we stated in subsection 2.2.3, a
key characteristic of objects is that they have states (given by values of their
member variables). However, since components are determined by their services,
they do not have states. This complication will be discussed later.

2.3.2 Motivation for component-based development

As mentioned at the end of the previous section, even the object oriented ap-
proach gasps while facing the demands of contemporary intricate software sys-
tems. Let’s enumerate several major aspects that ought to be improved over the
object oriented approach:

1. Reuse of not only source code but also complete binary software pieces.

2. Better utilization of hardware power; including utilization of computer
networks.

3. Better verification of software soundness and thus improving reliability.

4. Better flexibility in changing and updating software configurations.

10

These targets require some technological and structural requirements to be met.
We will describe them in the next subsections.

Before we proceed, let’s briefly mention three, a bit more specific, arguments
why to use components introduced by Clemens Szypeski in [Szyper–00].

1. Baseline argument: combining of self-created strategic components with
general-purpose third party components, perhaps even bought as off-the-
shelf ones.

2. Enterprise argument: by skillful component factoring, several product lines
can be covered by configuring a core set of components plus some specific
ones. Product creation is thus based on a specific component configuration
and can be controlled by versioning.

3. Dynamic computing argument: Modern software systems challenge grow-
ing set of content types to be processed. Well designed systems can be
dynamically extended (and upgraded) to meet the new requirements.

However, there can be hundreds of arguments found why to use components
for particular solutions and we presented the three of them as exemplary ones
only. Therefore, as promised, those more general goals above are going to be
examined further.

2.3.3 Specification of component design
and component definition languages

Component-based software creation makes a step backwards and strictly sepa-
rates the design (specification) phase and the programming (implementation)
phase, albeit on a new evolutionary level. This allows us to specify software de-
sign more precisely, consider software pieces independently on a programming
language and shift most work (from functional apportionment to verification)
onto the specification side, thus setting a base for better flexibility and reliability
of software.

Therefore, a special new type of programming languages, so called specifica-
tion languages or definition languages must be established. Their characteristic
feature is that they are not compiled to a binary executable form because no
implementation is involved. You can (a bit inaccurately) imagine this like taking
a program structure skeleton plus formalized replacement of informal comments
and plain text descriptions, enriched with dozens of new features. Such languages
are used for lots of purposes, e.g. functionality layout, architecture description,
soundness verification, etc.

The idea of such languages is not completely new; they are mostly based
on, mostly single-purposed languages used in particular cases earlier. As for
some examples, software specification languages include Z, OBJ or Vienna De-
velopment Method. Languages used to specify communication protocols include
Language of Temporal Ordering Specifications, Estelle, Process Meta Language,
or Specification and description language. However, the best known specifica-
tion languages are Interface Definition Languages (IDLs) used in CORBA or
COM12. We will show usage and possibilities of one such particular language

12all these notions will be explained later

11

(called Component Description Language, or CDL for short) in Chapter 4 while
introducing SOFA/DCUP Component Model.

2.3.4 Component architectures

While describing a particular component framework, it is important to describe
its architecture. As mentioned earlier, architecture is a specification of the com-
ponents of the system and communication between them. As emphasized in
[LuVeMe–00], such an architecture guarantees certain behavioral properties of
conforming systems and can be a powerful tool which is to aid the process of
predicting behavior of the system with that architecture, managing the con-
struction of such a system and maintaining it.

In other words (with a bit of simplification): We have a set of component
descriptions and we want to describe how they communicate. In most cases, this
goal is achieved by determining what services a component provides and what
services it requires from the external environment to be able to provide them.
And while projecting a component system, we have to describe links between a
required service of one component and a conforming provided service of another.
It may seem simple but it is not. We can call this a service connection or, in
the terminology of SOFA/DCUP component model, a tie. Such a tie has to be
correct (or sound). What it means: you can notice that we did not use the word
“corresponding” but “conforming” several lines above. To express the nature
of this notion, let’s borrow the general definition from [LuVeMe–00] again: If
the contstraints of two components connected by a service connection together
are sufficient to ensure that the constraints given in the service definition are
satisfied, then the connection is correct. In other words (a bit simplified again):
in such a connection, an involved service of the component that provides the
given service can have at least the same and possibly better capabilities than
what is actually required from the service by the component on the requirement
side of the connection. This is, of course, much complicated and it might cause
troubles while deliberating the architecture inheritance further in this thesis.

Such architecture descriptions are created in special Architecture Definition
Languages (or ADLs for short). There are a lot of architecture types, even
hierarchical (so called multi-tier) ones, and similarly a lot of ADLs. We will
show the usage of a particular ADL while describing the SOFA/DCUP’s CDL
in Chapter 4, which can be viewed as an ADL as-well.

2.3.5 Software distribution and component deployment

Another important point in the goals of contemporary software engineering was
the better utilization of hardware, including computer networks. The solution
of this goal is an inherent feature of the component-based software because
one of software components’ characteristic features is that they are units of
independent deployment.

Thus, we have binary components that are deployed somewhere on a given
computer or across a network. However, we need low-level connection standards
and facilities “in the middle” to locate such components, find if they are appro-
priate or assist the software system functionality in another way. Therefore, some
middleware systems had to be developed to accomplish this task. Component
models are equipped with such middleware systems. OMG CORBA, Microsoft

12

COM/DCOM/COM+ or Sun EJB can be mentioned as the best known. Such
models include not only type repositories and interoperability facilities, but
often even transaction monitors, load balancing mechanisms and other things
necessary for reasonable software distribution and hardware utilization.

With the component design and deployment another issue that has a great
importance for this thesis is connected: the weight of components. One of the
main reasons why software is divided into components is that we do not want
heavy-weighted software that is cumbersome, hard to maintain and update, un-
necessarily repeated (due to its self-containment and — as termed by C. Szyper-
ski — “introversion”). The inherently distributed component software offers a
good solution. However, inapt component design could negate this advantage.
Therefore, it is essential to pay attention to commonsensical separation of func-
tionalities into individual software components. We will discuss this problem in
the chapters devoted to finding optimal solution of the component inheritance
problems.

2.3.6 Component assembly and component markets

Component-based software construction allows changes even in such nontech-
nical aspects as forms of software marketing and trading. There are supposed
to be lots of prefabricated off-the-shelf components from various vendors that
could be, provided good specifications are available and after checking their
compatibility, assembled into larger systems. This task can be done by assem-
blers that are independent on component vendors and component system users.
Such a system could be subsequently distributed across the net according to the
demands of the contractor.

The working models of such component trading have not been established
yet, however, it is obvious that the component trading would help the software
reuse (even at the binary level), which is a very important issue because, if we
look at the composition of typical applications, they often use a great deal of
the same procedures and techniques. If such a code is reused, it is done mostly
in a form of libraries, the procedures from which are used in the source code
of the given application. But assembling the binary forms of the code would
be much easier. Moreover, great possibilities of reuse are apparent even on a
higher level of software construction: As emphasized in [Stanic–99], function-
al decomposition of a typical organization is always the same — finance and
accounting, human resources management, material possession, marketing and
trading and a primary process; with only the primary process significantly d-
iffering depending on individual organizations. This can also be achieved by
component composition (see the baseline argument in subsection 2.3.2).

By now, we can meet component assembly in quite primitive forms of visual
assembly of classes written in a standardized manner. Such visual assembly
capabilities are incorporated in various development environments (e.g. Visual
Component Library by Borland into Delphi or C++Builder or JavaBeans by
Sun into several development environments for Java). Despite the primitiveness
of such a visual assembly, we can find dozens of electronic marketplaces over
the Internet, where VCLs, JavaBeans, or ActiveX components are traded, that’s
why we presume that such a concept is not an utopian vision but a viable form
of software trading in the near future.

13

2.3.7 Software versioning & updating

Another commendable property of software components is their flexibility. When
we have a good component model (like SOFA/DCUP13), updating and changing
configuration of even running applications is quite easy and it is supposed to
be quite a frequent task. This fact has to be taken into consideration when
deliberating the inheritance problems further in this study.

However, while replacing one component with another, it is always necessary
to be sure that the involved components are compatible to preserve configuration
consistency. Besides their behavioral compliance automatically detectable from
behavioral protocols of such components (see next subsection), it is felicitous to
have a standardized way to keep track of changes, which would support auto-
matic analysis of their compatibility — e.g. by properly used revision numbers.
Attempts to introduce such a version identification system for SOFA/DCUP
component model are described in [Brada–99] and [Brada–00].

2.3.8 Software soundness and its verification

The way of creating software introduced by a component based approach, i.e.
starting with designing a precise specification of components themselves and
also their particular architecture, brings another advantage: better verification
of correctness of large software systems because this process occurs mostly on
the specification level as well.

An absolutely precise description of software and its semantics is utterly
essential for all serious software systems, especially mission critical ones. Unfor-
tunately, just this aspect of software construction has been the sticking point of
software engineering for a long time. This fact is given in [CicRot–99] (originally
discussed in [MeyJez–97]) remarking that inadequate specification of reusable
software can result in a disaster which is backed up by the case of the launch
of the $500 million rocket Ariane 5 in 1996, where a code that was originally
intended to convert a number less than 216 from a 64-bit floating point to a
16-bit unsigned integer, was applied to a greater number, causing the software
(and the rocket) to crash.

There are quite a lot of approaches to the problem of bringing better seman-
tics description. As stressed in [PlaVis–02], even the very practical UML offers
a semi-formal way how to describe software semantics and communication na-
ture of objects: UML collaboration, interaction and state diagrams. Another
approach termed design by contract originally introduced in [Meyer–87] and
used in Eiffel, consists mostly of assertions, constraints of individual features,
etc. Now, it is quite quickly evolving under the name of Behavioral specification.

Another approach that is more interesting for us because it is used in the
SOFA/DCUP component model, is using behavior protocols. The idea of be-
havior protocols is not new in the field of communicating systems (they are
mostly based on Hoare’s CSP or Milner’s CCS), however, applying them in the
field of component based development changes their role and they prove to be
very important in the task of keeping component-based systems consistency.
For the examples of such languages, check page 11. Every component has its
protocol and there must be a way how to decide, comparing those protocols,
whether such components are compatible. Unlike most such protocol languages,

13DCUP means Dynamic Component Updating

14

SOFA/DCUP uses behavioral protocols based on regular-like expressions and
defines a special type of protocols for every abstraction of that component mod-
el and rules for the conformance of respective protocols. We will present this
protocol in section 4.3 and discuss it throughout the study because we have to
keep track of behavior protocols behavior in inheritance mechanisms that are
to be proposed.

2.3.9 Levels of component specifications

When considering the practical aspects of component usage, some problems with
the component specification appear. Except for a dispute if binary components
should be created from the precise component specification only or if it is ap-
propriate to allow adding of these specification to the existing software pieces
ex-post to maximize the code reuse and accelerate bringing the component way
of programming into the real life, there is a problem that is pointed out and
further discussed in [Mencl–01].

In brief, it claims that specifications can be used either as means of the
application design (termed design specifications) or as descriptions of ready-to-
use software components for the purposes of using the components (termed use-
specificition). That’s because a specification deep enough to decide reliability
would be costly in terms of human resources and, besides, vendors might not
often be interested in releasing detailed specification, and thus opening their
products completely. The thesis concludes that optimal component model should
support multiple levels of depth of component specifications.

This problem is presented here as another example of problems to be solved
before component-based development can be fully accepted. However, for now,
we will not consider this complication in this thesis anymore.

2.3.10 Résumé of the component notion

Although not revolutionary, components represent a promising concept that
appears to heal most sores that are placed before contemporary software engi-
neering in forms of increasing demands on complexity and reliability of software.
A lot of positive properties that are inherent to components (provide higher lev-
el of abstraction, are flexible when updating and configuring, allow reuse on the
binary level, allow precise specification and verification of such a specification),
speak clearly for their bright future.

However, readers should be aware that software component technologies are
still emerging. It implies that this field is not standardized enough yet and that
there are quite a lot of competing concepts, component models and component-
related products; however, except CORBA3, EJB and COM/DCOM/COM+,
most are only academic. Likewise some basic conceptual questions have been
still discussed; this includes ways of trading components, even better semantic
description of components and architectures, specification levels. This work is
affected by this fact as-well.

Anyway, only the best ones (or, unfortunately, those who will be supported
by most powerful corporations) will be allowed to survive. This thesis should
help the SOFA/DCUP component model (introduced in Chapter 4) to be among
the survivors.

15

Chapter 3

Inheritance in OOPLs
— an overview

If I have seen a little farther
than others, it is because I have
stood on the shoulders of giants.

— Isaac Newton

3.1 Motivation for writing this overview

We argue for the fact that the idea of writing an consistent overview together
with some reasoning concerning the issues of inheritance in object oriented pro-
gramming languages is a very important and beneficial deed for further progress
in this thesis because the proposals for the inheritance in SOFA should be based
on a good knowledge of the inheritance mechanisms used in current languages.
Moreover, compared to the number of papers from other areas of object oriented
programming, the inheritance has been quite marginalized and there are known
only inheritance concepts used in commercially successful languages like Object
Pascal, C++ or Java among the wide programmers community.

Therefore, instead of cutting this notion to pieces and introducing individual
pieces when deliberating individual inheritance mechanisms for SOFA abstrac-
tions, we have decided to devote this chapter to bringing a consistent overview
of inheritance. Moreover, we try to compose this chapter in such a way that it
should be useful separately from the rest of the thesis.

We will use three main resources for writing this overview: [Sakkin–89],
[Taival–96] and two large chapters devoted to inheritance in [Meyer–97]. Since
this overview will be far from being as exhausting as those resources are and
since we will omit some basic (often language-specific) issues (such as a specific
terminology, etc.), we recommend to readers seriously interested in this topic to
get that articles and read them right through.

16

3.2 Why to use inheritance

3.2.1 What is inheritance anyway

Inheritance has been one of the pillars of object oriented programming since its
very beginning, albeit there is a general acceptance that several other properties
of object oriented programming are regarded as more important. Single inheri-
tance is well defined already in the first language with object oriented features
— Simula 67 — although it is used under the name concatenation or prefix-
ing. A lot of particular OOPLs use their own synonyms for inheritance (except
prefixing also derivation, subclassing or subtyping, etc.), however, in fact, such
names often represent only special forms of inheritance which are implemented
in the particular languages (for example, we cannot say that subclassing is equal
to inheritance).

The term inheritance is an apposite word because its meaning in object
oriented languages is very close to its intuitive meaning, albeit, as M. Sakkinen
remarks in [Sakkin–89], there seem to be no common definition of inheritance:
even in the ordinary meaning there are many kinds of inheritance, at least
biological, juridical and cultural with each of them having completely different
rules.

However, we try to come from a general definition of the word inherit:
To inherit is to receive properties or characteristics of another, normally as a
result of some special relationship between the giver and the receiver.

From this definition we can clearly deduce several simple things that are
important to realize when both, using inheritance in programming languages
and trying to find a proper inheritance mechanism:

• the inheritance is a tool for an incremental creation of new entities based
upon old ones

• we have to find characteristic properties that will be the subjects of the
inheritance

• the giver and the receiver should not come from much different areas
because they share some characteristics

• the inheritance is about finding a proper relation between givers and re-
ceivers

Another important matter to realize for our further deliberations is that,
in general, inheritance is not an independent language feature, but it usually
operates with tight interaction with other language mechanisms.

To summarize this topic, let’s present a delimitation of inheritance in pro-
gramming languages that can be found in [Taival–96]:

Inheritance is a facility for differential or incremental programming because it
allows newly created objects to be based upon existing ones — only those prop-
erties that differ from the properties of the original object need to be declared
explicitly, while the others are automatically extracted from the existing ones.

17

3.2.2 Troubles of inheritance usage

It is not trouble-free to use inheritance even in the OOP, despite it has been
used in OOP for quite a long time and a lot of experience has been gained.

The reasons follow not only from the great amount of particular inheritance
mechanisms but also from the fact that it is used for creating new entities in
many different situations for many particular purposes; unfortunately, often in
a wrong way.

For example, as stressed in [Sakkin–89], there is too much use of inheri-
tance in object-oriented programming because programmers sometimes apply
inheritance when plain aggregation would be more suitable.

We will devote next sections to classifications of cases of inheritance usage,
inheritance forms and inheritance mechanisms to better understand the inhe-
ritance notion in both its usage and its application in the area of component
systems.

3.3 Taxonomies of inheritance

3.3.1 Inheritance usage dichotomy

There can be recognized a basic dichotomy in usage of inheritance. Various
researchers label this dichotomy in various ways. For example, M. Sakkinen
terms it, following the Aristotlean tradition of dividing things into essential
and accidental, the essential (use of) inheritance and the accidental (use of)
inheritance, other researchers name it according to purposes it is used for as
inheritance for conceptual modeling and inheritance for convenience. Generally,
the former can be viewed as a specification inheritance and the latter as a
implementation inheritance

However, the terminologies are not fully equivalent, so let us discuss their
relation: Inheritance of implementation only is always incidental. Inheritance
of specification is essential, whether implementation is inherited also or not.
Let’s present an interpretation proposed by Ian Holland: Incidental inheritance
seems to appear as a result of software engineering and program design. Essential
inheritance occurs as a result of domain analysis and system design.

Thus, essential inheritance is more important for the software maintainabili-
ty and its design at all, but the accidental inheritance is used for the convenience
of software programmers.

Not considering these two conceptions can result in many misunderstand-
ings. As an example, let’s present the case of ellipse-circle inheritance relation.
As claimed in [Meyer–97], when introducing the concept of restriction inheritan-
ce, which is a form of conceptual specialization1, to follow the rules of restriction
inheritance, the circle should inherit from the ellipse because circles have prop-
erties of ellipses (i.e. a circle is a special type of an ellipse) but circles have
the extra property that both focuses of ellipses are at the same point in circles.
However, often we can find a usage of inheritance done ”for convenience”, in
case of which the inheritance is quite opposite: ellipses inherit from circles by
adding the second focus as a new data field.

1see next sections for the discussion about conceptual specialization

18

Generally, essential and accidental inheritance can be done using the inhe-
ritance mechanism which a particular language possesses. As an curiosity, the
difference between the views of inheriting specification (behavior) and imple-
mentation was mentioned several times at ECOOP’88, often saying the former
to be typical European and the latter typically American, which, in our opinion,
corresponds to the widely believed American preference of pragmatism.

However, as for specification and implementation inheritances as such, some
limitations follow from the nature of particular languages. For example, specifi-
cation languages (among which IDLs including CDL belong), from their nature,
cannot take advantages of some widely used implementation inheritance con-
cepts, e.g. subclassing and related polymorphism (this issue is also presented in
subsection 5.2.4 when discussing subsumption). Since the subclassing is quite
widely used, inability to consider it can reduce the importance of proposed in-
heritance.

3.3.2 Conceptual modeling and inheritance

As we have already said, conceptual modeling belongs to the essential purposes
of the inheritance concept and it is often done during the phase of designing soft-
ware specifications. We can use it for modeling the correspondence relationships
between the program and the problem domain (for which purpose the original
Simula 67 was developed). Therefore, the inheritance was initially introduced
to represent certain kinds of modeling relationships.

Let’s present a more precise definition used in [Taival–96]: conceptual model-
ing is defined as a process of organizing our knowledge of an application domain
into hierarchical rankings or orderings of abstractions, in order to obtain a better
understanding of the phenomena in concern.

Various object oriented languages provide various abstraction principles for
conceptual modeling. Let’s itemize some of important abstraction principles
provided by most languages as described in [Taival–96]:

Classification/instantiation — grouping like things together into classes or cat-
egories over which uniform conditions hold. Classes should share at least
one such characteristic that others do not have.
Example: individual concrete cars (instances) can be grouped to a class
car that has properties characteristic for all cars.

Aggregation/decomposition — treating collection of concepts as single higher-
level concepts, so called aggregates. Aggregation means creating part-whole
hierarchies. Practically it is accomplished by using objects as variables in
other objects.
Example: a car (a whole) consists of a chassis, a body, an engine, etc.
(parts); the body (a whole in this case) of doors and a hood, etc.

Generalization/specialization — a concept Cs can be regarded as a special-
ization of concept C, if all phenomena belonging to the extension of the
specialized concept Cs also belong to the extension of C; i.e. C a Cs are
otherwise similar, but Cs may also possess some additional, more specific
properties.
Generalization, on the other hand, captures the commonalities but sup-
presses some of the detailed differences.

19

The specialization — allowing new concepts to be derived from less specific
classes — has traditionally been considered as a different view of inheri-
tance; however, it has been recently observed that relationship between
inheritance and specialization may be confusing.
Example: a sedan is a specific car, the car is a specific vehicle, the vehicle
is a specific product, etc.

Grouping/individualization — also known as association, partitioning or cover
aggregation. It is used for creating possibly non-homogenous collections
of things related by their extensional rather than intensional properties.
Practically it is enabled by allowing definition of collection classes such as
lists, sets, bags and dictionaries.
Example: my car and Bob’s car are white therefore are grouped to White-
Cars, etc.

3.3.3 Conceptual specialization and subtyping

The generalization/specification is the abstraction principle which is relevant
for the inheritance. It expresses the well-known is a relationship (compare to
the has a relationship which expresses the nature of the aggregation principle).

There are various inheritance forms suitable for usage in the case we want
to express the conceptual specialization. The most important representative
of mechanisms which can be used to express the conceptual specialization on
the specification level is subtyping (some people even consider subtyping as a
synonym for the specification inheritance). In fact, in most commercial OOPLs,
the inheritance is basically restricted to satisfy the requirements of subtyping.

However, subtyping is kind of a broader term. Apart from the object oriented
understanding of subtyping, there can be recognized e.g. subset subtyping or
isomorphic copy subtyping, etc. The object oriented subtyping possesses the is
a property which can be also viewed as a substitutability relationship.

The substitutability principle says that — let’s cite from [Sakkin–89] — an
instance of subtypes can always be used in contexts in which an instance of
a supertype is expected and, for all operations of the supertype, corresponding
arguments yield corresponding results. A typical example can be a class Student
which is (an object oriented) subtype of a person.

When this is a relationship is applied together with the late binding and the
self reference to the implementation (e.g. using subclassing), it is the base for
another fundamental OO property — the polymorphism.

Anyway, suptyping will play a key role in our further reasoning and propos-
als, therefore we will deliberate some additional issues concerning subtyping in
next chapters (for example in subsection 5.2.4).

3.3.4 Strict vs. nonstrict inheritance

A classification of inheritance can be also done from another viewpoint: a view-
point which would reflect the degree of conceptual correspondence between an-
cestors and descendants. This taxonomy is based on four compatibilty rules for
the relation of classes and subclasses in OOPLs introduced by Wegner in 1990.
These rules are as follows:

20

1. Cancellation — the weakest, allows operation of the class to be redefined
and even cancelled in a subclass.

2. Name compatibility — operations may be redefined but the set of names
has to be preserved.

3. Signature compatibility — full syntactic compatibility between classes and
their subclasses.

4. Behavioral compatibility — subclasses are not allowed to change the be-
havior of operations radically.

The levels 1 – 3 are considered as non-strict inheritance. The fourth level is
called a strict inheritance but it is difficult to reach it (see the attempts how to
reach it further in this chapter) and besides it is too restrictive (in the terms of
expressive power). Therefore, cases in which strict inheritance mechanisms are
used, are limited.

Of course, for different abstractions it is necessary to reformulate these rules
a bit. Note that it is quite hard to achieve the behavioral compatibility for
the specification inheritance because there is no real implementation available
(the rules above require subclassing). The only way is to describe somehow
the intended behavior to the specification (e.g. using assertions, see subsection
5.2.3).

3.3.5 Other inheritance taxonomies

From the viewpoint of types of usage of the inheritance in OOPLs, a lot of
other — more detailed — taxonomies can be created. Such taxonomies take
into consideration various types of modifications (similarly as the compatibility
levels in the previous subsection) and many other aspects. As an example, we
present, without any details, a simplified version of the valid inheritance usage
tree presented in [Meyer–97]. It generally follows the specification and imple-
mentation inheritance dichotomy — termed as model and software inheritance
here — (and adds another one) but each is divided into several more specific
cases:

• model inheritance

– subtype inheritance
– restriction inheritance
– view inheritance
– extension inheritance

• variation inheritance

– functional variation inheritance
– type variation inheritance
– uneffecting inheritance

• software inheritance

– reification inheritance
– structure inheritance

21

– implementation inheritance
– constant inheritance
– machine inheritance

3.4 Selected issues from techniques of implement-
ing inheritance into OOPLs

Since we have to propose a suitable inheritance mechanism for the SOFA CDL
abstractions, it is useful to look at the existing possibilities of practical inheritan-
ce techniques in OOPLs, despite the fact that not everything is fully applicable
to those abstractions.

3.4.1 Single vs. multiple inheritance

Whether to use or not to use multiple inheritance has been subject of quite
strong disputes. Multiple inheritance (i.e. inheritance from more direct ances-
tors at the same time) can bring considerably more modification possibilities,
however, it brings also some inherent problems. These problems derive from the
fact that the inheritance DAG might be disrupted and some cycles in the graph
might appear, which can result in name collisions.

The simplest form of such a disruption is so called fork-join inheritance and
it is described e.g. by M. Sakkinen. It is the case when B and C are parents of
D and A is parent of both B and C. Thus, D inherits attributes of A twice. It is
problem for both, methods (how the message dispatch shall be done) and even
more important problem for data fields because they carry a state (a value) and
it is necessary to solve which one is correct.

In general, using inheritance, two types of overlapping properties can ap-
pear: vertically overlapping properties (along a unique inheritance path) which
is a normal consequence of redefinition of properties in descendants. This is
correct and it is solved by a common message lookup strategy. The other type
is represented by horizontally overlapping properties (overlapping on the same
level in the inheritance directed graph), which may cause problems in the case
of multiple inheritance.

Some languages try to find ways how to avoid this problem, some languages
leave it unsolved and suppose programmers will mind this possible problem and
do not allow it to happen.

Among techniques used to avoid this problem belong selective inheritance,
ordered inheritance, repeated inheritance together with renaming, mixin inhe-
ritance, etc. We will discuss some of them later in this chapter.

Another problem is that multiple inheritance is often misused. As an example
presented in [Taival–96] is the Stack example which was used by B. Mayer in one
of his books: He defines a class Fixed Stack by inheriting two previously defined
classes Stack and Array. However, this is questionable because it implies that the
Fixed Stack, except for being a specialization of a Stack is also a specialization of
an Array. But some operations (e.g. indexed access) on arrays are not generally
applicable to stacks.

22

3.4.2 Delegation vs. concatenation

In its basic form, inheritance can be viewed as a record combination, but there
are two ways how things can be related in a computer memory: via a reference
pointer or contiguity. Thus, inherited attributes can be physically located in
different places using pointers or in the same place in case of concatenation.

The concatenation represents the original concept introduced in Simula 67,
where inheritance was originally defined in terms of textual concatenation of pro-
gram blocks. Concatenation represents the creation-time sharing which means
that ancestors and descendants share things only in time being created, then
they are self-contained and do not share anything. As a consequence, the inhe-
ritance DAG is flattened. This situation makes possible several actions which
are difficult or even unable to achieve in the delegation concept such as the
independent modification, renaming and selective inheritance.

The delegation concept, on the other hand, uses references to share attributes
of ancestors with their descendants (even transitively) and the descendants phys-
ically contain only their own specific attributes. This concept is implemented
in most object oriented languages and represents the life-time sharing, which
means that dependency between ancestors and descendants is permanent.

It is done by a particular message lookup technique because, in this concept,
messages that are not accepted by the (via self-reference) addressed object have
to be delegated to another one. This task can be accomplished in various ways,
however, practically there is only one technique used: incremental transitive
traverse through the inheritance DAG. There can be two directions: the most
used technique is so called descendant-driven because the lookup starts with
the most specific class that is addressed and it progresses to its direct ancestor,
etc. On the other hand, e.g. Beta uses so called parent-driven technique, where
the lookup starts with the topmost subpattern (Beta’s equivalent to the term
superclass) and since it only supports a single inheritance, the inheritance path
is unique and all properties of the specified name along the path are executed.
Thus, the behavior compatibility is achieved because descendant properties have
to take into consideration that all ancestors’ properties of the same name will
be executed before2.

Speaking about this mechanism, we can realize that another decision has to
be made when implementing the delegation based message lookup: the lookup
exhaustion, i.e. when to stop the lookup. Most languages stop when the first
matching property is found (so called asymmetric message lookup), some execute
all properties along the path (so called composing message lookup) and some are
implicitly asymmetric but give a possibility to explicitly decide to programmers
(keywords super, inherited, inner, etc).

3.4.3 Ordered vs. unordered inheritance

Ordered inheritance is one of the ways how to solve problems of name collisions
when using multiple inheritance. The inheritance DAG is somehow linearized
and the first matching property is executed regardless of the other properties of
the same name. Such a mechanism is used in most Lisp-based systems.

2note that this effect can be achieved in the descendant-driven technique using a mechanism
which allows to call an ancestor in the beginning of methods, e.g. super in Java

23

3.4.4 Dynamic inheritance

Dynamic inheritance means the ability to change parents at runtime. From its
nature, it is applicable only in the case of the delegation-based inheritance.
Dynamic inheritance is quite a dangerous type of inheritance because improper
assignment of a parent might cause a run-time error. However, it may be useful
to implement logical states (see [Taival–96] for further discussion). It is used
mostly in object-based languages (e.g. Self), however, some proposals appear
even for the case of class-based languages, e.g. so called predicate classes.

3.4.5 Selective inheritance

Unlike the case of dynamic inheritance, selective inheritance is an inheritan-
ce modification used together with concatenation-based inheritance. Selective
inheritance, in addition to renaming which allows the property names modifica-
tion in the descendant (without any negative impact because of independence of
objects), gives to the descendant an explicit possibility to decide which proper-
ties of its parents it wants to inherit. However, selective inheritance may lead to
conceptual problems (incautious omissions, etc.), that’s why it should be used
only with additional verification mechanisms.

3.4.6 Mixin inheritance

The basic idea of the mixin inheritance is that the modification parts distinct
from the parents are not directly embedded to the descendant, but separate so
called mixin classes are created to hold the modifications.

A mixin class is syntactically similar to a normal class but its intent is
different. New concrete classes are constructed by combining primary parent
classes with secondary mixin classes using multiple inheritance.

Mixin classes do not have subclasses that’s why they are not bound to a
particular place in the inheritance hierarchy. Thus, we can add those modifi-
cation encapsulated in the mixin classes to any place without both having to
rewrite the same code again as in the case of single inheritance and being aware
of name collisions as in the case of common multiple inheritance. However, it
requires that the methods in the mixin classes are implemented as open to ex-
tensions and they are able to invoke corresponding methods in their surrounding
environment, which is not always easy to achieve.

In addition to the practical aspects, mixin inheritance is important for the
theoretical research of inheritance because it is capable of capturing function-
ality of other forms of inheritance. On the other hand, it brings some inherent
problems given by the necessity to distinguish three types of classes (base, mixin
and combinational), which brings confusion to some basic concepts of inheritan-
ce.

3.5 Some consequences of this chapter for
the inheritance in CDL

Most of the inheritance concepts presented here were primarily intended for
classes or objects. CDL, as a specification language for component systems, has

24

a bit different abstractions and a bit different needs. To consider various pos-
sibilities how to transform an inheritance type to suite the CDL abstractions
(if at all) is a task of this thesis. The specification nature of the CDL suggests
a kind of concatenation inheritance should be preferred because it has more
advantages over the delegation in such a case. Although the concepts trichoto-
my is a considerable drawback of mixin inheritance, it should also be carefully
considered in our research.

As for the usage viewpoint, we should prefer the conceptual purity which
is essential in specification languages, however some use ”for convenience” that
would significantly reduce the creation effort should not be dismissed as well.

Another aspect to realize and that was also mentioned in [Taival–96] is quite
a subtle difference between inheriting properties from an abstraction and using
it as a variable via aggregation, especially in — but not limited to — the case of
specification languages (which use concatenation inheritance type). Except for
the indirect addressing of properties in the aggregation, the main difference is in
the proper conceptual modeling understanding of things. When using selective
inheritance, this difference is blurred even more.

25

Chapter 4

SOFA/DCUP framework
— an overview

Software business is binary: you are
either one or zero, alive or dead

— from the movie of Antitrust

4.1 SOFA/DCUP — basic facts

4.1.1 What is SOFA/DCUP component framework

The SOFA/DCUP (SOFtware Appliances/Dynamic Component UPdating) pro-
ject has been running by the Distributed Systems Research Group at the De-
partment of Software Engineering, Faculty of Mathematics and Physics, Charles
University, Prague under the supervision of prof. Frantisek Plasil. The creators
took advantage of many years of research in the field of object oriented pro-
gramming and software systems and based especially on their Java and CORBA
experience (see list of their publications [PublicList]), they started to design a
complex software environment that should support full provider-user relation.
They initially introduced this project in [PlaBaJ–98] introducing the SOFA ar-
chitecture, SOFA component model and the SOFA component model extension
called DCUP. The project has been running ever since and now first software
tools have been already developed.

4.1.2 Major goals of the SOFA/DCUP project

The SOFA wants to provide a small set of well scaling orthogonal abstractions
to model trading using software components over a network, and, at the same
time, to support their instantiation into running applications where they can
be subjects of updating. Thus, an application in the SOFA is composed as a set
of components deployed on a network that can be dynamically downloaded and
updated.

This task is quite complex because, as stressed in [PlaBaJ–98], SOFA encom-
passes a lot of software domains, e.g. the communications middleware, compo-
nent management, component design, electronic commerce, security, etc. Thus,

26

a lot of issues have to be solved. The following are recognized as primary (most
of the issues have been described in a lot of papers, that’s why none will be
presented here and readers are encouraged to consult the [PublicList]):

• dynamic component downloading

• dynamic component updating

• component description

• component versioning

• component transmission protocols

• support for component trading, licensing, accounting and billing

• security issues

• quality of service issues

Our effort in this thesis will be focused on enhancing the component description
issue, however the other issues have to be taken into considerations as well.

4.2 Component descriptions

4.2.1 CDL and its motivation

A component in the SOFA is described using a CDL (Component Definition
Language). The CDL is based on the CORBA IDL and Java syntax but it in-
troduces a lot of novel features that meet demands on full-featured components.
This condition is achieved especially by separating interfaces (as service defini-
tions) from architectures (as communications), even though both may represent
a view of a single component but at a different level. This brings better sup-
port for versioning and for better research of individual goals as defined in the
previous subsection. The CDL was initially introduced in [Mencl–98] and even
this part of the SOFA project has been still under quite an intensive research.
So far, the integration of behavior protocols into CDL can be considered as the
most significant result of that continuing research.

4.2.2 The CDL basics

In analogy of the classical concept of object as an instance of a class in object
oriented programming, a software component (a component for short) has been
introduced as an instance of a component template (a template for short). Such a
template T is a pair consisting of a template frame (a frame for short) and a tem-
plate architecture (an architecture for short). For more detailed discussion about
these abstractions, see next subsections. Briefly, we can say that frames serve for
the specification of services a component provides to an environment and also
services the component requires from the environment to be able to provide the
promised services. Architectures serve for the specification of communication
between a component and its immediate subcomponents. Such subcomponents
consist of instances of other frames. Thus we can see two elementary facts:

1. An unlimited number of architectures can be based on a single frame (a
particular architecture is determined by what subcomponents are instan-
tiated and the way they communicate).

27

2. A component can be viewed in this conception as a hierarchy of nested
frames and architectures, in particular as a subtree of a component tree1

(with unlimited number of branches) consisting of a sequence of nodes
frame→architecture and for each of the architecture’s subcomponents a
frame→architecture, etc; leaves are represented by primitive architectures
(architectures which have no subcomponents and are implemented by im-
plementation objects); on the implementation level, an application (a high-
est level component in a particular subtree) can be viewed as a series of
expressly communicating implementation objects2.

Moreover, we have to realize that we can have a lot of components providing
the same functionality but requiring different services (which are determined
by its architecture’s subcomponents requirements) that’s why frames, as the
least approximations of components, can be viewed as supportive abstractions
(uniquely determined by an architecture) and have little value per se. This is
important for deliberating the frame inheritance mechanisms.

4.2.3 CDL interfaces

We will speak about interfaces in depth in Chapter 6.1. The reason is that unlike
other notions explained here, interfaces are not SOFA/DCUP specific. Briefly,
interfaces are the lowest and most fundamental abstraction of the three main
abstractions in CDL. Their syntax originates in the CORBA IDL. Interfaces
serve for definition of individual services. Each of such services is characterized
by a set of operations (called methods) and possibly exceptions, etc.

CDL interfaces are enhanced with interface behavior protocols which specify
the acceptable order of method invocations for a given interface. Such a protocol
represents a behavior of the component on a single interface only. More about
behavior protocols can be found in section 4.3.

4.2.4 CDL template frames

The notion of frame represents a higher-level abstraction and it is introduced
in the CDL to denote the contract nature of components. Let’s clarify it in the
following paragraph.

Components are units of independent deployment (cf. section 2.3) and, as
such, they are deployed in various environments. A component is supposed to
provide well-defined services (typically in the form of interfaces). However, such
services typically need other services to accomplish their tasks. Since it would
contradict the idea of the well-structured separation of functionalities into small
deployable pieces if the components were self-contained (i.e. if every component
contained all functionalities), and it would be unrealistic to expect the given
environment to have all possible functionalities implicitly available, it is neces-
sary to explicitly say, what services are required from the environment to supply
possible subcomponents’ needs.

In our view, frames are black-box views of components. A frame specifies,
what services a component makes available (to the environment) provided that

1we will consider it intuitively only; it will not be specified formally nor any of its properties
will be discussed

2objects in this case generally do not have to strictly correspond to objects in the sense of
OOP

28

services it requires are available (from the environment). At this level, nothing
more is known about how these services interoperate (therefore the term black-
box view is used).

From the technical viewpoint, CDL frames consist of interface instances
which have an interface as a type (cf. subsection 5.2.1 for the discussion about
types). Interface instance is a name that is used to denote a concrete interface
in behavior protocols and in architecture ties. The reason for introduction of
interface instances is that a frame can generally have more instances of the
same interface (however, connectors should solve this problem [PlaBal–01]).

As for the frame syntax, it is quite simple and is shown in the CDL example
several sections bellow. However, we will itemize several rules that may come
into one’s mind while turning the topic over.

• for the reasons of universality, frames do not have to contain any required
interface nor any provided interfaces; however, this does not make much
sense and a usable frame should contain at least one interface in the pro-
vides role

• more interfaces of an identical interface type can be in the same role in
a frame; however, introduction of connector frames makes this possibility
obsolete and it should be forbidden for the reasons of clarity.

• it is not allowed to have more interface instances of the same name in a
frame, even if they are placed in different roles

• there are no strict rules how to generate names of frames or interfaces
except for some rules of thumb, however, we realize that such rules may
be quite important if the rapidly growing number of interfaces and frames
should be manageable

4.2.5 CDL template architectures

We have already defined roles of component software architectures in general in
subsection 2.3.4 on page 12. Now, we describe basics of the particular component
architecture employed by the SOFA/DCUP component model.

Frames provide us with a list of interfaces a component provides and a list of
interfaces a component requires. However, on condition we have a hierarchical
component model as presented earlier, we have to describe how the provided
interfaces will actually be accomplished and who will actually be using the re-
quired interfaces. It is enough to describe it on the first level of nesting only,
because each subcomponent can be viewed as another component, and thus we
can choose an architecture for each of the subcomponents independently. There-
fore, architectures in the SOFA/DCUP are sometimes called gray-box views of
components. However, the nesting cannot be done ad infinitum, that’s why a
special type of architectures that contain no subcomponents must exist. That’s
why SOFA CDL distinguishes two forms of architectures:

1. A primitive architecture — has no internal structure and is supposed be
implemented by an implementation object in a supported implementation
language. Its description is empty.

2. A compound architecture — consists of subcomponents and description
of communication among them.

29

A subcomponent has the form of an instantiated frame. It is sufficient for de-
scription of the highest-level communication because frames unambiguously de-
termine the services required and provided by a subcomponent but their ar-
chitectures can be arbitrary and they are not essential for the highest-level
communication description. The communication is described using the notion
of ties. There are three types of the ties in the compound architectures:

Bind — binds a required interface of one subcomponent to a provided inter-
face of another. This is a tie of type requires—provides and represents an
internal cooperation within a component.

Subsume — subsumes an interface required by a subcomponent to require-
ments of the component itself. This is a tie of type requires—requires and
represents utilization of interfaces required from the environment by the
component on behalf of its subcomponents.

Delegate — delegates the accomplishment of an interface that is granted to
be provided by the component to a subcomponent. This is a tie of type
provides—provides and represents a way how a component fulfills tasks it
claims to provide.

Moreover, there we can present three additional rules for the architectures con-
cerning ties:

1. Each interface has to be bound to at most one other interface but we can
use connectors to avoid this limitation, therefore, on the abstract level,
we can assume more interface instances can be bound to a single interface
instance in an architecture.

2. Each interface has to be described in the architecture even though it is
not a part of any tie.

3. On some conditions, both sides of a tie do not have to be instances of the
same interface type.

The second rule coerces introduction of another binding type exempt, seman-
tics of which is obvious: it exempts thus described interface from any ties (in
that architecture). The first mechanism behind the first rule is introduced in
[PlaBal–01] and the third rule will be discussed later.

The concrete semantics and typical way architectures are created are pre-
sented in the CDL example shown in section 4.6.

4.3 Behavior protocols in SOFA/DCUP

We have already mentioned the problem of component behavior verification and
the role of protocols in this task in subsection 2.3.8 on page 14. Now, we will
informally present the essential facts about protocol utilization in SOFA/DCUP
framework.

Behavior protocols for SOFA CDL were originally introduced in [Visnov–99],
they were further elaborated in [PlaViB–99] and the latest revision reflecting
experience acquired from their practical use is described in [PlaVis–02]. In this
work, we will consider the latest revision. For a thorough discussion of this topic
and formal introduction of notions mentioned here, see [PlaVis–02], which is the
main source of information for this section.

30

4.3.1 Basic concepts

The behavior protocols were introduced to bound possible behavior of the three
main abstractions in CDL, which is essential to keep the complex component
system in a manageable and verifiable state. Although a protocol for each of
them must be a little different, it would be useful if they were based on the same
basic conception. Thus, an abstraction-independent idea of behavior protocols
was introduced in [Visnov–99].

The conception is based on a communication model which consists of agents
as computational entities emitting or absorbing external communication events
or performing internal ones (in general, we say that agents exhibit actions).
Such an agent can communicate via bidirectional peer-to-peer connections with
a finite number of other agents. A finite number of actions an agent exhibits on
a set of connections is called an activity and all possible activities of an agent on
a set of connections are called behavior of an agent on a set of connections. A
sequence of action tokens is called a trace. Agents can be primitive or composed,
which leads to introduction of internal and external connections and events. We
also distinguish requests, responses and general events.

The set of traces representing the behavior of an agent on a set of its con-
nections is typically an infinite language. After some reasoning how to represent
it, the behavior protocols as regular-like expressions over action tokens which
syntactically generate traces, were introduced.
The following operators can be used in such expressions3:

1. ∗ — repetition — the only unary operator;

2. ; — sequencing

3. + — alternative

4. | — and-parallel

5. ‖ — or-parallel

6. ux — composition

7. |T | — adjustment

8. / — restriction

Such a conception has a lot of theoretical and practically useful properties.
We will not discuss them because such a discussion requires to introduce the
whole formal notation, which is not the task of this work. But we mention
at least behavior compliance which specifies on what conditions one agent (or
protocol) is behavior-compatible with another and may serve as a substitution
of it.

4.3.2 Particular protocols in SOFA/DCUP

The general model of behavior protocols can applied to interfaces, frames and
architectures, and thus we get:

Interface protocols — specify the acceptable order of method invocations on
an interface. They represent the behavior of components on single inter-
faces only. Name of events are denoted by method names.

3their exact meaning is defined in the [PlaVis–02]

31

Frame protocols — specify the acceptable interplay of method invocations on
the provided interfaces and reactions on the required interfaces of frames.
Names of events are denoted by method names prefixed by respective
interface instance name and specifications, whether the event is a request
or a response (which is determined from the role of the interface in a
particular frame).

Architecture protocols — describe the interplay of method invocations on
interfaces of the frame and the outmost interfaces of subcomponents in
the architecture of a component template. These protocols are not spec-
ified directly but are inferred from specification of the architecture and
generated automatically by a CDL compiler by appropriately combining
frame protocols of ties participants using the composition operator.

It is obvious that there must be a relationship between interface protocols,
frame protocols and architecture protocols. The way interfaces are utilized in
frames must correspond to intentions interfaces were created with and also the
architecture protocol of a component should follow the intentions described in
the frame protocol of that component. The above mentioned notion of compli-
ance proved to be a good basis for describing this relationship, thus the notion
of protocol conformance was established using the notion of compliance. We
will only informally describe the intentions behind three types of the protocol
conformance, precise definitions are presented in [PlaVis–02]:

Interface-interface protocol conformance — an interface protocol conform-
s to another interface protocol if the other interface is compliant with it
on an appropriate alphabet.

Interface-frame protocols conformance — whatever the frame protocol al-
lows to do on a provides-interface, it must do it in such a way that a
component can exhibit at least the events as specified by the interface
protocol. For requires-interfaces it is vice versa: whatever the requires-
interface allows to do, it must do it in such a way that a component
may exhibit at least the events as specified by the frame protocol on the
requires-interfaces.

Frame-architecture protocols conformance — an architecture protocol can-
not generate traces not allowed by the frame protocol, under assumption
that the provides interfaces from the frame are used in the architecture in
a way the frame protocols allows to. At the same time, the architecture
protocol can be “less demanding” on the requieres-interfaces.

4.4 Dynamic Component Updating

DCUP should allow safe updating of SOFA components at run-time. It extends
the SOFA component model in the following way:

• it introduces specific implementation objects

• it makes the way components are interconnected more specific

• it presents techniques for the updating of a component inside a running
application

32

• it specifies the necessary interaction between a running application and
the Run part of a SOFAnode (see the next section)

A DCUP component is divided into a permanent part and a replaceable part
with respect to an update operation and into control part and a functional part
with respect to the nature of operation. The control part is uniform across all
DCUP components and it is used for managing purposes only, the functional
part correspond to the classic component specifications of SOFA.

Since DCUP elaborates especially implementation issues and is implemen-
tation environment specific, it is not essential for this work and thus we will not
describe DCUP anymore (with exception of some possible allusions within oth-
er parts of this work) and we encourage readers interested in this topic to read
[PlaBaJ–98] (from which we took information for this section) and [Hnetyn–00].

4.5 Implementation and deployment of the SOFA
components

Now, we will very briefly present basic conception of the SOFA implementa-
tion. This section is based on [MenHne–01] where you can find quite a detailed
elaboration of this topic.

As mentioned earlier, the development process of a component has two parts:
creating a software specification and implementing it later which can be done
by independent vendors. The whole component lifecycle has several stages

1. Designing the component’s architecture.

2. Recursive binding of all nested component frames to a concrete architec-
ture — selection of concrete subcomponents is done using a component
assembly infrastructure.

3. Dividing application into distribution units which results into a deploy-
ment form.

4. Filling this form with the exact location for execution, which results into
a deployment descriptor.

A single deployment environment in SOFA (an individual computer) is called
a SOFAnode. A set of interconnected SOFAnodes forms the SOFAnet. A SOFA-
node can consist of several parts. Not all parts have to be present in a single
SOFAnode. This is determined by the role of the SOFAnode in the SOFAnet.
Let’s describe the individual parts:

Template repository (TR) — the only obligatory part of a SOFA node. It
contains component implementations together with their descriptions.

Run-part — provides environment for running the component instances. At
least this part is supposed to be distributed across multiple hosts.

Made-part — is used to create new components and insert them into the TR.

Out-part — is used for a transfer of components from the SOFAnode.

In-part — is used for a transfer of components to the SOFAnode.

33

When the application (i.e. top-level component) is launched, component in-
stances are created in so called deployment docks (in the Run-part of the SOFAn-
odes) according to the application’s deployment descriptor. Components can be
either already installed at the given deployment dock, or their implementation
can be downloaded from the TR and connectors (stub and skeleton) for inter-
connecting the components via a middleware can be generated on-the-fly.

4.6 A CDL example

Now, at the end of the chapter and as a starting point for our further work,
we create a sample component specification written in the SOFA CDL. It will
be referred to in further text. The example should represent a fragment of a
simplified banking application and is projected in a manner standard software
analysis does.

4.6.1 Definition of services

First, we have to realize what business activities make a bank to be a bank and
what supportive activities are needed for them. This is important in any analysis,
however, in the case of SOFA component model, they should be designed with
a special care because they represent cornerstones for both, the component
specification and its implementation.

The activities are generally labeled as services and each service consists
of several related operations. Services constitute the core functionality of our
application. As we already know, they are represented by interfaces in SOFA. We
also present interface behavior protocols associated with each of the interfaces.

We will design ten services (remember, it is a fragment of an application
only). As for their names, we will try to use self-explanatory names and utilize
some kind of uniform naming conventions.

typedef float currency;

interface ITAccountBasicAdministration
{ long CreateAccount(in string accountType, in string customerID);

void DeleteAccount(in long account);
void AssociateCreditCard(in long account, in long creditCard);
void SetAccountReportPeriod(in int period)

protocol: (CreateAccount + DeleteAccount + AssociateCreditCard +
SetAccountReportPeriod)*

}

interface ITAccountAdvancedAdministration
{ long ChangeOverdraftLimit(in long account, in currency newLimit);

void ChangeOwner(in long account, in string newCustomerID);
void ChangeCreditCard(in long account, in long creditCard);
void FreezeAccount(in long account);
void UnFreezeAccount(in long account);

protocol: (ChangeOwerdraftLimit + ChangeOwner + ChangeCreditCard +
FreezeAccount + UnFreezeAccount)*

}

34

interface ITAccountManipulation
{ void Deposit(in long account, in currency amount);

void Withdraw(in long account, in currency amount);
void Transfer(in long sourceAccount, in long destinationAccount,

in currency amonount);

protocol: (Deposit + Withdraw + Transfer)*
}

interface ITAccountInformation
{ string GetCustomerID(in long account);

string GetAccountType(in long account);
currency GetBalance(in long account);
currency GetOverdraftLimit(in long account);
long GetCreditCard(in long account);
int GetCurrentState(in long account);

protocol: (GetCustomerID || GetAccountType || GetBalance ||
GetOverdraftLimit || GetCreditCard || GetCurrentState)*;
}

interface ITCreditCardAdministration
{ long CreateCreditCard(in string creditCardType);

long SetDispositionalRightsToAccount(in long creditCard, in long account);
long RemoveDispositionalRightsToAccount(in long creditCard, in long account);
void InvalidateCreditCard(in long creditCard);
void RevalidateCreditCard(in long creditCard);
void SetDailyWithdrawalLimit(in long creditCard, in currency Limit);
void SetWeeklyWithdrawalLimit(in long creditCard, in currency Limit);
void SetPerSessionWithdrawalLimit(in long creditCard, in currency Limit);

protocol: (CreateCreditCard + InvalidateCreditCard +
SetDispositionalRightsToAccount + RemoveDispositionalRightsToAccount +
SetDailyWithdrawalLimit +
SetWeeklyWithdrawalLimit + SetPerSessionWithdrawalLimit)*

}

interface ITCreditCardInformation
{ string GetAccount(in long creditCard);

string GetCreditCardType(in long creditCard);
void GetValidity(in long creditCard, out date validSince out date validUntil);
bool IsValidNow(in long creditCard);
void GetLimits(in long account, out currency dailyLimit,

out currency monthlyLimit, out currency perSessionLimit);

protocol: (GetAccount || GetCreditCardType || GetValidity ||
IsValidNow || GetLimits)*

}

interface ITDataManipulation
{ void Insert(in any key, in any data);

void Delete(in any key);
void Query(in string query, out any data);

protocol: (Insert + Delete + Query)*
}

interface ITRestrictedDatabaManipulation
{ void Query(in string query, out any data);

protocol: Query*
}

35

interface ITDatabaseAccess
{ void Open();

int GetTransactionModel();
void SetTransactionModel(int model);
void Close();

protocol: (Open ; GetTransactionModel* ; Close + SetTransactionModel)*
}

interface ITLogging
{ void LogEvent(in string event);

void ClearLog();

protocol: (LogEvent; LogEvent*; ClearLog)*
}

4.6.2 Distribution of services — raw component design

Now, we have to constitute the black-box view of components — frames. This
comprises finding subjects that provide one or more services (i.e. interfaces)
defined in previous subsection and possibly require some services to be able to
do that. We should preferably consider existing functional subjects in a typical
bank but it is not essential in this case because we have to realize that a bank is
not the bank for it has a teller etc. but simply for it provides banking services.
Therefore the internal structure of the bank can vary. Instead, we should design
a component with the suitable component weight requirement on mind and
with respect to properties of the environment (hardware utilization, network
utilization, etc.)

To spare some space, we will write only a few frames and behavioral protocols
even for fewer of them, even though theoretically lots of frames can be created as
various combinations of interfaces defined in the previous subsection and even
though a frame protocol should be part of all of them. Notice that database
services are specified as requirements of the bank application (more precisely,
outside the SimplifiedBankFragment component), thus they must be supplied
from the environment (which makes sense because, in most cases, databases are
not bank-specific).
frame SimplifiedBankFragment
{ provides:

ITAccountBasicAdministration piiABA;
ITAccountAdvancedAdministration piiAAA;
ITAccountManipulation piiAM;
ITCreditCardAdministration piiCCA;

requires:
ITDatabaseAccess riiDA;
ITDataManipulation riiDM;
ITRestrictedDataManipulation riiRDM;

}

frame Teller
{ provides:

ITAccountBasicAdministration piiABA;
ITAccountManipulation piiAM;
ITCreditCardAdministration piiCCA;

requires:
ITAccountInformation riiAI;
ITCreditCardInformation riiCCI;
ITDataManipulation riiDM;

}

36

frame Superindtendent
{ provides:

ITAccountAdvancedAdministration piiAAA;
requires:

ITAccountInformation riiAI;
ITCreditCardInformation riiCCI;
ITDataManipulation riiDM;
ITCreditCardAdministration riiCCA

protocol:
(?piiAAA.ChangeOverdraftLimit
{!riiAI.GetOverdraftLimit;!riiDM.Insert} +
?piiAAA.ChangeOwner{!riiDM.Insert} +
?piiAAA.ChangeCreditCard{!riiCCA.RemoveDispositionalRightToAccount;
!riiCCA.SetDispositionalRightToAccount} +
?piiAAA.FreezeAccount{!riiAI.GetCreditCard; !riiAI.GetCurrentState;

!riiCCI.RemoveDispositionalRightsToAccount; !riiDM.Insert} +
?piiAAA.UnfreezeAccount{(!riiAI.GetCreditCard;

!riiCCI!riiAI.GetCurrentState;
!riiCCI.SetDispositionalRightsToAccount; !riiDM.Insert})*

}

frame InformationCenter
{ provides:

ITAccountInformation piiAI;
ITCreditCardInformation piiCCI;

requires:
ITDatabaseAccess riiDA;
ITRestrictedDataManipulation riiRDM;

protocol:
(!riiDA.Open; !riiDA.setTransactionModel;
(?piiAI.getCostumerID{!riiRDM.Query} ||
?piiAI.getAccountType{!riiRDM.Query} ||
?piiAI.getBalance{!riiRDM.Query} ||
?piiAI.getOverdraftLimit{!riiRDM.Query} ||
?piiAI.getCreditCard{!riiRDM.Query})*;
!riiDA.Close)*

}

4.6.3 Making contracts — particular component design

Finally, we have to a create a concrete component architecture and constitute
thus the gray-box view of components. This process may include possible in-
stantiation of subcomponents, delegating component provisions to its subcom-
ponents, subsuming subcomponents’ requirements to the component’s require-
ments, and constituting internal communication between subcomponents. The
architecture can also be primitive but we will not do it in order to present
the syntax of architecture notation. Besides, we will not write the architecture
because this is done automatically from frame protocols. Notice that we use
multiple ties (which is allowed thanks to connectors).

architecture SimplifiedBankFragment version v1
{ inst Teller fiTeller;

inst Superintendent fiSuperintendent;
inst InformationCenter fiInformationCenter;

bind fiTeller:riiAI to fiInformationCenter:piiAI;
bind fiTeller:riiCCI to fiInformationCenter:piiCCI;
bind fiSuperintendent:riCCA to fiTeller:piCCA;
bind fiSuperintendent:riiAI to fiInformationCenter:piiAI;
bind fiSuperintednet:riiCCI to fiInformationCenter:piiCCI;

delegate piiABA to fiTeller:piiABA;

37

delegate piiAM to fiTeller:piiAM;
delegate piiCCA to fiTeller:piiCCA;
delegate piiAAA to fiSuperintendent:piAAA;

subsume fiInformationCenter:riiDA to riiDA;
subsume fiInformationCenter:riiRDM to riiRDM;
subsume fiTeller:riiDM to riiDM;
subsume fiSuperintendent:riiDM to riiDM;

}

38

Chapter 5

Analysis of challenges

I do not believe my father ever was (or ever could
have been) such a poet as I shall be an analyst.

— Ada Augusta, Countess of Lovelace,

daughter of lord George G. Byron

5.1 The primary objectives

Let us recall the main objective of this thesis: to discuss application of inheri-
tance to SOFA components. This includes analyzing of assets and drawbacks
of using inheritance in each of the three SOFA CDL abstractions (interfaces,
frames and architectures), presenting various inheritance mechanisms for the
individual SOFA CDL abstractions and analyzing appropriateness and possibi-
lities of incorporating these mechanisms to those abstractions. For each of the
individual abstractions, the option that seems to be most appropriate should be
highlighted and justified and initial proposals for syntax and semantics should
be presented. Also, some possible problems related to inheritance in SOFA CDL
should be identified and sketched.

This thesis should serve as a foundation for possible broader discussion a-
mong SOFA/DCUP project contributors whether to or not to incorporate inhe-
ritance to the SOFA CDL abstractions therefore no implementation is required
for now.

In spite of this fact, this task is not a bit as straightforward as it may seem
at the first glance. Most of the important issues were in depth discussed in
previous chapters (so let the reader consult them if necessary), however, let us
summarize the major facets, we should take into consideration if we want the
solution to be beneficial.

5.1.1 Summarization of preconditions

The aspect of inheritance — since there is a widespread consensus among
researchers in the field of object oriented programming that inheritance is
the most intricate and controversial issue in the object oriented program-
ming itself, its application to components is even more intricate because of
a bit different conception of component-based development which makes

39

some common inheritance notions like subclassing or dynamic dispatch
inapplicable (at least for most abstractions).

The aspect of CBD basic concepts — although component-based develop-
ment (CBD) originates in the object oriented programming, key concepts
differ. It is necessary to fully understand the entirely new abstractions
whose introduction was enforced especially by the separation of specifi-
cation and implementation (and component interoperability mechanisms)
and the component composition, including the design by contract men-
tioned in the second chapter.

The aspect of trends in CBD — the solution to be competitive should take
advantage of experience gained during the quite extensive research, the
component-based development is subject of recently.

The aspect of SOFA component framework — since SOFA is a dynami-
cally evolving component framework which is trying to gather the best of
other component technologies and software architectures and enhance it
with a bunch of new ideas, this fact implies that it is necessary to take
possible changes in particular details into consideration, and thus the so-
lution should be quite robust and should not depend on too much details.
On the other hand, since the key concepts and abstractions have been al-
ready assessed and a lot of work has been done so far, the solution should
minimize the need of changes in the existing framework enforced by the
concepts suggested.

5.1.2 Main directions of the research to follow

Based on the existing SOFA component framework proposals and facts men-
tioned in this thesis so far, two main directions of further research can be re-
cognized:

Inheritance — this direction tries to find suitable inheritance mechanisms for
individual SOFA abstractions and incorporate them into the Component
Definition Language. The decision on what inheritance mechanism is suit-
able depends on a lot of aspects including the philosophy of the SOFA
framework and it will have to be carefully deliberated. Work in this di-
rection of research has not been started yet and this thesis, for which
inheritance is the main goal, is supposed to bring some foundations.

Substitutability — this direction tries to consider possibilities of replacing in-
stances of some SOFA abstractions within other abstractions with another
instances of that abstractions that do not have to fully correspond to the
original ones. For example, binding partially corresponding interfaces into
mutual ties and replacing frames (subcomponents) in architectures. This
direction is partially covered by behavior protocols. We will marginally
touch this direction as well, however, no essential results in this direction
are expected to be achieved by this thesis.

40

5.2 General problems related to the solution

Before we begin to solve the particular issues, let us try to discuss some prob-
lems generally related to the issues, we will deal with in the next chapters.
Most of those discussed problems are kind of knotty and remain open, but some
conclusions have to be made at least for the purposes of this thesis. We will dis-
cuss these problems solely at an intuitive level (without introducing formalisms)
because the problems are minor (albeit inherent) ones.

5.2.1 Problems of type definition

Here, we will turn over questions that relate to types because introduction of
higher-level abstractions, such as interfaces and frames, may bring confusion to
the concept of types.

The first and cardinal question is: How can be characterized the notion of a
(data) type? The usual, simple answer is (e.g. [Skarva–99]): a set of values a data
object can acquire with operations that can be used for handling these values.
This answer perfectly holds for simple data types (integer, etc.) and, of course,
also for user defined types, namely classes. In the case of user defined types like
classes, the user has to specify and implement also the permitted operations. In
all these cases, a variable or a constant is used to hold a value from the set of
values, which can be viewed as representing a state.

Now, that we have defined the notion of a data type, another question arises:
Can we consider abstractions that do not have states as types? This question
is important if we want to use notions such as subtyping further in this work
because, as mentioned in section 2.3, one of the most characteristic properties of
components is that they do not have states. We will illustrate this issue using the
the case of interfaces1. Other abstractions like frames could be treated similarly.
To find the answer easily without jamming with details, we will reduce interfaces
only to methods with their signatures and omit other features described in
Chapter 6.

Thus, we ask if interfaces can be taken as types. We have to find their values
and their operations. We argue that, on a theoretical level, maybe the best
solution would be to introduce a single type termed Interface and consider a
set of method signatures, a single interface consists of, as a value. Then, a set
of all possible method signature combinations would form a domain. In the
same way, we could suppose common set operations (union, intersection, ...) as
operations upon those values. Another possibility in this approach would be to
consider only method names instead of method signatures, but since interfaces
can generally consist of overloaded operations, those interfaces (i.e. values) could
not be distinguished, which would lead to the loss of information and some other
undesirable consequences.

As the main advantage of the above presented approach, we would state that
it forms a set inclusion partial order upon these values, thus the problem of
interface equivalence would be solved in a quite natural way. An interface name
is a pure alias for a value in this approach and possible more aliases of a single
value still represent the same value. Besides, this approach generally makes
possible to grasp the notion of interfaces much easier and possibly allows better

1those who are not too familiar with the notion of interface should consult section 6.1

41

subsequent theoretic work with this notion. However, let’s remark that this is
only an initial reasoning not considered in details because it is not supposed to
be used.

That is because the practical use of interfaces is much closer to classes (i.e
types) than to values and SOFA/DCUP treats interfaces as types for practi-
cal reasons. Therefore we will use an approach similar to classes and consider
every single interface as a special user-defined type with method signatures as
“values”. Operations will be defined for each type (i.e. interface) by behavior
protocols describing permitted method calls order. Instances of interface types
can be informally imagined as having state waiting (before one of the initially
permitted operations was called) and then each subsequent state is determined
by the interface behavior protocol. Notice that enabling parallel execution of
operations, interfaces can acquire a state in which two “values” are together.
However, since this anomaly is not critical to solution of our problem, we will
allow it. Ergo, the answer to the question above is: yes, we can but with some
tricks.

5.2.2 Problems of type equivalence

Anyway, the approach from the end of the previous subsection brings some
inherent problems that the original approach eliminated. As an example, we
will take the problem of an assignment. SOFA’s version of this problem is the
substitution. We will show it on the example of interfaces again.

When can we replace an instance of an interface type with another (which
can be imagined as assignment between variables of different types known from
general imperative programming)? The answer should be looked for mainly from
the viewpoint of particular needs of SOFA/DCUP component model, but now,
we will ask a more specific question more generally: when are these two types
(that have no values in the classical sense) equivalent? There are two most
common equivalences in the theory of programming languages: an equivalence
by name and a structural equivalence.

First, let’s consider the equivalence by name: types are equivalent when
they have the same name. But this seems too restrictive: we can have interfaces
consisting of the same method signatures but renamed. This situation is, of
course, undesirable and should be avoided. In fact, there are some facilities that
might be able to eliminate this problem, e.g. type repositories (cf. section 4.5
for basic introduction of that SOFA/DCUP’s one), however, taken generally,
we will consider these particular solutions only as supportive. But this problem
relates to broader semantics problems (which will be deliberated more generally
in the next subsection) and may prove the equivalence by name meaningful. In
this case, the intended semantics of operations come into consideration: if there
are two interfaces with different name, albeit they are otherwise completely the
same, they might (or, of course, might not) be intended for different purposes
and their mapping onto the implementation object should reflect this fact. That
is why they should not be generally considered as equal.

Another possibility is the structural equivalence. It claims that two types
are equivalent iff their inner “components” are equivalent; i.e. this approach
omits the interface (i.e. type) names and considers them as pure aliases (as
in the approach of general interface as a type) and also ignores the objection
above saying that interfaces considered for different purposes should contain

42

different methods. The idea favoring this approach in the case of interfaces is
as follows: if interfaces have the same structure, they can be mapped onto the
same sets of implementation objects (to support the binary reuse in component-
based development, there should not be any tight relations between a particular
interface specification and a particular implementation object).

The answer to the question which approach to use, is not generally decidable
per se, neither of these approaches can be the most advantageous in all cases.
For purposes of this work, we decided to use the structural equivalence. The
main reasons are practical and mainly because SOFA’s behavioral protocols are
a helpful tool for further semantic decisions: if methods and ordering of their
calls are the same, then interfaces are with a great probability intended for the
same use. This approach also better justifies the substitutability.

5.2.3 Problems of semantics

This category of problems was mentioned in the previous subsection. The trou-
bles are caused by purely accidental name collisions. A lot of examples are
presented in the literature. The most classic one is the “push” in an interface
for a stack and for a button.

We have already come across this problem while we were discussing inheri-
tance in Chapter 3. As an example, let’s present an observation by Zdonik from
1986. He says that the redefined operations in a subclass usually do not have to
bear any semantic relationship to the replaced operations in the superclass; the
only semantic tie is that they share the same names. However important the
issue is, most object oriented languages do not solve it, albeit there are some at-
tempts (cf. the definition of inheritance compatibility levels in subsection 3.3.4.

Separation of specification from implementation as introduced by the com-
ponent approach makes these semantic issues even more important. There ap-
peared two main approaches to this problem: behavior protocols and assertions.

Behavior protocols were mentioned in subsection 2.3.8 and the SOFA be-
havior protocols including examples were presented within the presentation of
the SOFA/DCUP component model in Chapter 4. We will briefly remind es-
sentials: Protocols capture semantics of communicating systems by modeling
the system’s communication by specifying permitted atomic communication ac-
tions and their orderings. This modeling has a discrete nature: it is based on
states of the communicating system and transitions to different states which are
determined by the actions. There are two main advantages of such an approach:

1. In most cases, it is possible to check if the communication conforms to the
protocol, algorithmically. This means that automatic or semi-automatic
tools that check this can be created. These checks can be performed ei-
ther statically or dynamically (when the communication is performed) via
guards. See [PlaViB–99].

2. Since protocols represent a formal calculus, some properties of communi-
cating systems on a specification level (i.e. before they are implemented)
can be proved via such protocols. Especially Milner’s CCS is good for
this purpose and SOFA/DCUP’s behavior protocols were inspired by it to
some extent too. For more, see Chapter 4, a paper about SOFA/DCUP’s
protocols motivation [Visnov–99] and CCS basic usage in [Brim–00].

43

As we can easily see, communication protocols do not solve issues that have
non-communicational nature, e.g. the problem of “push” mentioned at the be-
ginning of this subsection. The other approach — represented by assertions —
cannot generally solve that problem as well but it can be of help while de-
termining similar accidental name collisions. We briefly sketch how assertions
work:

The idea of assertions originates in the Eiffel language where assertions were
implemented under the name design by contract (see [Meyer–87] or [Meyer–97]).
According to [BJPW–99], assertions were adopted by several other languages
including UML (where it is known as OCL — Object Constraint Language) and
Java (known as iContract). The mechanism is based on boolean assertions: in
case of interfaces, preconditions and postconditions for each method as well as
invariants for the whole interface can be such assertions. There is a nice example
of that shown in the [BJPW–99] using BankAccount interface. In that exam-
ple, the assertions are represented by keywords require (precondition), ensure
(postcondition) and invariant and boolean expressions using method argu-
ments or methods, e.g. a part of the deposit method is an assertions require
amount > 0 or invariant balance() ≥ overdraftLimit().

The main advantage of this mechanism is that it can contribute to more
reliable behavior of component systems and to preventing some accidental name
collisions. More reasonings and information can be found in the cited literature
and also in [CicRot–99].

Anyway, again neither of these two approaches solves the problems com-
pletely and, as stressed in the résumé of the component technology in the sec-
ond chapter, problems of semantics belong to those that have been studied very
intensively recently. In our opinion, it may be promising to combine behavior
protocols with assertions, however, the way how to do it and all consequences
have not been examined yet.

As for the consequences of these semantic issues to this work: since be-
havior protocols are now the integral part of the CDL abstractions used in
SOFA/DCUP component model, they will play a key role in our decisions of
inheritance and substitutability. Assertions are not a part of the CDL abstrac-
tions, therefore they will be omitted from our reasonings, albeit their role would
have probably been quite important for the decisions made if they had been
part of the language. For now, we have to count with those accidental name
collisions as potential problems.

5.2.4 Problems of subtypes

The rule of subsumption is one of the most important notions in object oriented
programming because it allows polymorphic behavior of programs. This rule
breaks the standard of most commonly used non-object oriented high-level pro-
gramming languages that are strongly typed. The subsumption says that any
instance of any class that is a descendant of another class can also be viewed
and handled as an instance of that parent class/classes (and transitively their
parents, etc.). Thus, we can view this subclassing as a reflexive, asymmetric and
transitive relation on classes.

In Chapter 3, we mentioned that subclassing is not applicable to abstractions
representing specifications because, as the name implies, this notion is bound
to classes. That is why we need to find another relation that would serve as a

44

base for inheritance within such abstractions. There was the inheritance usage
dichotomy problem stressed in Chapter 3 and it is more or less obvious that in
the case of specifications, the conceptual modeling purpose should be favored
(however, the practical use of inheritance should not come out of mind).

We discussed problems of types in subsection 5.2.1 and type equivalence in
5.2.2. In those subsections together with subsection 5.2.3, we have also men-
tioned that we can expect semantic problems (homonymy relation on the one
hand and synonymy relation on the other). The subtyping issues and their re-
lation to the conceptual modeling were introduced in subsection 3.3.3. Now, we
have to find a suitable subtype relation definition.

One possible answer to the question how to define the subtype relation can
be found in [WinOck–00]. This subtype relation is based on Liskov and Wing’s
constraint-based subtype definition. This definition is only partially suitable
for our problems, therefore, we will present it only briefly and informally. The
subtype relation is defined in terms of the checklist of properties that must hold
between the specifications of a type and a subtype of the type. This definition
takes into consideration the problems mentioned in the previous paragraph and
defines:

• abstraction function that transforms value-spaces — hardly applicable;
method signatures are considered as “values” (cf. 5.2.1)

• renaming map is a function that maps method names of a subtype to
method names of a supertype

And generally those conditions must hold:

• subtype invariants must ensure supertype invariants — not applicable; we
do not have assertions in CDL (cf. 5.2.3)

• subtype constraints must ensure supertype constraints — not applicable;
we do not have assertions in CDL (cf. 5.2.3)

• subtype methods must preserve the supertype methods’ behavior — ap-
plicable partially — only the Signature rule: there are two rules that must
hold for the corresponding methods given by the renaming map:

3 Signature rule
♣ contravariance of arguments — both corresponding methods

have the same number of arguments and the subtype method ith

argument’s type must be a supertype of the corresponding supertype
ith one’s type.

♣ covariance of results — either both corresponding methods
return a result or neither does; if they do then the subtype method
result’s type is a subtype of the corresponding supertype one’s type.

♣ exception rule — exceptions signaled by the subtype unified
method must be contained in the set of exceptions of the correspond-
ing supertype unified method.

3 Method rule — not applicable
precondition rule
postcondition rule

45

When we have a look at the definition, we can see that it is quite straightforward
and a good compromise between robustness and realization. As an example, we
can name introduction of the renaming map function: not to use renaming
map at all strongly favors the implementation ease but is kind of particular,
on the other hand, to use renaming map as a general relation (unifying one or
more methods of a subtype with one or more methods of a supertype) would
complicate and change radically both, the nature of the subtype definition and
the finding of an instance of such a renaming relation.

As for the usefulness to our work, we may take the Signature rule into
consideration when reasoning about substitutability. The rest of the definition
is not applicable for now because assertions are not part of the abstraction on
which the SOFA/DCUP component is built, but it is outlined for possible use in
the future. The usefulness of the Signature rule for inheritance may be discussed
in chapters devoted to the particular SOFA CDL abstractions.

5.2.5 Problems of protocol canonical form

Before we finish this chapter, we will present one more problem which came
into our mind when studying SOFA/DCUP component model and proposing
the inheritance mechanisms.

The motivation is following: while creating component specifications, a com-
ponent designer might often come across a problem that he wants to create
an abstraction which has the same structure as an existing one and he has a
conception of that abstraction’s behavior represented by the abstraction’s pro-
tocol (this goes especially for interfaces) or, generally, that the designer wants
to compare syntactically different protocols if they are semantically the same
(i.e. if they represent the same communication behavior).

Although such protocols are regular languages (enriched with parallelism)
that may be analyzed by a finite automaton and therefore automatic tools should
help, there might be situations when this task should be done quickly and by
hand. Then, it is quite demanding, especially in large quantities and complex
real-life applications. One of these situations is inheritance in case it is done
solely for purposes of changing communication behavior, see subsection 6.2.5.

This canonical form could be used either as a primary form of protocol
expression or as a secondary additional form.

However, difficulties with finding such a canonical form that could be both
created and read easily enough and also with transforming such a canonical form
to a vital integral part of the existing CDL, unfortunately lead to refusing this
idea — at least for now — and only deliberating releasing some rules-of-thumb
how to write protocols.

That is why we define it only as a problem that might be possibly solved
sometimes in the future:
Goal: Let A and B be behavior protocols which generate the same language. We
want to find a reasonably simple algorithm that transforms these two protocols
to protocols that are denoted identically.
The technique should be probably based on eliminating unnecessary parentheses
and unnecessary operators, introducing a uniform ordering, etc.

46

Chapter 6

Interfaces

Let’s look at the record!

— Al-Smith (1928)

6.1 Interfaces: basic facts

6.1.1 Evolution

Let us recall some basic facts concerning interfaces. Originally, there were classes
in class-based object oriented languages that contained data fields and methods.
Classes’ goal is to specify and implement particular services class instances (i.e.
objects) provide. The methods encapsulated the data fields in such a way that
the user of an object called methods only (or — in object oriented terminolo-
gy — sent messages) and the methods used the fields for storing information,
etc. Moreover, only some methods could be called by the rest of the world (i.e.
were public), others were hidden from outside an object. Those public methods
formed an interface to the object, via which the rest of the world communicat-
ed with the object (requesting services, etc.). This technique improved clarity
significantly.

Complete separation of interfaces from implementation was the next step in
the evolution of interfaces. It was necessary if we wanted to use binary software
components (deployed somewhere on the same computer or on the net using
various middleware technologies, e.g. CORBA or COM/DCOM), see Chapter
2.

As interfaces gained importance per se, Interface Definition Languages (IDL-
s) began to spring up. Those languages serve for writing software specifications,
which are then (preferably automatically) mapped onto an implementation code
(e.g. in CORBA, client stub and server skeleton will be generated from a COR-
BA IDL source file). Unlike pure interfaces, quite a lot of IDLs also offer to
utilize attributes (data fields) and exceptions, etc. in the software specifications
(however, using attributes is not recommended — cf. [MowRuh–97] — because
of maximization of reusability and unavailability of exceptions for data fields.

Since specifications use a generic form of methods and generic (data) types,
precise role of individual method arguments appeared to be useful and therefore
their more precise description has been established. Now, we will present an
anatomy of a typical interface.

47

6.1.2 Anatomy

As a typical interface we chose the form of interface which is used in CDL (and
also in CORBA IDL). Confer Chapter 4 and [Mencl–98] for CDL specifications
and [PlaVis–02] for interface protocols definition. This decision is a consequence
of the fact that CDL interfaces belong to primary objects of interest in our
work. But anyway, we will try to point out the common features of interfaces
and newly added features in CDL.

Every interface primarily consists of operations (or — taken from the object
oriented terminology — methods). A method is quite a fuzzy notion, therefore
we will speak about method signatures. At the basic level, we will understand
a method name, a possible return value type and an ordered set of individual
method argument types under this term. In situations, we want to emphasize a
complete method declaration, we will use the term method header which includes
also identifiers of arguments. Method signatures represent the way methods are
uniquely identified in an interface. We have already mentioned that interfaces
mean a specification (not an implementation), therefore we need method headers
to be precise enough and detailed enough to describe the intended use (seman-
tics) of given methods. That’s why they are enriched with additional features in
most cases and that’s why they differ in various programming (and definition)
languages. Let us summarize basic elements of method headers:

• method type specification — is a return type of the respective method.
For languages that also support procedures (without return types) or func-
tions having type void, IDLs make possible to use a type void, which can
be subsequently mapped onto a procedure or a function returning void

• identifier — name of the method — should resemble the intended se-
mantics of the respective method

• declaration of arguments (parameters) — such a declaration is usu-
ally written as a list in parenthesis after the method identifier and each
element of the list consists of a parameter type and a parameter identifier.
The list cannot contain two parameters with the same parameter identifier
(regardless of their types)

Every interface should contain at least one method because, unlike classes, in-
terfaces without methods make no sense (even data fields — which should be
avoided in interfaces as mentioned earlier — should not be declared without
operations which manipulate them). Description languages such as SOFA CDL
restrict types, an argument can be of, to several exactly given which are then
mapped onto the actual ones the particular implementation language supports.

Apart from the three signature elements, IDLs bring some more elements,
the description to be more accurate1. We will itemize additional elements of
OMG CORBA IDL interfaces:

• modifiers in, out and inout of method arguments; the modifier inout
(which is used to indicate an argument which is used to input a value
into a computation and, simultaneously, to output a computed value from
the computation) is recommended to be used sparingly. This notion was

1note that method modifers public, private, protected are not used in interfaces (unlike in
classes) because all methods are inherently public

48

coined in Ada but it existed in the form of calls by value, name or result
in procedural programming languages from their origins.

• a method attribute oneway used to denote an asynchronous call of the
respective method; not part of CDL

• exceptions that methods can throw

• attributes — behave like properties, often compile to getter and/or setter
methods of the same name; they can be prefixed by a readonly modifier;
CDL contains properties, cf. [Mencl–98]

• type definitions

• context — a client can contain one or more CORBA context objects,
which provide mapping from identifiers onto string values; an IDL method
can specify that it must be provided with the clients mapping for particular
identifiers; not part of CDL

6.1.3 Additional features of interfaces

But this description of methods is not accurate enough yet. For instance, ac-
cording to [MowRuh–97], OMG recommends at least two pieces of additional
specification: better specification of the semantics of methods and classes and
the sequencing of operations in the IDL (i.e. communication modeling). Both
are typically specified informally by using plain textual description.

As mentioned earlier, in SOFA CDL, the latter is formalized into the notion
of interface behavior protocols. Every interface is now associated with just one
interface protocol. Although interfaces will be instantiated for reasons of higher-
level abstraction definitions, protocols are associated with interface types (cf.
[Visnov–99] for reasons). As a consequence, whenever we want to instantiate an
interface with another specification of communication capabilities, we must cre-
ate a new interface with the requested protocol, even if the interface is otherwise
the same as an existing one. This fact should be considered while deliberating
interface inheritance.

As for the former additional issue (the better formal specification of method
semantics), there are a lot of approaches to solve this problem in various lan-
guages. We discussed the frequently used approach of assertions in subsection
5.2.3 on page 43. Such an approach can influence the interface anatomy as well.
This approach adds constraints concerning method argument values and invari-
ants (relations among return values of methods and/or arguments of various
methods that must be valid in every use case) to interface definitions. For a
concrete example, cf. [BJPW–99].

Let’s emphasize again what mentioned in subsection 5.2.3: from the addi-
tional features of interfaces, we will consider the behavior protocols only in our
further deliberations because no other additional feature is an integral part of
SOFA CDL. In general, we will focus most of our effort on methods and other
elements will be considered only marginally.

49

6.2 Inheritance of interfaces in SOFA

6.2.1 Why interface inheritance is not straightforward

Adding inheritance to interfaces may seem quite simple. But since we have al-
ready in-depth discussed the notion of inheritance in Chapter 3, we know that
there are dozens of ways inheritance can be implemented and dozens of reasons
why we may want to do it. However, since interfaces represent the specification
— unlike classes that also represent the implementation — and can be viewed as
rather immutable windows through which we look at implementation objects,
many inheritance models used in full-fledged object oriented programming lan-
guages are often hard to use. For instance, as we have already stressed, there is
a wide acceptance of the opinion that the polymorphism, which can be achieved
due to the subsumption together with the notion of self and late bound message
dispatch, is the main asset of inheritance (although some people emphasize the
necessity to put the inheritance’s role in object oriented modeling above this).
Anyhow, this cannot be considered in the case of such static structures as inter-
faces. We have to find a suitable inheritance relation, probably based on a form
of subtyping, as indicated in Chapter 3. But first, we ought to reason whether
inheritance is suitable for component interfaces at all.

Let’s try to estimate the price/value ratio of the interface inheritance for
SOFA, i.e. how extensively the interface inheritance is supposed to be used and
what benefits it brings, in proportion to the price paid for the introduction
of this feature in terms of the language clarity, manageability, implementation
effort, usage overhead, etc. This estimation is not intended to be absolute but
only as a supportive aspect in our decisions.

6.2.2 The value of interface inheritance for SOFA CDL

There is a dispute whether inheritance should be used in component-based sys-
tems. For instance, in [SzyWec–96] it is recommended to investigate whether
(immutable) interface aggregation can replace subtyping. As an example of
such an approach Microsoft COM is presented for it relies entirely on non-
hierarchical, non-extensible, immutable interfaces. This fact is presented and
espoused in [EddEdd–99]. We will mention this topic also in section 7.2 while
speaking about inheritance of frames. However, now let’s notice that in COM,
interfaces themselves do not support any form of inheritance and they are sup-
posed to be immutable pieces that serve for purposes of functional aggregation
and composition. Only other IDL source files may be imported to a source file
(from which then header files and stubs are generated).

On the other hand, OMG CORBA IDL does support the inheritance of inter-
faces. It takes form of multiple inheritance, where IDL interfaces can be created
as descendants of other interfaces inheriting the attributes and methods of their
ancestor interfaces. Interfaces support multiple inheritance but only if ancestor
interfaces do not include definitions with identical names. This “undisciplined”
inheritance is subject of quite a strong criticism from many researchers and user-
s. Let us name, for example, prof. Markku Sakkinen who has been dealing with
the inheritance issues for a long time, (cf. e.g. [Sakkin–89]) and who generally
does not recommend to use pure multiple inheritance mechanisms.

We can see that various component models are split in opinions about the

50

interface inheritance value. But if we want to make an eligible decision, we have
to consider additional factors. The main factor is the real intended use of SOFA
component framework. The two main possible ways, proposals of concepts of
which are sketched in [Mencl–01], are also briefly mentioned in subsection 2.3.9.

Although the multitude of a legacy code already written in object oriented
languages which can be given a better specification and which can then be used
for composing component applications, speaks for the bottom-up approach, it is
generally more reasonable to tend to the top-down approach. Therefore, unlike in
the case of bottom-up approach, the interface inheritance can become handy for
conceptual modeling (cf. subsection 3.3.2) because while considering creation of
specifications, good capabilities of conceptual modeling become very important,
even though we admit that the main burden of a good application design is
assigned to components themselves.

As for other benefits, although expressive power of CDL obviously remains
the same (e.g. no subclassing-based polymorphism as in the case of classes), as
mentioned in the previous paragraph, it can bring new expressive forms (e.g.
conceptual specialization). Another advantage that is inherent to all inheritance
mechanisms and that can be considered as the practical part of inheritance in
the inheritance dichotomy as described in Chapter 3, is that it can save quite a
lot of typing effort. This is very handy especially in cases when only few features
are going to be added or redefined (e.g. most typically if we want to change the
interface protocol, add a new method or change a method signature).

6.2.3 The price for addition of interface inheritance to the
SOFA CDL

Any addition of any new feature to a programming language inherently brings
the aggravation of its clarity and manageability. The significance of this fact
grows very rapidly in cases when such a new feature affects the most fundamen-
tal cornerstones from which all higher-level concepts of the language are built.
And interfaces are such a case. Therefore, we will follow, especially in the case
of interfaces, the well-known KISS2 maxim and restrict the inheritance capabil-
ities only to justifiable cases. Practically, this means that we have, after a long
deliberation, found inappropriate to allow to redefine (i.e. change the signature
of) or remove an interface method, which means that we allow only such an in-
heritance mechanism that keeps quite a strict subtype relation between parent
and child interfaces.

When we look at the usable parts of the subtype relation definition in sub-
section 5.2.4, we realize that even allowing modifications given solely by the
signature rule can be confusing and can cause problems. For example, while
mapping such a modified descendant interface onto an implementation language:
if there is an ancestor interface and a corresponding class in the implementation
language, the descendant interface could not generally be mapped onto a des-
cendant of that class because many often used programming languages do not
support method signature modification in descendants. And as for the renam-
ing function, it is absolutely unsuitable in this case. Except for problems with
mapping of such renamed methods onto an implementation language like in the
previous case, there is also another problem: a descendant interface should be

2Keep It Simple, Stupid!

51

created with the basic semantic behavior compatibility in mind, and thus the
capability to change method names would bring too much freedom and lead to
disturbing this property.

This decision to use such a strict inheritance might seem to be quite dras-
tic but we have to realize that interfaces are grouped into a provides-requires
dichotomy in frames and they are further subjects of ties in architectures (cf.
subsections 4.2.5 and 4.2.4) which can be nested to an arbitrary finite depth
level. Allowing interfaces to change arbitrarily would be very messy in cases we
would like to create ties between frames containing different (but similar) inter-
faces and if we wanted the inheritance to be of help in compatibility decisions.

Behavior protocols can be considered to be the only exception to this rule,
because they can be automatically checked and the need for their change while
keeping the rest intact, can be quite frequent.

Now, let us discuss the implementation effort. The SOFA/DCUP implemen-
tation has to modified. If we consider solely interfaces, the modification affects
mainly the CDL compiler and the change should be realizable. However, if we
consider its influence on higher concepts and the inheritance mechanisms and
compatibility rules presented further in this work, the change will be quite
substantial. Therefore we have to decide carefully, so that the implementation
change could be a one-off effort.

And finally, as for the usage overhead, there will be almost none. SOFA/DCUP
component framework should know all available interfaces and, since the inter-
faces are specifications only, no message lookup is necessary and the interface
methods’ details (the design level specification) should be stored in type inter-
face repositories.

Discussing implementation price of inheritance, we have to think about an-
other aspect that was mentioned several times earlier: Should the concatenation
model or delegation model be used? These terms are explained in subsection
3.4.2. Even though they also affect message lookup, etc., we will reduce this is-
sue to a question if descendants ought to be dependent on their ancestors or be
self-contained. This depends highly on how the CDL is implemented and how
the mapping of those specifications created in CDL onto an implementation
language is done. If all interfaces were traceable from a repository and if there
were a requirement for a mapping homomorphism between specifications and
implementations (i.e. if the inheritance relation on interfaces homomorphically
corresponded to the inheritance relation on respective implementation objects),
we would recommend the delegation-based model.

6.2.4 Interface inheritance aimed at protocol replacement

We have already mentioned that interface protocols can be viewed as an integral
part of interfaces in SOFA CDL, albeit they are not obligatory parts of CDL
interfaces in the current implementation of the CDL compiler. But their use is
highly recommended in practical applications because they help with checking
the communication correctness. Therefore, we will handle protocols as obligatory
parts of interfaces. At this moment, a situation occurs when a form of inheritance
of interfaces becomes very handy because there often might be cases in which
we want to change a communication behavior of an existing interface without
changing the rest of the interface. For instance, we can imagine a situation when
an interface that originally allowed to use some methods only sequentially, wants

52

to extend possibilities of their usage by allowing their parallel execution.

Such an inheritance aimed at a protocol replacement may be advantageous for
two main reasons:

1. We need not write the whole interface again (which is a typical practical
reason for using inheritance in general).

2. We will be sure that the involved interfaces are really the same except for
protocols, without lengthy checking of all interface elements.

But there is a problem: if we have a requirement that a descendant must be a
subtype of its ancestor and if we subsumed protocols to the interface definition
then replacing one protocol with arbitrary another generally breaks that rule.
The question is if we want to subsume the protocol in the definition of subtype.

As for mapping, such two interfaces could be theoretically mapped onto both,
the same implementation objects (because only the rules how their methods are
allowed to be called, change) or the descendant can be mapped onto a sub-
class (reflecting the fact that changing communication behavior may change
implementation of that methods). However, the latter case should be avoided
by creating a completely new interface with changed method names which ex-
press the actual semantics more accurately. That’s why this aspect should not
represent a problem.

But if we wanted to automatically decide substitutability in higher-level
abstractions (e.g. i.e. an ancestor can be substituted by a descendant in provides
part of a frame and vice versa) then allowing arbitrary change of protocols should
be rejected.

We should only allow to define a new protocol in such a way that it has at
least the same capabilities as its ancestor. For example, if an ancestor allowed a
parallel execution of some methods, then its descendants should allow it as-well.
If an ancestor allowed a sequential execution only, then its descendants should
allow either sequential or parallel execution (because parallel execution can be
done sequentially by the requirement counterpart in an architecture). We prefer
this purer solution even though it decreases number of situations in which such
an inheritance will be used.

Notice that according to [PlaMik–97] — in which sound enrichment rules for
protocol inheritance are introduced — this form of inheritance in which existing
communication of methods is modified (even by pure extending capabilities)
and not only “soundly enriched” (which requires preserving ancestor “flavor” in
descendants), is prohibited. However, we believe that descendants should have
the same properties and capabilities as their ancestors and possibly some more,
which is satisfied in the case proposed by us as well.

We will consider only a mechanism which uses a single inheritance because
the intended result is to have an interface with a different protocol.
The syntax could look like this:

interface InterfaceName
inherits InheritedInterfaceName redefines protocol

{
the definition of a new protocol goes here...

}

53

The semantics of this code is straightforward: we have a new interface Inter-
faceName which is otherwise the same as the InheritedInterfaceName except for
a different protocol which has to allow at least the same communication as the
original protocol.

Of course, some minor problems may appear which should be solved quite
easily. For instance, defining a new interface with the same protocol as the
original one or as another existing interface, i.e we will have completely identical
interfaces with different names only. Such situations are a bit confusing but
otherwise harmless and could be solved by repositories.

6.2.5 Interface inheritance aimed at protocol modification

Now, we may want to take advantage of a modification (not a complete replace-
ment) of protocols. The two advantages enumerated in the previous subsection
will generally remain preserved but they a bit change their weight: an inheri-
tance aimed at a protocol modification may (or may not) save time necessary
for writing the protocol code, but it surely more explicitly shows changes made
to the protocol. This can be also useful when deliberating compatibility of in-
terfaces.

We will aim at the same thing as in the previous subsection (with preserving
the same properties of the inheritance relation), however using a bit different
mechanism which has some additional properties (e.g. explicitly shown incre-
mental modification) but which also is a bit more demanding.

We will take the ideas of enrichable protocols introduced in [PlaMik–97] as
an inspiration, however, we will omit some of their properties and allow modi-
fication of existing communication of methods in such a way that descendants
have at least the same capabilities (as presented in the previous subsection).

The syntax could look like this:

interface InterfaceName
inherits InheritedInterfaceName modifies protocol

{
OriginalProtocolSubexpression1 ; NewProtocolSubexpression1;
OriginalProtocolSubexpression2 ; NewProtocolSubexpression2;

....................................
}

This code has the following semantics: we inherit all elements (including a pro-
tocol) from InheritedInterfaceName but we consider a modified protocol to be a
valid part of the new interface. The modification is done by marking parts of
the original protocol which are to be changed (here denoted as OriginalProto-
colSubexpressionX) and replacing them with new subexpressions (here donoted
as NewProtocolSubexpressionX).

The protocol elements consist of method names (upon which the unary and
binary operators as presented in section 4.3 are defined) and those elements
appear just once in the protocol. We can always select a subexpression that is
unique in the protocol and modify it. Notice that also the whole protocol is a
subexpression and it is unique for sure. That is why we can disallow the protocol
replacement from the previous subsection as redundant and, for better clarity
and simplicity, allow only this modification mechanism.

54

We should ensure that this modified protocol satisfies the subtype relation,
which assumes two basic steps:

1. We must ensure that all methods of the interface will be contained in the
resultant protocol.

2. We must ensure that the new protocol preserves and possibly extends the
communication capabilities of interface methods

This should be secured by the CDL compiler which should have the capabilities
to parse such modifications, internally creating a new protocol, and to compare
it with the list of interface methods to find if there is any missing, and subse-
quently, by comparing the languages generated by the original (pointer to which
must be kept if delegation inheritance model is involved) and the new protocols,
the compiler decides the latter property. This is usable even in a general case
(some new methods which are reflected in the protocol, are added), which will
be discussed in the next subsection.

The fact that the protocol modification-based inheritance is usable in a gen-
eral case, is important because we admit that this limited version of inheritance
(for purpose of changing protocols increasing interface communication capabil-
ities) will not be used too often.

Another consequence of this approach is that the inheritance direction mat-
ters, which may be in cases of protocol modification confusing. We will present
it using an example, for which purpose we use a fragment of the CDL example
created in section 4.6.
The original protocol has the following form:

protocol: (Deposit + Withdraw + Transfer)∗

We will denote the modification in this way:

interface ITAccountManipulationWithWeakTransfer
inherits ITAccountManipulation modifies protocol

{
Transfer ; Transfer ; Withdraw

}

The resultant protocol is then: (Deposit + Withdraw + Transfer;Withdraw)∗.
Notice three things:

1. The new protocol limits the capabilities of the original protocol (after the
method Transfer, the method Withdraw must be called — in the original,
an arbitrary method was allowed), that’s why this use of inheritance is
forbidden!

2. This change of the protocol assumes different semantics of the involved
interface methods — it assumes that the method Transfer only checks
whether the transfer of the given amount of money is allowed and imple-
ments the transfer, nevertheless it is not able to decrease the transferred
money from the account and assumes the Withdraw method is called.

3. If this inheritance had been done vice-versa, it would have been (at least
formally) O.K.

55

The second item may seem a strong argument against possibility of such a
protocol modification and for allowing only its sound enrichment in cases some
new methods are added (which is discussed in the next subsection). But we
believe that the component designer should be given a possibility to free decide
whether the semantic changes are so significant that creating a new interface
from the scratch is the preferred solution or whether it is sufficient to use a
protocol modification of an existing interface.

6.2.6 Interface inheritance in general

Now, we are going to reason the interface inheritance in general. It should involve
the complete structure of interfaces, however, as we have already mentioned, we
will focus on methods because other interface elements are used only rarely.

We have already argued for the refusal of allowing other interface modifica-
tions than those that preserve the subtype relation because this property can be
useful further while using interfaces in higher-level abstractions. Moreover, we
have emphasized that inheritance should be primarily used for the conceptual
modeling purposes in cases of specification languages.

One of the major questions is what inheritance mechanism should be used
because some of them are intrinsically excluded from the nature of interfaces.
From the seemingly usable ones, especially the mixin inheritance comes to mind
(cf. subsection 3.4.6). However, we argue that mixin inheritance — and the same
goes for any form of multiple inheritance(!) — is not suitable for interfaces be-
cause interfaces should represent small well-defined specifications of services and
their combination is inappropriate for the interface level because the interface
concept in SOFA is much closer to mixins themselves (as independent pieces
of functionalities) rather than combinations of functionalities represented by
often pragmatic use of inheritance in classes. This combination should be ac-
complished in frames by instantiating (as required or provided) all interfaces
that would be otherwise combined by multiple inheritance. Mixin inheritance,
moreover, introduces mixins as new types of limited non-self-contained classes
(interfaces in our case). Such a concept is quite nonsensical and confusing in
this case.

Therefore, we propose only a classical single inheritance that preserves the
subtype relation and that should be used primarily for creating conceptual spe-
cialization hierarchies of services.

Now, we should reason how the subtype relation for these CDL interfaces
should be constructed. Let’s discuss three basic forms we have already come
across:

1. Inheritance that preserves all method signatures of all methods from an
ancestor and that may add only new ones.

2. The same as in the previous case except for possible changes of method
signatures in descendants in compliance with the Signature rule (cf. sub-
section 5.2.4).

3. The same as in the previous case except for possible renaming of methods.

As already mentioned, the third option is an outsider. But first some advan-
tages. There are situations when such a renaming would be useful. For example,

56

some methods of an descendant may change semantics a little and the renaming
may be used to describe this subtle change.

But there are a lot more disadvantages. The practical implementation of the
renaming function is intolerably hard and would increase complexity of such
inheritance. Besides, such an inheritance would be confusing. Another disad-
vantage is that such a renaming may be misused (improperly renamed methods
that do not semantically relate but have only an accidental signature compli-
ance). Also the mapping onto implementation objects and substitutability would
be uneasy. That’s why we reject this possibility.

Compared with the first option, the second option is much more acceptable:
the inheritance form will be more difficult only slightly (only a few more inheri-
tance correctness checks in the CDL compiler), possibly no additional syntactic
requirements, substitutability of interface inheritance-based hierarchy in com-
ponents should also be probably possible (we will discuss substitutability in the
next chapter).

Mapping onto implementation objects preserving inheritance relation would
generally be quite problematic (as discussed earlier). The possibility of misuse
still remains but on an acceptable level.

The first option is the most conservative one and its main advantage is its
simplicity. Besides, it is the least misuse-prone solution (it is closest to the notion
of strict inheritance from all three options). Mapping to implementation objects
should be O.K. as well, even for OOPLs that require descendants to preserve
their ancestors’ method signatures.

If we estimate how these three options compare from the viewpoint of usage
increment, we argue that for correct usage, the increment between options one
and two is quite low and between options two and three even lower (cases of
incorrect use, on the contrary, increase significantly).

We summarize this discussion using a table:

Implem. ease Lucidity Correct usage Mapping Corr. uses accrual Substitutability Semantic accur.

1
st

Excellent Excellent Excellent Excellent N/A Good Low

2
nd

Good Good Good Possibly problematic Satisfactory Good Low

3
rd

Unsatisfactory Unsatisfactory Satisfactory Difficult Low Difficult Excellent

From this table, we can conclude that the most conservative inheritance form
is probably the best.

6.2.7 Complete interface inheritance — the final form

As for the syntax of the interface inheritance, we will follow the syntax proposed
for the inheritance aimed at protocol modification earlier in this chapter and
we will unify the protocol modification and addition of methods in a single
inheritance mechanism.

We will disallow the protocol replacement as considered in subsection 6.2.4
and we will allow only the protocol modification as suggested in 6.2.5 because
replacement can be done by a modification of the whole protocol. Notice that
the modifies protocol keyword is obsolete because there is no other option.
That is why we will not include this keyword in the final form of the proposed
inheritance.

57

In the previous subsection, we decided to use the form of inheritance that
only allows to add some methods in descendants. The same may go for attributes
(which is not supposed to be used often). We could also allow the Exception
rule (defined in subsection 5.2.4).
We suggest the following syntax:

interface InterfaceName
inherits InheritedInterfaceName

{
AddedMethodHeader1;
AddedMethodHeader2;

....................................

OriginalProtocolSubexpression1 ; NewProtocolSubexpression1

OriginalProtocolSubexpression2 ; NewProtocolSubexpression2

....................................
}

The notation has the following semantics: a newly created interface Interface-
Name inherits all elements (including the protocol) from the InheritedInterface-
Name, in addition to that, new methods are added and the protocol is modified
similarly as shown in subsection 6.2.5.

Newly added method names must be different from the inherited method
names because method overloading is not allowed in SOFA CDL (likewise in
CORBA IDL), because there exist implementation languages that do not sup-
port method overloading (cf. Chapter 4).

Before we finish this section, we will present a simple example. The example
uses an interface taken from the large CDL example in section 4.6:

interface ITAccountInformation
{ string GetCustomerID(in long account);
string GetAccountType(in long account);
currency GetBalance(in long account);
currency GetOverdraftLimit(in long account);
long GetCreditCard(in long account);

protocol: GetCustomerID∗ || GetAccountType∗ || GetBalance∗ ||
GetOverdraftLimit∗ || GetCreditCard∗

}

Now, we will create a more specialized interface which can be used in the cases,
when the current account state can be surveyed (which does not have to be
allowed in all cases).

interface ITAccountExtendedInformation
inherits ITAccountInformation

{
int GetAccountState(in long account);

GetCreditCard∗ ; GetCreditCard∗ || GetAccountState∗

}

58

Chapter 7

Frame-level problems

In this given situation, it is difficult
to decide which sorting algorithm is better.

— Prof. Donald Ervin Knuth (1973)

We introduced the CDL component template frames in Chapter 4 while
introducing the SOFA/DCUP project. Now, our goal is to analyze issues con-
cerning inheritance at the frame level. But first, we also mention some issues
concerning substitutability.

7.1 Substitutability of SOFA components

This section will present the only substitutability relation considered in SOFA
framework so far and elaborate it a bit. We would like to emphasize that this
is an initial attempt to introduce a bit more formalized views of some of the
SOFA CDL abstractions and that substantial elaborations and revisions might
be done in the future.

7.1.1 Why we need substitutability

As mentioned in Chapter 4, one of the main goals of the SOFA/DCUP project is
to create easy-to-compose and easy-to-upgrade components (for the component
definition, see subsection 2.3.1).

Regardless of the philosophy of the SOFA framework usage, it is clear that a
lot of components will not be created to be directly bindable and that new en-
hanced versions of existing components with extended or corrected functionality
will appear. It implies that we have to deal with the problem of components of
which services and possible contracts need not fully correspond but that should
cooperate. Now, let’s introduce the only type of substitutability considered in
SOFA framework so far (for example here [Mencl–98]) and let us try to make it
more precise.

7.1.2 A simple subtype relation on frames

Let there be two components which are otherwise the same except one compo-
nent provides the same and possibly more interfaces than the other and requires

59

the same or possibly less interfaces than the other. Then, such a component can
substitute the other.

Let us formalize and generalize this notion by introducing a bit more rigorous
terminology. We will try to show that frames can form a CPO which is a stan-
dard notion in the domain theory (cf. [Zlatus–93]) and even that they form a
lattice.

Let UI denote an infinite but countable set of all possible interfaces. Since we
are going to deal with real life problems, let I ⊆ UI denote a set of all actually
existing interfaces (i.e. interfaces created so far). The cardinality of this set can
increase with the time passing but since, at any point of time, there cannot be
infinite number of actually existing interfaces, we can be sure that I is a finite
set.

We would like to define the notion of the component frame using the set
I. But there is no straightforward way how to do it because a frame can be
constituted from repeating instances of the same interfaces. Therefore, we use
a method analogical to that in the previous case: we denote UF the universe
of all possible component frames and F a finite set that represents its restric-
tion to all really existing frames. Moreover, we denote T a set of all individual
interface instance names that any existing frame consists of (prefixed with re-
spective frame names to ensure that the names are unique) and M a multiset
of corresponding interfaces (i.e. interface types). This ensures that we will deal
with at least all existing frames in our further considerations and, at the same
time, we will stay in finite domains. Now, we can particularize1 the notion of
component frame using M:

Observation 1: Let M be a multiset of all interface types of interface in-
stances in any existing component frame. A component frame can be viewed as
ξ ∈ 2M× 2M. We label the set of all possible thus defined frames Ξ ≡ 2M× 2M.

Let’s realize that this definition makes all frame types with the same sets of in-
terfaces identical. This makes sense because it corresponds to the structural
equivalence of types as discussed in subsection 5.2.2 and it can be done without
detriment to universality and it is important if we want to consider theoretical
properties of frames. Further notice that if we apply the structural equivalence
to F and denote the resulted subset FSU , then FSU ⊆ Ξ, i.e. all existing frames
structurally unified can be viewed in such a way.

We can also define the first and the second projections which extract the
provides respectively requires interfaces of the given frame.

Definition 2: Let M be a multiset of all interface types of interface instances
in any existing component frame and ξ a frame. We define a function

ψ : 2M × 2M → 2M

in such a way that ∀ ξ ≡ (P,R) where P is a set of its provides interfaces and
R is a set of its requires interfaces, it returns P. Similarly, we define

ρ : 2M × 2M → 2M

1although not define

60

as a function that returns (in the case above) the set R representing the requires
interfaces of the frame ξ.

Now, we are ready to define the relation mentioned in the beginning of this
subsection:

Definition 3: Let Ξ be the set of all frames. We define a binary relation ≺⊆
Ξ× Ξ in such a way that ξ1, ξ2 ∈ Ξ are in relation (ξ1, ξ2) ∈≺ iff

ψ(ξ1) ⊆ ψ(ξ2) ∧ ρ(ξ1) ⊇ ρ(ξ2)

We will use the infix notation for this binary relation in further text, i.e. we will
write ξ1 ≺ ξ2 instead of (ξ1, ξ2) ∈≺.

Lemma 4: ≺ is a reflexive, antisymetric and transitive relation on Ξ× Ξ.

Proof:
Ad reflexiveness: We have to show that ξ ≺ ξ holds for any ξ. This is obviously
true because S ⊆ S and S ⊇ S holds for any set S.
Ad antisymmetry: We have to show that for ξ1, ξ2 ∈ Ξ the following holds:
ξ1 ≺ ξ2 ∧ ξ2 ≺ ξ1 ⇒ ξ1 = ξ2. This is true as well because S1⊆S2 and S2⊆S1

implies S1 = S2 for any sets S1 and S2. Correspondingly, we can show it for ⊇
in the second part of the conjunction.
Ad transitivity: We have to show that for ξ1, ξ2 , ξ3 ∈ Ξ the following holds:
ξ1 ≺ ξ2 ∧ ξ2 ≺ ξ3 ⇒ ξ1 ≺ ξ3. This is also true because S1 ⊆ S2 and S2 ⊆ S3

implies S1 ⊆ S3 for any sets S1, S2, S3. Correspondingly, we can show it for ⊇
in the second part of the conjunction.

2

Theorem 5: (Ξ,≺) is a complete partial order.

Proof: In Lemma 4, we have proven that ≺ is a reflexive, antisymmetric and
transitive relation on Ξ× Ξ. Now, we have to show that

1. There is a smallest element (labeled ⊥) in the set Ξ such that ⊥ ≺ ξ for
any ξ ∈ Ξ.

2. For any string Υ ⊆ Ξ there is a supremum tΥ ∈ Ξ.

ad 1: We can find the smallest element as an element ⊥ for which

ψ(⊥) = ∅ ∧ ρ(⊥) = M

ad 2: Since there are only finite number of elements in our relation, also any
string consists of finite number of elements. The highest (most defined)
element in the string is then the wanted supremum.

2

Theorem 6: (Ξ,≺) forms a lattice.

Proof: We need to show that any subset of elements has an infimum and a

61

supremum. This can be achieved in such a way that for any ξ1, ξ2, ...ξn ∈ Ξ we
can find the wanted supremum > as such an element for which

ψ(>) =
⋃
ψ(ξ1), ..., ψ(ξn) ∧ ρ(>) =

⋂
ρ(ξ1), ..., ρ(ξn)

and the wanted infimum ⊥ as such an element for which

ψ(⊥) =
⋂
ψ(ξ1), ..., ψ(ξn) ∧ ρ(⊥) =

⋃
ρ(ξ1), ..., ρ(ξn)

2

Corollary 7: The Theorem 6 implies that there is a supremum > of all frames
which can be found as

ψ(>) = M ∧ ρ(>) = ∅

Taken ad absurdum, we can have only one component that can substitute all
other components. Practically this, of course, does not make sense because then
no components are needed and the intrinsic idea of the component-based ap-
proach is sublated. Therefore in real situations, components with a suitable
weight are to be used (cf. subsection 2.3.5).

However, the lattice describes a structure of components from the viewpoint
of substitutions. Such an idea can be practically useful within a particular archi-
tecture for substituting existing components for components with e.g. enhanced
functionality or when we need to replace an existing component deployed at a
node that is to be shut down or unsafe, etc. or a component with expired license,
etc. with “similar” conforming one elsewhere on the SOFAnet.

7.1.3 Roles of behavior protocols in substitutability

Since the introduction of CDL in [Mencl–98], where the simple subtype relation
from the previous subsection was informally mentioned, the language has been
going through a lot of changes that have to be taken into consideration for the
good solution of the substitutability. As many times mentioned, one of the most
important change was the introduction of the notion of behavior protocols in
[Visnov–99].

Thus the substitutability of frames can be defined from the behavior proto-
cols viewpoint using the notion of protocol conformance. Using this notion, we
have a particular frame protocol and any frame, all interfaces’ interface protocols
of which conform to the frame protocol, can be used in a component in specifi-
cation of which this frame protocol appears. See subsection 4.3 or [PlaVis–02]
for details. Such frames can be used (in the component with a particular frame
protocol), interfaces of which do not violate the behavior determined by the
frame behavior protocol. Intuitively, a frame protocol can allow at most the
same communication on its requires interface instances (the output in commu-
nication ties) as respective interface protocols allow (so that a counterpart in a
tie was able to fulfill it) and at least the same communication on its provides
interface instances as the respective interface protocols allow (so that it could
fulfill all communication required by a counterpart in a tie).

62

7.2 Inheritance of frames

The previous chapter is devoted to interfaces and particularly to establishing
interface inheritance rules. Now, we will try to establish inheritance rules for
the higher-level notion — frames.

To be able to do that, we have to understand the role of frames in the
component creation. So let us recall that component frames can be understood
as black-box views of components and serve for defining sets of services that are
both provided by the component to the environment (recall that components
are units of independent deployment) or required from the environment so that
the component was able to provide the promised services. This defining is done
by instantiating interfaces in the provides section respectively requires section
of frames. Also recall the end of the previous section in which we discussed the
notion of frame behavior protocol and its conformance to the interface protocols.

Before proposing any solution, we will discuss several approaches to the
frame inheritance and estimate assets and troubles each of the approaches
brings.

7.2.1 Inheritance as a pure frame composition — initial
reasoning

When we discussed interfaces, we stressed that interfaces are intended to specify
small, well-designed services and that combination of such services is the task
of a component designer. Frames are just the place the service composition is
done.

The question arises, how many services a component should provide (and
proportionally require). This question is a subject of discussions. This fact in-
fluences also the number of components an application is composed of. For in-
stance, Clemens Szyperski in [Szyper–00] speaks about component introversion
(in cases an application is composed of one or two self-contained components)
and component extroversion (in cases an application is composed of many com-
ponents) — confer section 2.3 for more information about this topic. One of
possible strategies is that components should be as small as possible (i.e. they
should provide one or two services and require only services that those provided
services demand). This strategy is good for some cases and brings its advan-
tages (e.g. finer capability of updating), but on the other hand, in some cases
the communication overhead would be unbearable.

Therefore, the natural idea of solving the granularity problem is to use in-
heritance. In such a case, a composition (or mixing) of smaller components (as
a whole) is suitable.

However, SOFA component model — in fact, most component models —
already has a different mechanism that at least partially solves this problem. A
component template is a pair < Frame,Architecture >. Each single frame can
be associated with a lot of architectures, namely compound architectures that
aggregate (instantiate) subcomponents. We should realize the fact that frame
provisions do not determine frame requirements because in different architec-
tures various subcomponents can be instantiated and those subcomponents can
have different requirements (which can be fulfilled using various combinations
of subsume/bind ties).

63

Therefore, we will try to find if there is a solution that can be used even
more frequently than the pure frame combination to maximize the price/value
ration of the inheritance.

7.2.2 Frame modification and its impact on architectures

Components are composed and then modified quite often, therefore, as for the
value, it will be maximized if we allow composition of frames and their subse-
quent modification (i.e. adding and defeating interfaces).

Let’s have T ≡< F,A > a component template with a frame F and an ar-
chitecture A. What happens if we create a frame F ′ by adding another interface
into the provides part of F? First observation is that this modification makes
sense: we provided a component with one more ability requiring no additional
services. The second observation is that if the architecture is not primitive, this
modification inherently coerces modifications of the architecture A because the
architecture must describe this provision. The only way how the modification
can be done is delegating this provision to a subcomponent but this delega-
tion can be done arbitrarily (instantiating a new subcomponent, utilizing an
exempt interface in a subcomponent, rearranging all ties or delegating already
tied interface (which is supported by connectors)).

As for adding an interface instance as a requirement, the situation is sim-
ilar. This modification again coerces (for compound architectures) rearranging
of the architecture because if the component originally worked, the additional
requirement makes sense in cases a subcomponent that provided such a service
is not available or a subcomponent must be replaced with a subcomponent with
more requirements, etc.

Ergo, if we are given a component template, after a modification of its frame,
we cannot unambiguously adjust the associated architecture to correspond to
the new frame. Anyway, a new component is created but it can have various
architectures.

However, since it is quite natural that from the black-box view a gray-box
view cannot be foretold, it is OK to consider frame inheritance without archi-
tectures on mind, even though it would be advantageous in many cases.

7.2.3 Frame inheritance with independent provisions and
requirements handling

If we consider the objection against the pure frame combination from subsection
7.2.1 that requirements are not always dependent on provisions, the natural idea
is to allow to inherit provisions and requirements separately. We could use mul-
tiple inheritance which would work as a union of interface types (more instances
of the same interface types are unnecessary because connectors allow multiple
ties). To avoid interface instance name collisions, a rule can be established that
all interface instances are suffixed with names of their original frames and in
cases of the same interface types in more ancestor frames, the instance name of
the interface from the frame which is declared earlier in the descendant, is used.

Moreover separate interfaces could be independently added to both provi-
sions and requirements. Thus, we get a selective — or better semi-selective —
inheritance mechanism (cf. subsection 3.4.5) because we can select parts of the
frame we inherit, albeit with a very coarse granularity — only three choices:

64

requirements, provisions or both; not single interfaces — that is why we termed
it semi-selective.

Advantages of such a solution are obvious: frame provisions form usually a
functional unit that can be inherited as a whole, frame requirements may be
inherited from the same frame as well (thus we obtain a classical frame combina-
tion) or may not and we can add some requirements manually. Notice that the
interface-level granularity makes no sense because it is the same as the manual
addition of interfaces.

We have even proposed a syntax for this inheritance mechanism:

frame ComponentName
{ provides:

inherited InheritedComponentName1, InheritedComponentName2,;

InterfaceType1 interfaceInstance1;
InterfaceType2 interfaceInstance2;

....................................
requires:

inherited InheritedComponentName3, InheritedComponentName4,;

InterfaceType3 interfaceInstance3;
InterfaceType4 interfaceInstance4;

....................................

protocol:
the definition of protocol goes here;

}

We can use a very simple demonstrational example of case of use of such an
inheritance mechanism. This example is based on the CDL example from section
4.6.

We will consider the frames Teler and SuperIntendent which provide interfaces
needed for a typical bank teller activity and an interface for a superintenden-
t activity, respectively. Let us assume that there is a need for merging these
two activities in order to equip the superintendent with the common teller ca-
pabilities (or vice versa). A frame for such a component can be created from
the scratch or inheriting both provisions and manually adding requirements, or
inheriting both provisions and both requirements (using name conflicts solving
by union) or inheriting requirements from only a single frame. We will choose
the last case:

frame SuperTeller
{
provides:
inherited Teller, Superintendent;

requires:
inherited Superintendent;

protocol:

65

// protocol goes here
}

This inheritance mechanism is undoubtedly the most flexible mechanism
that could be proposed, however this fact brings a lot of drawbacks. First,
inheritance should be preferably used only for justifiable purposes, especially
for conceptual modeling, not for pure convenience. Also, it should be considered
how the inheritance affects other involved abstractions. Moreover, these facts
should be considered:

1. Since a frame should be created after a profound analysis, we will want to
keep even the requirements in most cases, despite the fact that generally
requirements can be arbitrary.

2. Frame protocols cannot be generally automatically modified and must be
created from the scratch in the descendant again.

The latter fact is quite serious. From all these reasons, we reject this form of
inheritance too.

7.2.4 Frame inheritance and frame protocols

After rejecting the previous suggestion of frame inheritance, we will examine
the role of behavior protocols in the inheritance. Frame protocols tie provisions
and requirements of the frame together by — as defined in [PlaVis–02] — spec-
ifying the acceptable interplay of method invocations on provides interfaces and
reactions on requires interfaces.

Inheritance can address several (antagonistic) issues:

1. Similarly as in the case of interfaces, we may want to use inheritance to
modify protocols (keeping the same provisions and requirements).

2. We may want to use inheritance to create frames with the same protocol
but with some of the interface types replaced with compatible ones (i.e.
the frame protocol must conform to the interface protocols of the new
interfaces).

3. We may want to use a functional unit combination (using a frame combi-
nation) and, having ensured that interface instances are univocally named,
automatically combine frame protocols of ancestors.

4. We may want to add individual interfaces. This addition coerces changes
in the frame protocol.

However, unlike the interface protocol, the frame protocol modifications (re-
quired in the cases one and four) are quite complicated because events (method
names suffixed by the interface instance names) can often repeat in the pro-
tocol and generally cannot be modified uniformly. That is why the complete
protocol replacement must be utilized, which is the same case as in the previous
subsection that we rejected.

Case two keeps the frame protocol intact and replaces only interfaces. Note,
that this to be true, we must preserve even the interface instance names and

66

change only the interface types. Otherwise a mechanism must exist which re-
names the event in the protocol. This use of inheritance may be quite useful.

As for the case three, there may appear some problems inherent to the frame
combination, especially naming problems. If two interface instances have the
same name (but different type) and we want to automatically combine original
protocols into one protocol joining the distinct protocols by a binary operator,
we have to use both such event names referencing its own type. However, since
it is a problem of the frame combination as such, it has to be solved by using
some renaming techniques in the descendant.

Otherwise, this case seems quite useful, albeit it still has some drawbacks.
Some of them were mentioned in subsection 7.2.1. We are allowed to use only
whole existing frames without possibilities of their modification (such a modifi-
cation would coerce the protocol modification). This is useful for composition of
components and creating frames architecture of which may use some ancestor
frames as subcomponents. We will elaborate this case in the final proposal for
the inheritance of frames.

7.2.5 Mixin inheritance and frames

Mixin inheritance may seem to several issues including the issue of naming
conflicts and granularity. Mixin inheritance should be as for its effect very similar
to the classic frame combination but mixins are supposed to have even finer
granularity than frames, albeit we said that frames should be composed from
the most simple functional units as well.

Let us recall from subsection 3.4.6 that we recognize three types of ab-
stractions concerning mixins: base parent classes (common frames in our case),
mixins as small functional units that are combined with a parent frame and the
result of this combination. This is very confusing per se, not to mention their
coexistence with a lot of other abstractions in the SOFA CDL. However, this
fact may help to solve naming conflict problems.

Of course, a very important question is how to define a mixin in this case, es-
pecially how this mixin should differ from a classic frame. To justify the addition
of two other abstractions to the CDL, mixins must bring a lot of advantages.
The challenge is to create mixins in such a way that they are able to adjust the
parent frame protocols automatically and enable the communication between
them and the original frame. However, even in such a case, the drawbacks caused
by introducing these abstractions into the CDL will be very significant. That is
why this type of inheritance may be a subject of further research, however, we
will reject it for now as well.

7.2.6 The final proposal for the frame inheritance mecha-
nism

If we look at what we have already gone through, we can see that there is no
optimal solution — all solutions have their significant pros and their significant
cons. Since the requirement for the automatic modification of frame protocols
seems crucial, we will consider only cases two and three from the enumeration
in subsection 7.2.4. This means that we allow the interface type replacement for
a compatible one and we return to the original idea of combining frames, which

67

is a reasonable use of inheritance. But we want to find a unified view for both
types of uses of inheritance using a sole inheritance mechanism.

The notation should allow to specify interface instance names, types of which
are to be changed. The inheritance should be of the concatenation type (see
subsection 3.4.2) because frames have no direct implementation consequences
(unlike interfaces) and they are used solely for specification purposes.

Now, we look at the problems concerning name collisions. Three collisions
may appear:

1. Name collisions of interface instances of the same name and same type in
various ancestors.

2. Name collisions of interface instances of the same name and different types
in various ancestors.

3. Name collisions of interface instances of the same name in the opposite
frame blocks of various ancestors regardless of types (one interface is in-
stantiated as a requirement and the other is instantiated with the same
instance name as a provision in another ancestor).

There are several approaches to this problem. One is to suppose that these
cases should not happen and reject them (consider them as compile-time errors),
second is to rename the interface instances or a different approach can be applied
to each of the name collision types. The renaming as such is quite easy because
the inheritance is of the concatenation type. Interface instances can be renamed
selectively or globally.

The final decision should be made after the CDL implementation is exam-
ined, however, for now we tend to the global renaming of interface instance
names as the safest solution. All interface instance names should be suffixed by
the name of the ancestor frame from which the respective interfaces come. Note
that we forbid the case of direct inheriting more frames of the same name. Since
the inheritance is not supposed to be too deep, the names should have a reason-
able length. This solution also ensures that all interfaces from the ancestors are
part of the descendant, which may become handy in some cases. This renaming
should be also internally reflected in the protocols and externally when using
these interface instance names in architecture ties.

Thus, we allow multiple inheritance under conditions described in the previ-
ous paragraph. All interface instance names are renamed by suffixing with the
original component names. Moreover, we allow the replacement of interfaces for
the compatible ones. Thus, a compile-time check must be done in cases of re-
placing interfaces, whether the frame protocol really conforms to the interface
protocols of the new interfaces.

To summarize it, the final frame will consist of provisions given by the union
of renamed provisions of the ancestor frames, requirements given by the union
of renamed requirements of the ancestor frames and a protocol which is created
from the protocols of ancestors combined by explicitly specified operators. More-
over, optionally, the frame can also consist of some interfaces substituted with
compatible ones (such a compatible interface does not require modifications of
protocols).

This unifies the frame composition with the interface substitutability because
in the case when we want solely a replacement of some interfaces, we use this

68

inheritance with the original frame as the only ancestor. Thus we get the unified
view.

The proposed syntax is as follows:

frame ComponentName
inherits InheritedComponentName1, InheritedCompoentName2,;

changes InterfaceInstnance1:: OriginalInterfaceType1 =⇒ NewInterfaceType1 ,
InterfaceInstnance2:: OriginalInterfaceType2 =⇒ NewInterfaceType2 ,

....................................
protocol:
InheritedComponentName1 binary operator InheritedComponentName1 ;

By allowing the option of choosing a binary operator (from operators shown in
subsection 4.3.1), we give the option to better control the way how the frame
will be used. Most used binary operators will be the alternative operator, the
and-parallel operator or the sequence operator.

As for the example of a typical usage of the proposed frame inheritance
mechanism, see Chapter 9 which is devoted to a case study in which proposed
inheritance mechanisms are used.

69

Chapter 8

Architecture-level problems

Now, we are reaching the most intricate part of the component specification in
the CDL — the gray-box view of components. This specification level shows
the particular design of the topmost level of components by instantiating sub-
component frames and specifying communication. Or an architecture can be
primitive, i.e. flat, implemented in an underlying implementation language. See
subsection 4.2.5 on page 29 for details.

8.1 Summarization of issues

As for the architectures, generally two quite orthogonal issues have to be dis-
tinguished: the substitutability and the inheritance.

8.1.1 Substitutability

Substitutability can be dealt with on two related levels:

1. Connectivity — on what conditions the requirement-provision, require-
ment-requirement and provision-provision ties can be established.

2. Frame substitutability — on what conditions a subcomponent of an
architecture can be replaced with another one.

As for the connectivity, it seems appropriate to set rules for ties between
interfaces of different types. Here, we summarize the possible situations:

• ties of two interfaces that have the same interface operation signatures
except one can contain some additional ones; in other words, we are inter-
ested in situations, where one interface is a subset of the other (let’s call
it subinterface); this case can be split into two subcases:

3 the subinterface is instantiated in the requires part of a frame

3 the subinterface is instantiated in the provides part of a frame

• ties of two interfaces that have the same operation names except for that
their signatures might differ; let’s split it again into four subcases:

70

3 interfaces have the same operations except for one interface con-
tains an operation with less parameters than the corresponding operation
in the other interface

3 interfaces have the same operation except for one interface contains
an operation with a parameter of a type that is different from the type of
the corresponding parameter of the corresponding operation in the other
interface

3 the same case as the previous one except for one of the different
types is a subtype of the other

3 interfaces have the same operations except one operation’s para-
meter differs in in/out/inout modifiers

We should consider these cases separately for each of the three ties (subsump-
tion, delegation and the internal tie between subcomponents). Moreover, arbi-
trary combinations of these (sub)cases can occur in real situations. The way of
handling occurrences of such cases is then the logical conjunction of restrictions
of the individual cases.

As for the replaceability of frames, we have partially discussed it in section
7.1 on page 59 while dealing with frames. However, we will elaborate it a bit
and apply conclusions from the connectivity aspects.

8.1.2 Inheritance

The main goal, however, is to propose an inheritance mechanism for architec-
tures. This includes discussion of possibilities of combining two or more archi-
tectures together or constituting an architecture as an enrichment of another
architecture. This requires classification of architectures and careful deliberation
of possibilities.

8.2 Connectivity and conformance of ties

Let’s discuss the connectivity problems first. This terminology is used in
[LuVeMe–00] but we will use terms interface conformance and frame confor-
mance which are closer to the terminology used in the SOFA/DCUP component
model.

As to the author’s knowledge, so far, no paper describing SOFA/DCUP
component model has explicitly mentioned what kind of interfaces can be tied
and, generally, it has been considered that two interfaces of equal type are to
be tied (albeit protocols may allow more). Since this topic concerns the main
goal of this chapter (the inheritance) only indirectly, we will present only a
limited reasoning about this topic as an illustration, using the case of interfaces
in strong suptype relation.

8.2.1 Ties between interfaces in a strong subtype relation

In this subsection, we will go one step beyond the requirement that a tie can
be established between two interfaces of identical types only. We will consider

71

the simple subtype relation that was informally presented in section 6.2 when
discussing interface inheritance. Let’s remind it: an interface I is a subtype of
another interface J iff it contains all method names and signatures plus possibly
some more. We will name this relation strong subtype interface relation because
the conditions under which two interfaces can be considered as subtypes are
quite stict. This strong subtype relation fully conforms to the subtype definition
used in subsection 5.2.4.

Now, we consider a situation where an interface I is a subtype of J and four
frames:

• FSubP — contains an instance of I in the provides part of the frame

• FSubR — contains an instance of I in the requires part of the frame

• FSupP — contains an instance of J in the provides part of the frame

• FSupR — contains an instance of J in the requires part of the frame

Let’s discuss various ties in various architectures these interfaces can be part of:

• FSubP and FSupR are instantiated in an architecture and we want to
establish a tie between the instance of I and the instance of J using the bind
between the subcomponents FSubP and FSupR; this is possible because
all methods required by the J are supplied.

• in the opposite case (FSupP and FSubR), it is not possible to create a tie
between their interface instances of types I and J because the provided
interface of type J does not supply all methods required by the interface
of type I

• an architecture of a component based on FSubP which contains an in-
stance of FSupP — the instance of the type I cannot delegate accomplish-
ment of its methods on the instance of J because it contains only a subset
of them, thus the delegation tie cannot be established

• in the opposite case (arcihtecture based on FSupP which contains an in-
stance of FSubP), the delegation tie can be established

• an architecture of a component based on FSupR which contains an in-
stance of FSubR — the instance of the type I cannot subsume require-
ments for accomplishment of its methods to the instance of J because J
contains only a subset of them

• in the opposite case (architecture based on FSubR which contains an in-
stance of FSupR), the delegation tie can be established

Now, it is interesting to consider a tie as a type of A ∗ B, where A and B
represent interface types and ∗ can be one of subs for a subsumption tie, deleg
for a delegation, bnd for a tie which binds a requirement of one subcomponent
to a provision of another, and to discuss the subtype relation for them:

• subs is as such contravariant on its first projection and covariant on its
second projection because if A1 is a subtype of A2 and B1 is a supertype
of B2, and A1 subs B1 is a valid tie type, then A2 subs B2 is also a valid

72

tie type and, moreover, it is a subtype of the type A1 subs B1 in the sense
that it can replace it; however, since it is not generally possible to replace
a component with another with more requirements, the subs should be
considered invariant

• the same goes for deleg (due to its opposite direction); again, it should be
considered invariant because generally a component cannot be replaced
with a component with fewer provisions

• bnd is contravariant on its first projection and covariant on its second
projection because if A1 is a subtype of A2, B1 is a supertype of B2 and
A1 bnd B1 is a valid tie type, then A2 bnd B2 is also a valid tie type and,
moreover, it is a subtype of the type A1 bnd B1 in the sense that it can
replace it

However, despite it is possible to find subcomponents, whose replacement suits
the third case, most subcomponent replacements would also require modificati-
ons of their subsumption and provision ties, that’s why it is not apt to try to
set a rule for subcomponent replacements based on subtype relation of ties.

8.3 Inheritance of SOFA compound architectures

In Chapter 3, we presented the two main purposes for which inheritance is
being used in OOPLs: essential use of conceptual modeling or accidental use for
convenience. Now, we have to discuss why we want to use inheritance in the
case of architectures and what possibilities we have.

8.3.1 Architecture of SOFA architectures

We know from Chapter 4 that a component is an instance of a template frame
which consists of a frame and an architecture. Every compound architecture has
at least one1 subcomponent (as an instantiated frame). In general, there can be
arbitrary number of subcomponents solving arbitrary tasks provided each of the
component’s provisions is delegated to a subcomponent’s provision and each of
the subcomponent’s requirements is fulfilled either subsuming it in the compo-
nent’s requirements or binding it to a subcomponent provision. Thus, taken ad
absurdum, provided above mentioned conditions are satisfied, nothing prevents
us from instantiating e.g. subcomponents solving astronomic computations in a
database component. That’s why very little can be told about the gray-box view
of components, provided we know the black-box view; a component template
with a particular frame can have significantly differing architectures.

8.3.2 Semiformal notation for architectures

Although we have already informally introduced some terms concerning archi-
tectures (e.g. tie types), we will introduce a simple but slightly more formal
notation for the SOFA architectures in this subsection. Note that in further

1you can notice that having only one subcomponent will be a very rare case because all
that subcomponent’s requirements would have to correspond to component ones and that
subcomponent would have to supply all component’s provisions

73

text, we will often denote architectures by the letter A and a possible index
instead of the component name and version.

SOFA component architectures are characterized by subcomponents and ties
on their (and also the mother component’s) interfaces. Nothing more can be
involved in the inheritance.

We will consider the definition of the notion of frames from subsection 7.1.2
as well as the definitions of projections ψ and ρ. We denote R set of all architec-
tures. For each architecture a ∈ R we denote a set Sa as a set of all frame names
(i.e. subcomponents) instantiated in the architecture a. A tie can be viewed as
θ ∈ Q ×Q, where Q is a set of qualified interface names (consisting of a frame
name and a interface instance name).
Definition: We define the SOFA component architecture as a quadruplet

A = (S,DT, ST,BT)

where S is a set of subcomponents, DT is set of delegation-ties, ST is set of
subsume-ties, BT is a set of bind-ties.
Any primitive architecture has all those four sets empty. For any compound
architecture of a sound component, at least S and DT are non-empty.

8.3.3 Architecture inheritance concepts dichotomy

First and quite a cardinal question is, if we want to consider architecture in-
heritance independently on frames or not. If the former was the case, we could
use the inheritance relation across frames (i.e. components). For example, a
descendant could be created by adding a new subcomponent (which provides
new interfaces) to an existing architecture and, provided original ties do not
change and the provisions are not exempt, this descendant would represent an
architecture of another frame, i.e. another component (which has all provisions
as the original one plus those that are provided by the subcomponent). This
approach kind of contradicts the intuitive order of component design (first we
determine what interfaces a component provides and what requires and then we
describe the internal communication), but it allows broader and more natural
inheritance.

If the latter was the case, the inheritance relation could relate only archi-
tectures of a single component, which may seem to better reflect the concept of
component architectures but restricts possibilities of inheritance and makes it
less intuitive.

We will discuss both possibilities in following subsections.

8.3.4 Inheritance of architectures of a single component

Now, we try to consider the latter case and to classify some possibilities which
we might want to use inheritance for:

1. We want to replace a subcomponent with another without changing the
structure of ties, i.e. the sets DT, ST and BT will be the same for both
original and new architectures.

2. We want to the change structure of ties without changing subcomponents,
i.e. at least the set S will be the same for both architectures.

74

3. We want change both subcomponents and ties.

The first case implies that the new subcomponent’s frame protocol must con-
form to the architecture protocol, but it does not necessarily have to conform to
the original subcomponent’s frame protocol, because some of its provisions could
be exempt and it is unnecessary for the new subcomponents to provide them
as-well. All ties original subcomponent participated in have to be established
by the new subcomponent as well. This type of architecture modifications may
be quite handy when we need to preserve the logic of an existing component
template.

The second case assumes that there are enough couples of interfaces that can
be re-bound; for example, some originally exempt interfaces of some subcompo-
nents become part of ties. However, in well-designed component architectures,
such situations should occur very rarely.

The third case is most universal but also most complicated. If unrestricted,
taken ad absurdum, all architectures (of component templates with the same
frame) could be in the inheritance relation. This is, of course, undesirable be-
cause it neither models any sound relation nor it saves any designing effort.
Thus, if we accept this case to be a serious candidate for the benefit of which
the inheritance should be introduced, we have to find special cases for which it
is reasonable.

8.3.5 Sound cases of architecture modifications

There are a few simple cases of architecture sound modification involving changes
of both, the subcomponent set and any of the tie sets:

• a subcomponent is replaced with a subcomponent which has fewer require-
ments, thus some ties of type bind or subsume2 are abolished

• a subcomponent is replaced with another subcomponent which has more
provisions thus, if those provisions are compatible with some of existing
subcomponents’ provisions that form a tie, those ties (from DT or BT)
may be replaced by a tie with this new subcomponent

But in most cases, several components will be involved in the modification. As
an example, we will follow a case when several components are replaced with
a single subcomponent. If we consider B ⊆ S a subset of subcomponents, we
can replace such subcomponents with a subcomponent that preserves interfaces
which are part of ties that can be viewed as external from the B viewpoint.
Internal ties can be abolished. This may be useful, for instance, when we want
to change architecture from light-weighted architecture to more heavy-weighted
one, e.g. in order to limit communication overhead in some practical cases. This
modification does not change cardinality of the architecture’s DT and ST .

The opposite case is also sound: we may want to replace a heavy-weighted
subcomponent with several light-weighted subcomponents preserving its provides-
interfaces and requires-interfaces which are divided among the new subcompo-
nents with having possible additional provisions and requirements fulfilled by
internal ties.

2but abolishing a subsume tie changes the component frame

75

It is obvious that to express these modifications using inheritance would be
too intricate and thus not much useful. Not to mention cases when one subset
of subcomponents is replaced with another set of subcomponents. Therefore, we
will try to find another approach.

8.3.6 Architecture inheritance across components

This type of architecture modifications brings plenty of new forms of changes
compared with the previous type. As we have already mentioned, allowing unre-
stricted addition might lead to the situation, where potentially all architectures
are related by the inheritance relation, which would extremely degrade the in-
heritance relation value. Besides, from practical point of view, describing all
the changes done in a descendant architecture compared with its ascendant
architecture might took much more effort then creating the descendant from
scratch. Thus, we have to propose a “sound” inheritance relations which would
be valuable and also practically useful.

We can try to get inspired by the subtyping-based inheritance relations we
have already proposed for the lower-level abstractions in the previous chapters.
If we use a natural definition of supertype, it may be done in this way:

Definition: As is an ext-subtype architecture of an architecture type At iff

DTAs
⊇ DTAt

∧ STAs
⊆ STAt

In other words, a component which has an architecture that is an ext-subtype of
another architecture type can be used in an all environments, where a component
with the ext-supertype architecture can be used because it provides at least the
services the component with the supertype architecture provides and it requires
at most the services the component with the ext-supertype architecture requires.
The number of subcomponents is irrelevant and also the structure of internal
ties is irrelevant. However, we should notice that this definition follows the
component point of view (external) and it is only a reformulation of the frame
subtype relation in the terms of architectures. But it is a natural consequence
of the facts that component architectures are not stand-alone abstractions but
only a second approximations of components and that the first approximations
(frames) provide information enough to decide whether subtypes preserve all the
properties of supertypes (see the reasoning about subtypes in subsection 5.2.4)
from the external point of view (see the component definition in subsection
2.3.1). That’s why this definition of the architecture ext-subtype relation leads
to the pure component substitutability and no inheritance relation reflecting
the internal architecture structure is involved. If we wanted to take the internal
view into consideration, this definition would not hold.

Therefore, in our quest for finding the optimal inheritance relation for archi-
tectures, we will use another approach that takes the internal point of view of
component into consideration, in addition to the external point of view. A basic
premise, we want to keep, is that a descendant must preserve all properties (i.e.
all ties and subcomponents) from its ancestors.

Besides, we will examine the possibility to “synchronize” the architecture
inheritance with the frame inheritance. Suppose we have component templates
T1 and T2 consisting of frames C1 and an architecture A1 and C2 and A2,
respectively. We create a descendant frame C by combining the two component

76

frames. There can be arbitrary number of component templates created upon
the descendant frame C. However, in addition to creating new component frames
using inheritance, we try to use also the architectures A1 and A2 to create an
architecture A of the component template. This approach results in a complete
component template inheritance.

8.3.7 Architecture combination-based inheritance
concepts

To reflect the two conditions mentioned in the previous subsection and to obtain
some other benefits, we propose to use the simplest possible solution: to combine
architectures similarly like in the case of frames.

In a more detailed view this means that if we have architectures
A1 = (S1, DT1, ST1, BT1) and A2 = (S2, DT2, ST2, BT2), the resulting descen-
dant looks like this

A = A1 ∪A2 = (S1 ∪ S2, DT1 ∪DT2, ST1 ∪ ST2, BT1 ∪BT2)

This solution has a lot of advantages. Let’s itemize some of them:

• the original architecture structures are preserved

• the architecture inheritance can be synchronized with the corresponding
frame inheritance (the correspondence between delegation ties and provi-
sions specified in a corresponding frame and subsumption ties and require-
ments specified in a corresponding frame respectively, can be found) due
to the fact that the original tie sets were not modified in the descendant

• the complete component template inheritance is made possible as a direct
consequence of the item above and the fact that component templates
consist of frames and architectures

• a simple notation can be used because there are no modifications to de-
scribe

• descendant’s protocol can be automatically obtained from its ancestors

• this approach follows the bottom-up concept — components are built
from small functional units (some simple contracts) and if a more heavy-
weighted component is required, the inheritance can be of help

• the language clarity is preserved — no complex modifications (as men-
tioned in previous subsections) are necessary

Of course, as any other solution, this solution has (or at least seems to have)
also some drawbacks. As the main one seems the expressive power — we cannot
simply take an existing architecture and obtain a new architecture as a result
of its modification. But as reasoned in previous chapters, such an approach
would result in quite a complex description with many negative consequences,
including the fact that the effort spent on such a modification might in many
cases exceed the effort necessary to create a completely new architecture.

Another important question is if the proposed solution works in all cases.
The proposed architecture inheritance assumes union to be disjoint. This must

77

be solved using a renaming mechanism. We can notice that the names of sub-
components are the main cause of ambiguity. Thus, we propose a rule that all
subcomponents in the descendant should be named (before they are inherited
and the union is applied):
subcomponent name in the ancestor-name of the ancestor architecture
thus all subcomponents from ancestors will be contained in the descendant.

The names of the component’s interfaces (i.e. the interface instances as de-
clared in component frames) represent another cause of ambiguity. Now, the
issue is here again whether the architecture inheritance should be considered as
independent on frames or not. If the architecture inheritance was independent,
we could rename these interfaces similarly as the subcomponents and the frame
that this new architecture determines should be composed using this renamed
interface instance names. If frames were supposed to be created first, then inter-
face instances referenced in architectures would have to be renamed according
to the names in frames, i.e. suffixed with a component name.

Again, this issue should be a subject of further discussions. However, for
now we propose to rename the interface instances by suffixing them with the
component name (not with the architecture version as proposed previously for
subcomponents). This restricts the inheritance a bit (more architectures of the
same component cannot be directly combined) but it will synchronize the ar-
chitecture inheritance with the frame inheritance. In this situation, renaming
subcomponents by suffixing with the ancestor architecture version is unneces-
sary, the component name is sufficient.

8.3.8 Architecture combination-based inheritance
proposal

We propose the architecture inheritance in the spirit discussed in the previous
subsection. The proposed syntax is the following:

architecture ComponentName version versionNumber

inherits InheritedArchitecture1, InheritedArchitecture2,;

The semantics of such a notation would be the following: A new descendant
architecture ComponentName version versionNumber is created in such a way,
that it contains all subcomponents from the ancestor architectures but renamed
and also the interface instances of ancestors, also renamed. All the ties are
preserved but named according to the new names. No other changes are made.
Thus, we can use inheritance to create new architectures as a composition of
existing architectures.

8.3.9 Architecture enrichment-based inheritance concepts

The architecture inheritance based on architecture combination proposed in the
previous subsection is perfectly usable in cases we want to merge whole existing
architecture structures.

However, we may want to create a new architecture based upon an existing
one. We have already shown that modifying existing ties is not a good way. Thus,
keeping in mind previous subsections, we propose an inheritance mechanism

78

that preserves the subtype relation between ancestors and descendants and in
which the descendants are created as independent enrichments of ancestors.
This means that all four sets of structures in the new architecture (Sn, DTn,
BTn, STn) become supersets of the original architecture (S, DT , BT , ST). In
practice, it means that we create a descendant by adding new subcomponents
(at least one) and describe ties of these subcomponents.

Keep in mind that these new subcomponents cannot be bound to the original
subcomponents, thus the interfaces of the new subcomponents can be bound to
corresponding interfaces of any of the new subcomponent and corresponding
interfaces of the component itself (delegation and subsumption ties). Notice
that this type of inheritance is not synchronized with the frame inheritance and
it is assumed that a component designer has already designed the frame of the
new component (including the frame behavior protocol), thus interfaces of the
new component are known and can be bound to interfaces of subcomponents.
Enriching architectures of the same component (without adding new interfaces
to the component) makes no sense in most cases.

The problem of naming conflicts should not happen (the architecture de-
signer can instantiate the subcomponent under an arbitrary name and, thus, he
is supposed to choose a name that is not in use).

8.3.10 The final proposal for the architecture inheritance
mechanism

We have suggested two inheritance mechanisms. Both of them have their rea-
sons, each of them has its special cases when its using is more beneficial than us-
ing the other. However, having two separate inheritance mechanisms for a single
abstraction would be too confusing and cases can be found when it is suitable
to use both of these inheritance mechanisms at once. Since those inheritance
mechanisms should not interfere, they should be unified without problems.

This unified view can be naturally transformed to one of those two original
archetypal cases of inheritance just by simple instantiating no subcomponents,
respective inheriting only a single architecture. Therefore, renaming is involved
only if more than one architecture is inherited.

Notice, however, that using the architecture enrichment-based inheritance
parts implies the loss of the synchronization with the frame inheritance and the
whole component frame (including the anticipation of renaming of component
interface instances) must be written by the component designer.

The proposed syntax is as follows:

architecture ArchitectureName version versionNumber

inherits InheritedArchitecture1, InheritedArchitecture2,;
{
inst FrameName1 frameInst1;

inst FrameName2 frameInst2;

....

bind NewSubComp1Inst: interfInstReq to NewSubComp2Inst: interfInstProv;

....
delegate ComponentProvIntInst to NewSubCompInst: interfInstProv;

79

....
subsume NewSubCompInst: InterfInstReq to componentReqIntInst;

....
}

The semantics of this notation is obvious: a new architecture is based on
a combination of existing architectures plus some new subcomponents. These
new subcomponents can communicate via newly established ties but they cannot
interfere with the subcomponents from the original architectures.

80

Chapter 9

Case study: components for
passive electronic banking

Now, having discussed all topics and proposed an inheritance mechanism for
each of the discussed abstractions, we should, as a proof of the concept, present
an example of a typical possible usage of these mechanisms. We will get in-
spired by the example from section 4.6, however, we will consider a somewhat
more specific case and use a new methodology that is possible due to the new
inheritance mechanisms.

Since this case study should serve for demonstrational purposes only, we will
omit some definitions that are not essential for what we want to demonstrate,
and we will use the saved space for commenting on the code. From the same
reasons, the abstractions will be rather schematic and, in real applications, more
complex definitions should be necessary.

9.1 Passive banking components example

9.1.1 The situation to be described

Suppose we have to design some components for a bank application. Our ex-
ample will aim at the designing of components for providing passive remote
electronic banking services to the bank customers. We will focus on two ser-
vices: a phone banking and a GSM banking.

9.1.2 Some necessary interfaces

Interfaces define the base services involved. As we have already stated, we will
define some essential interfaces only (no interfaces of subcomponents in archi-
tectures are presented here) and their methods will be rather schematic.

We present here an example of interface inheritance (in the case of customer-
-related interfaces). First, we define an interface ICustomer which is composed
of general customer-related methods, subsequently the descendant IPBCustomer
and IGSMCustomer interfaces which add methods specific for the phone banking,
resp. GSM SMS banking, are designed. Also note that the new method in each
of the descendants has the same name in both cases but different headers and

81

supposed functionality. These two methods could not have been added to a
single interface but both interfaces created in such a way can be added to a
single frame (a frame can offer both of these interface types). This is a typical
illustration why we said that the frames were basic units of the functionality
combination and we did not allow the interface combination, but the frame
combination we did.

interface IPhoneBanking
{ bool AcceptCall(in string password, out int choiceNo,

out string customerID, out int accountNo);
bool ProcessChoice(in int choiceNo, in string customerID,

in int accountNo, out string results);
void Answer(in string answerText);

protocol: (AcceptCall; ProcessChoice; Answer)∗

}

interface IGSMBanking
{ bool AcceptSMS(in string GSMNumber, out string requestID,

out string customerID, out int accountNo);
bool ProcessRequest(in string requestID, in string customerID,

in int accountNo, out string results);
bool SendReply(in string GSMNumber, in string replyText);

protocol: (AcceptSMS; ProcessRequest; SendReply)∗

}

interface ICustomer
{ bool GetAccounts(in string customerID, out string accounts);

bool GetAddress(in string customerID, out string address);
bool GetDisposRights(in string customerID,

in string account, out string rights);

protocol: (GetAccounts∗ || GetAddress∗ || GetDisposRights∗)

}

interface IPBCustomer
inherits ICustomer

{
bool GetCustomerID(in string password, out string customerID);

GetDisposRights∗ ; GetDisposRights∗ || GetCustomerID∗

}

interface IGSMBCustomer
inherits ICustomer

{
bool GetCustomerID(in string GSMNumber, out string customerID);

GetDisposRights∗ ; GetDisposRights∗ || GetCustomerID∗

}

82

interface IAccount
{ bool CheckAccountExistence(in string accountID);

void CheckBalance(in string accountID, out currency balance);
void GetTransactionHistory(in string accountID,

out string transactionHistory);

protocol: (CheckAccountExistence∗ || CheckBalance∗ || GetTransactionHistory∗)

}

9.1.3 Frames for basic passive banking components

Now, we will consider the black-box views of the components for two basic pas-
sive banking services. A phone banking component should provide the function-
ality of phone banking (in a real-life application, the phone banking functionality
should be structured into more interfaces) and require phone banking-specific
information about customers and information about accounts.

Of course, as mentioned when reasoning about the inheritance questions
earlier in this thesis, the requirements are dependent on the subcomponents
rather than the pure provided functionality, therefore there can be a lot of
components that provide the phone banking functionality but have different
requirements.

The same goes for the GSM banking component which provides the GSM
SMS banking functionality and requires GSM banking specific information about
customers and information about accounts.

frame PhoneBanking frame GSMBanking
{ provides: { provides:

IPhoneBanking iPB; IGSMBanking iGSMB;
requires: requires:

IPBCustomer iPBC; IGSMBCustomer iGSMBC;
IAccount iAcc; IAccount iAcc;

protocol: protocol:
(?iPB.AcceptCall (?iGSMB.AcceptSMS

{!iPBC.GetCustomerID}; {!iGSMBC.GetCustomerID};
?iPB.ProcessChoice ?iGSMB.ProcessRequest

{!iPBC.GetAccounts; {!iGSMC.GetAccounts;
!iAcc.CheckAccountExistence; !iAcc.CheckAccountExistence;
!iPBC.GetDisposRights; !iGSMC.GetDisposRights;
!iAcc.CheckBalance}; !iAcc.CheckBalance};

?iPB.Answer ?iGSMB.SendReply

)∗)∗

} }

9.1.4 Using inheritance for combining the services of the
passive banking components

Let us suppose that we have a bank that provides both, phone banking and GSM
banking services and that a more heavy weighted single component that provides
these services is needed. Using the inheritance mechanism proposed, we obtain a
component which provides functionality of both types of passive banking forms.
The names of the interface instances will be suffixed by the ancestor component

83

names in the descendant. This ensures that the iAcc account interface which is
the same in both ancestor components, will appear twice in the descendant as
expected.

Of course, this is not the only possible design of such components. We can
create a completely different architecture, e.g. with subcomponents which pro-
vide specific services based on the information obtained from the component’s
iAcc interface. Such a component does not need the IAccount as a requirement.
The same goes for customer-related interfaces.

frame PassiveRemoteBanking

inherits PhoneBanking, GSMBanking;

protocol: (PhoneBanking + GSMBanking)∗

The fact that the frame protocol is derived from the original protocols using the
alternative operator means that the component is supposed to process either
the phone banking services or GSM banking services at a time, but not both. If
we had wanted to create a component which is supposed to process both types
of services at a time, we would have used the or-parallel operator instead.

9.1.5 Architecture descriptions of the passive banking
components

Now, we focus on the gray-box view of components for the phone banking and
the GSM banking. The architecture for the phone banking consists of three
subcomponents: The first one is the core which implements the phone bank-
ing logic. The other two components should provide the core subcomponent
with pre-processed customer resp. account info. Those components need exter-
nal information from DBs of customers resp. accounts, obtained via respective
interfaces. The GSM Banking architecture is similar but the core logic is, of
course, different. Note that both architectures use the same subcomponent for
customer management but its different interface. To save space, we will not
specify the exempt interfaces. The subcomponent frames are not specified as
well.

architecture PhoneBanking version v1
{ inst PBCore sciPBCore;

inst CustomerManagement sciCustomer;
inst AccountManagement sciAccount;

delegate iPB to PBCore: iPB;

subsume sciCustomer: iPBCustomer to iPBC;
subsume sciAccount: iAccount to iAcc;

bind sciPBCore: iSpecCustInfo to sciCustomer: iTheSpecCustInfo;
bind sciPBCore: iSpecAccntInfo to sciAccount: iTheSpecAccntInfo;

}

architecture GSMBanking version v1
{ inst GSMBCore sciGSMBCore;

inst CustomerManagement sciCustomer;
inst AccountManagement sciAccount;

delegate iGSMB to sciGSMBCore: iGSMB;

84

subsume sciCustomer: iGSMCustomer to iGSMBC;
subsume sciAccount: iAccount to iAcc;

bind sciGSMBCore: iSpecCustInfo to sciCustomer: iTheSpecCustInfo;
bind sciGSMBCore: iSpecAccntInfo to sciAccount: iTheSpecAccntInfo;

}

9.1.6 Using inheritance for combining the architecture
descriptions of the passive banking components

Now, we can use the proposed inheritance mechanism (see subsections 8.3.7 and
bellow) to create an architecture of a component that provides functionality of
both forms of passive banking services.

architecture PasiveRemoteBanking version v1
inherits PhoneBanking version v1, GSMBanking version v1;

The resulting architecture PassiveRemoteBanking version v1 will contain
structures of both ancestors. The subcomponents will be internally renamed,
thus the PassiveRemoteBanking version v1 architecture will contain six dis-
tinct subcomponent which will make independent architectures of subcompo-
nents possible (i.e., for example, when creating the application by recursively
binding nested component frames to concrete architectures, each of the original
sciAccount frames can be associated with a different architecture). Also the
component interfaces are renamed in such a way that they are suffixed by their
respective ancestor component name.

9.1.7 Component templates and the inheritance

In this example we also demonstrate the possibility of the “synchronized” inhe-
ritance as mentioned when reasoning about architecture inheritance. Suppose
the frames PhoneBanking and GSMBanking and architectures PhoneBanking
version v1 and GSMBanking version v1 are descriptions of component tem-
plates

ctPhoneBankingComponent =
(PhoneBanking, PhoneBanking version v1);

resp.

ctGSMBankingComponent =
(GSMBanking, GSMBanking version v1);

When we want to create a new component template based on the
ctPhoneBankingComponent and ctGSMBankingComponent component templates,
we simply inherit both constituents (as shown in the previous subsections) and
then we get the component template

ctPassiveRemoteBankingComponent =
(PassiveRemoteBanking, PasiveRemoteBanking version v1);

85

Chapter 10

Evaluation and conclusion

10.1 Related work

This thesis has quite a large scope and we could divide related works into many
categories (inheritance, formal description of components, types in component
systems, etc.). This work drew from a lot of papers and, since most of them were
mentioned throughout the thesis, we will focus here on very brief descriptions
of some other interface and architecture description languages and highlight
how their abstractions’ abilities of incremental refinements are solved (the term
“inheritance” is quite rarely used in cases of component systems). Apart from
CORBA IDL and Microsoft COM which were mentioned in previous chapters,
lets mention four classic representatives of ADLs and one experimental ADL
based on XML:

Wright ([AlaGar–94]) — is designed to support the formal description of the
architectural structure of software systems. It permits both, description of
individual systems and families of systems. Wright is built around the basic
architectural abstractions of components, connectors and configurations.
Components have two important parts — an interface and a computation.
The interface consists of several ports. Each port represents an interac-
tion. The computation provides a more complete description of what is
done. No inheritance is used but connectors are considered as composition
patterns among components. A collection of interface instances combined
via connectors is called a configuration.

C2 ([TMAWRN–96]) — is a component- and message-based style designed to
support particular needs of graphical applications. A canonical form of a
C2 component contains three distinct building blocks: a dialog, an internal
object and an optional domain translator. C2 allows creation of subtypes
of such a component by subtyping from any or all of the internal blocks. C2
also supports conformance checking mechanisms. It even allows subtyping
from several types, potentially using different subtyping mechanisms due
to multiple conformance mechanisms.

Rapide ([LucVer–95]) — is a computer language for defining and executing
models of system architectures. The result of executing a Rapide model is
a set of events that occurred during the execution, together with causal

86

and timing relationships. Rapide is a set of five languages: Types, Patterns,
Architecture, Constraint and Executable Module. In addition to defining
interfaces and function types, the Types language also allows deriving new
interface type definitions by inheritance from existing ones, including the
capability of dynamic substituting of subtypes for supertypes. However,
at the higher levels (Architecture, ...), inheritance is not supported.

Darwin ([MaDEK–95]) — is a language for describing software structures very
similar to SOFA CDL which has been around, in various syntactic guises,
since 1991. Components hide their behavior behind well-defined interfaces
and programs are constructed by creating instances of component types
and binding their interfaces together. These compositions are considered
as types as well, which leads to a hierarchical composition. Interfaces in
Darwin can be parameterized and derived by inheritance from one or
more base interface types. Also, component types can be defined explicitly
or fully or partially typed from an existing component type (a partial
component declaration).

xADL 2.0 ([DaHoT–01]) — is a highly extensible XML-based ADL. It is based
on xArch, a core representation for basic architectural elements, that uses
the XML schema extension method for extending this core. XML schemas
provide only a single inheritance model for the type extension. Thus, it is
not possible for two independent extensions of the same XML tag to co-
exist in an XML document. Therefore xADL 2.0 introduces some artificial
dependencies among the xADL 2.0 schemas. If the multiple inheritance
is added to the XML schemas by the XML community, the xADL 2.0
schemas will be revised keeping only the necessary conceptual dependen-
cies.

10.2 Future work

This thesis has been conceived rather comprehensively, thus it includes a great
number of concepts and ideas — not always tightly related — work on which
has been initiated only and they appear in this thesis either without a deep
elaboration or done in depth only as an illustration for a selected part of the
whole issue.

Since the subject of this thesis is not a self-contained issue but a contribution
to the project of the SOFA/DCUP Component Model run by the Distributed
Systems Research Group at the Charles University in Prague, further elabo-
ration and fine tuning of the ideas and proposals sketched in this thesis have
to reflect both, the general conception of that project and the progress in that
project. Thus, it can be done only with a tight cooperation with the founders
of that project and other contributors to it.

Two main directions in the further research can be distinguished:
First, the inheritance mechanisms for individual CDL abstractions that have
been proposed in this thesis have to be brought to life. But before this can be
done, it is necessary to finish some open issues that remained in the solution.
Especially issues concerning solving naming conflicts and the details of inheri-
tance synchronization should be given a final form, even the non-combinational
form of inheritance of frames should be considered. Then, it is necessary to

87

closely inspect the CDL implementation and modify it by implementing the
inheritance of interfaces, component template frames and component template
architectures into the CDL compiler. After the close inspection of the CDL im-
plementation and some consultations with the project contributors, some minor
revisions and closer specifications of the concepts proposed might be done, so
that the results of this thesis were better compatible with the current SOFA
CDL implementation and the current state of the SOFA/DCUP project.

The second direction concerns formal approaches to the component con-
ception and their reflection in the CDL. Component systems generally — and
SOFA/DCUP in particular — introduce some entirely new conceptions and ab-
stractions which have to be formally described and theoretical aspects of which
have to be subjects of further research. This thesis has already touched some
of these issues (let’s mention the preliminary examples of ways how to seize the
formalization of the notions like template frames and template architectures,
problems of types and subtyping for various abstractions in CDL, etc.), how-
ever, it is necessary to elaborate a more complete and more consistent notation
and to describe types using the lambda calculus or another formal approach.

Also, some other issues related to the CDL (especially issues related to ar-
chitectures) that are not elaborated in detail in this thesis from the reasons that
they were secondary to this work and too complex to be solved without a closer
cooperation with other contributors to the SOFA/DCUP project, require closer
elaboration in the future.

10.3 Conclusion

The main objectives of this thesis as specified in section 5.1 have been accom-
plished. Inheritance issues for all the three abstractions of the SOFA CDL were
quite thoroughly analyzed from many viewpoints. In all cases, we discussed the
assets of using inheritance within the given abstraction first, then several inheri-
tance models and usage scenarios were presented and discussed and the solution
that proved to be the best from the viewpoints studied was subsequently ela-
borated to the final mechanism with initial proposals for its basic syntax and
semantics. On purpose, the syntax issues were not specified in too much detail
because they were supposed to be precisely specified at the time of implementing
the inheritance mechanisms into the latest revision of the CDL.

As for the results that arose from the solution, inheritance proved to be
useful in some cases, however, we have shown that in cases of component spe-
cification languages, the inheritance is generally less important than in cases
of full-fledged object oriented languages. We have also shown that inheritance
mechanisms that allow more types of modifications (i.e. changing or defeating
attributes of the examined abstractions), which fact theoretically implies that
such an inheritance can be used used in more cases, cannot counterbalance the
loss of the language clarity and possible improper inheritance usage. However,
as for the frames, we allowed replacement of interfaces in descendants for con-
forming ones. Therefore, we can say that the proposed mechanisms are quite
strict. We always tried to propose an inheritance mechanism that preserved
a form of subtype relation in the inheritance hierarchy. As anticipated, multi-
ple inheritance brought more power and more possibilities but also its inherent
naming conflicts. Since components have the combinational nature which can

88

be expressed by multiple inheritance mechanisms quite well, we decided to use
it in cases of components. We did not use it in the case of interfaces because
interfaces do not have the combinational nature. Naming conflicts were solved
by renaming because concatenation form of inheritance allows this technique.
However, due to the component dichotomy (frames and architectures), we had
to propose inheritance mechanisms for components twice (for each of the two
abstractions separately) which brought some additional complications (especial-
ly when we wanted to synchronize the proposed inheritance mechanisms). All
these facts resulted in quite a cumbersome naming technique. Mixin inheritance
was also briefly considered but we did not see any place for the trichotomy of
its abstractions in the SOFA/DCUP component framework.

In general, we can say that each of the considered inheritance mechanisms
had its advantages and disadvantages and therefore often the criteria for our final
proposals resulted from preferring one point of view over another. Therefore, we
think that inheritance of SOFA components is still an open issue and many
improvements of these foundations will be introduced. For example, after quite
a long deliberation we decided to add a non-combinational form of inheritance
to architectures. The same thing might be considered even for frames.

Apart from these primary results, this thesis brings a significant number
of remarks and observations from the fields of object oriented programming,
component systems and theory of programming languages in general. They are
contained in both, the first chapters that do not bring directly original results,
however, they provide readers with a compact consistent overviews of three re-
search fields that are important for successful solution of the goals of this thesis
and bring some observations that may be useful for our further work (for ex-
ample assertions as complements to behavior protocols), and also in chapters
that are devoted the the solution of the main goals. These chapters contain, in
addition to that, a lot of partial or initial results that might be useful in fur-
ther research. Especially those concerning formalization of SOFA CDL concepts
should be highlighted.

Writing of this thesis brought a lot of direct and indirect benefits also to me,
as the author. As for the direct benefits, I have gained a lot of knowledge of the
latest results of the research in such exciting fields of software engineering as
component technologies and object oriented programming. As for the indirect
benefits, thanks to my supervisor, I have familiarized myself with the methods
of cutting-edge research, I have discovered and examined a lot of papers and in-
formation sources, etc., which results in my better readiness for further activities
in these research fields.

We believe that, despite the fact that some effort still needs to be done in
order the results of this work to become practically useful, this master thesis
hopefully represents a good introduction to the problems of inheritance in SOFA
CDL and component systems in general, and that it can be helpful in future
research in these disciplines.

89

Bibliography

[PublicList] Distributed systems research group: List of publications;
http://nenya.ms.mff.cuni.cz/publications.phtml

[PlaBaJ–98] Plášil F., Bálek D.,Janeček R.: SOFA/DCUP: Architecture
for Component Trading and Dynamic Updating; Department of
Software Engineering, Charles University, Prague; published in
Proceedings of ICCDS’98, Annapolis, Maryland, USA, May 1998

[PlaViB–99] Plášil F., Vǐsňovský S., Bešta M.: Bounding Componen-
t Behavior via Protocols; Department of Software Engineering,
Charles University, Prague; TOOLS USA ’99 Conference Santa
Barbara, CA, Aug 1999

[PlaMik–97] Plášil F., Mikuš́ık D.: Inheriting Synchronization Protocols via
Sound Enrichment Rules; Department of Software Engineering,
Charles University, Prague; published in Springer LNCS 1204,
Berlin 1997

[PlaBal–01] Plášil F., Bálek D.: Software Connectors And Their Role In
Component Deployment; Department of Software Engineering,
Charles University, Prague; published in Proceedings of DAIS’01,
Krakow 2001, Kluwer 2001

[PlaVis–02] Plášil F., Vǐsňovský S.: Behavior Protocols For Software
Components; Department of Software Engineering, Charles Uni-
versity, Prague; accepted for publication in Transactions on Soft-
ware Engineering, IEEE, Jan 2002

[Kral–98] Král J.: Informačńı systémy; Science, Veletiny, 1998

[KraDem–91] Král J., Demner J.: Softwarové inženýrstv́ı; Academia, 1991

[Brada–99] Brada P.: Component Change and Version Identification in
SOFA; published in Proceedings of SOFSEM’99, 1999

[Brada–00] Brada P.: SOFA Component Revision Identification; Technical
report No. 2000/9; Department of Software Engineering, Charles
University, Prague, 2000

[Mencl–98] Mencl V.: Component Definition Language; Master Thesis; De-
partment of Software Engineering, Charles University, Prague,
1998

90

[Mencl–01] Mencl V.: Considering Updates when Describing Software Com-
ponents and Application Configuration; Department of Software
Engineering, Charles University Prague, 2001

[Visnov–99] Vǐsňovský S.: Checking Semantic Compatibility of
SOFA/DCUP Components; Master Thesis; Department of
Software Engineering, Charles University, Prague, 1999

[Hnetyn–00] Hnětynka P.: Managing Type Information in an Evolving En-
vironment; Master Thesis; Department of Computer Science;
Charles University, Prague, 2000

[MenHne–01] Mencl V., Hnětynka P.: Managing Evaluation of Components
Specifications Using a Federation of Repositories; Tech Report
No. 2001/2; Department of Software Engineering, Charles Uni-
versity, Prague, 2001

[RiSoch–94] Richta K., Sochor J.: Softwarové inženýrstv́ı, Lecture Notes,
Technical University CVUT, Prague, 1994

[Ochran–79] Ochranová R.: Úvod do programováńı; Faculty of Science, U-
niversity of J.E. Purkyně, Brno, 1979; published by Státńı peda-
gogické nakladatelstv́ı, Prague, 1982

[OchKoz–93] Ochranová R., Kozubek M.: Objektově orientované pro-
gramováńı v Turbo Pascalu; 1st edition; Department of Theory
of Programming, Faculty of Science, Masaryk University, Brno,
1993

[Zlatus–93] Zlatuška J.: Lamdba-Kalkul; 1st edition; Department of Theory
of Programming, Faculty of Science, Masaryk University, Brno,
1993

[Stanic–99] Stańıček Z.: Ř́ızeńı implementace IS; lecture notes; Department
of Software Systems & Communications, Faculty of Informatics,
Masaryk University, Brno, 1998

[Skarva–99] Škarvada L.: Principy programovaćıch jazyk̊u; lecture notes;
Department of Theory of Programming, Faculty of Informatic-
s, Masaryk University, Brno, 1998

[Brim–00] Brim L.: Komunikace a paralelismus; lecture notes; Department
of Theory of programming, Faculty of Informatics, Masaryk Uni-
versity, Brno, 2000

[LeaSit–00] Leavens G.T., Sitaraman M.: Foundations of Component-
Based Systems; Cambridge University Press; Cambridge, UK,
2000

[CardAb–96] Abadi M., Cardelli L.: A Theory of Objects; Springer-Verlag
New York, Inc., 1996

[MowRuh–97] Mowbray T.J, Ruh W.A: Inside CORBA: Distributed Object
Standards and Applications; Addison-Wesley, 1997

91

[LuVeMe–00] Luckham D.C., Vera J., Meldal S.: Key Concepts in Archi-
tecture Definition Languages; published as the second chapter of
[LeaSit–00]

[WinOck–00] Wing J.M, Ockerbloom J.: Respectful Type Converters for
Mutable Types ; published as the eighth chapter of [LeaSit–00]

[OMTR–98] Oreizy P., Medvidovic N., Taylor R.N., Rosenblum
D.S.: Software Architecture and Component Technologies: Bridg-
ing the Gap; University of California, Irvine, CA, USA;
http://www.ics.uci.edu/pub/arch; published in the Proceedings
of Workshop on Compositional Software Architectures, Monterey,
California, 1998

[Mikhaj–98] Mikhajlova A.: Consistent Extension of Components in P-
resence of Explicit Invariants; Turku Centre for Comput-
er Science, Åbo Akademi University, Turku, Finland; An-
na.Mikhajlova@abo.fi; published in the Proceedings of W-
COOP’98, 1998

[BJPW–99] Beugnard A., Jézéquel J.M., Plouzeau N., Watkins
D.:Making Components Contract Aware; published in Computer
July 1999, ACM Publishing

[StHuSc–99] Stets R.J., Hunt G.C., Scott M.L.: Component-Based APIs
for Versioning and Distributed Applications; published in Com-
puter July 1999, ACM Publishing

[CicRot–99] Cicalese C.D.T, Rotenstreich S.: Behavioral Specification
of Distributed Software Component Interfaces; published in Com-
puter July 1999, ACM Publishing

[SzyWec–96] Szyperski C.; Weck W.: Do We Need Inheritance?, published
in Proceedings of ECOOP’96, 1996

[Szyper–00] Szyperski C.: Component Software and the Way Ahead pub-
lished as the first chapter of [LeaSit–00]

[Weck–97] Weck W.: Inheritance Using Contracts & Object Composi-
tion; Turku Centre for Computer Science, Åbo Akademi Univer-
sity, Turku, Finland, 1997 published in the Proceedings of W-
COOP’97, 1997

[Sakkin–89] Sakkinen M.: Disciplined Inheritance; Department of Computer
Science, University of Jyväskylä, Finland; published in Proceed-
ings of ECOOP’89, 1989

[Taival–96] Taivalsaari A.: On the Notion of Inheritance; Nokia Research
Center; published in ACM Computing Surveys, Vol 28, No.3,
pages 438-479, Sept 1996

[Eliens–00] Eliëns A.: Principles of Object Oriented Software Development,
2nd Edition; Pearson Education Ltd., 2000

92

[Meyer–87] Meyer B.: Design by Contract, Technical Report TR-EI-12/CO,
ISE Inc, 1987

[Meyer–97] Meyer B.: Object-Oriented Software Construction, Second Edi-
tion, Prentice Hall, 1997

[MeyJez–97] Meyer B., Jézéquel J.M.: Design by Contract: The Lesson of
Ariane published in Computer vol. 30, no. 1, January 1997

[Meyer–95] Meyer B.: Object Success: A Manager’s Guide to Object Ori-
entation, its Impact on the Corporation, and its Use for Reengi-
neering the Software Process; Prentice Hall, 1995

[EddEdd–99] Eddon G., Eddon H.: Inside Microsoft COM+ Base Services,
published by Microsoft Press, A division of Microsoft Corpora-
tion, Redmond, Washington 98052-6399, 1999

[SecCai–00] Seco J.C., Caires L: Parametric Typed Components, Univer-
sidade Nova de Lisboa, Portugal, 2000

[AlaGar–94] Allen R., Garlan G.: Formalizing Architectural Connection,
published in Proceedings of the Sixteenth Int. Conference on Soft-
ware Engineering, Italy, May 1994

[MaDEK–95] Magee J., Dulay N., Eisenbach S., Kramer J.: Specifying
Distributed Software Architectures, published in Proceedings of
ESEC’95, Sept. 1995

[TMAWRN–96] Taylor R.N, Medvidovic N., Anderson K.M., White-
head E.J., Robbins J.E., Nies K.A., Oreizy P., Dubrow
D.:A Component- and Message-Based Architectural Style for
GUI Software. published in IEEE Transactions on Software En-
gineering, June 1996

[LucVer–95] Duckham D.C., Vera J.: An Event-Based Architecture Def-
inition Language, published in IEEE Transactions on Software
Engineering, Sept. 1995

[DaHoT–01] Dashofy E.M., Hoek A., Taylor R.N.: A Higly Extensi-
ble XML-Based Architecture Description Language, published in
Proceedings of the Working IEEE/IFIP Conference on Software
Architectures, Amsterdam, Netherlands, 2001

93

