Comparison of Component Frameworks for
Real-time Embedded Systems

Petr Hogek!, Tom4s Pop', Tom4s Bures!2, Petr Hnétynka', Michal Malohlava'

! Department of Software Engineering
Faculty of Mathematics and Physics,
Charles University, Malostranske namesti 25,
Prague 1, 118 00, Czech Republic
2 Institute of Computer Science,
Academy of Sciences of the Czech Republic
Pod Vodarenskou vezi 2, Prague 8,
182 07, Czech Republic
{hosek, pop, bures, hnetynka, malohlava}@dsrg.mff.cuni.cz

Abstract. The usage of components brings significant help in develop-
ment of real-time embedded systems. There have been a number of com-
ponent frameworks developed for this purpose and some of them have
already become well-established in this area. However, although the com-
ponent frameworks share basic concepts and the general approach, they
substantially differ in the range of supported features and maturity. This
makes relatively difficult to select the right component framework and
thus poses a significant obstacle in adoption of the component-based de-
velopment for real-time embedded systems. To provide an overview, we
present a survey in this paper, which illustrates distinguishing features
of selected modern component-based frameworks for real-time embedded
systems. The survey identifies features which are important for building
systems from components in this area and compares these frameworks
with respect to these features.

1 Introduction

With the growth of complexity of embedded systems and with the increasing
stress on mass production and customization, the component-based software en-
gineering is becoming increasingly important in this area. This is testified by
growing number of component systems aiming at different application domains
of embedded systems (be it AUTOSAR [?] in automotive industry, ROBOCOP
[?] in consumer electronics, and emerging standards for component based sys-
tems engineering in space industry — as recently demanded by ESA3 SAVOIR
initiative).

Many years for which the components have been researched have however
shown that a proper construction of a component systems is not an easy task
and that it is rather difficult to balance features of a component system so that

3 http://www.esa.int/

it can provide support and guidance through the whole application development
life-cycle. This is due to many factors such as (1) the existence of two distinct
but parallel flows of component and system development [?], (2) varying levels
of concreteness (e.g. under-specified components such as UML package diagrams
for showing application decomposition vs. rigorously defined development com-
ponents such as with EJB), and (3) varying granularity of components (e.g. using
components for modeling low-level signals vs. using components for representing
independent subsystems [?]).

In this paper, we aim at investigating current component frameworks used
in embedded and real-time systems, and at evaluating their suitability in devel-
opment of such systems. We restrict ourselves to frameworks which distinguish
components not only in high level design but rather throughout the whole devel-
opment life-cycle. The reason is that the preservation of the components over the
development life-cycle yields better traceability and allows late bindings, even
to the extent of run-time reconfigurations and update [?].

There already exist a number of works that compare and/or evaluate com-
ponent systems and define a classification of them, e.g. [?,?,?]. However, these
works target component systems in general and do not take into account require-
ments for real-time domain, which have to be covered by a chosen component
system (otherwise, the system could not be used for development of real-time
applications).

The structure of the paper is as folows: in Section 2, we set the criteria for
evaluating component frameworks in the domain of embedded and real-time sys-
tems. Section 3 presents selection of the frameworks chosen for evaluation and
describes them. Section 4 evaluates described component frameworks accord-
ing to the selected criteria and gives recommendations for usage in particular
situations. Section 5 concludes the paper.

2 Evaluation Criteria

In order to evaluate the component frameworks, we define a set of criteria here.
The criteria cover important concerns of component-based development and also
explicitly stress demands of the domain of embedded and real-time systems.

For the general component-based development, we use the criteria below (re-
lated criteria are grouped together). Their selection was based on features, which
are generally recognized as important for component-based development [?,7].
In addition to those criteria, we also implicitly assume the execution support,
which means that the component framework allows execution of the component
application — either by directly providing the execution environment, by offer-
ing synthesis of executable code or by allowing deployment to another existing
component framework.

The criteria are:

— existence of a well-defined component model with support for advanced fea-
tures such as hierarchical nesting, multiple communication styles and behav-
ior and/or resource usage modeling (C1)

— existence of development tools or a development environment (e.g. graphical
IDE) (C2a)

— existence of a development methodology or at least guidelines for develop-
ment process (C2b)

— support for distributed component applications (C3a)
— support for dynamic reconfiguration and/or update at run-time (C3b)

— existence of a documentation on a sufficient level (C4a)
— status of a development tools and component execution support (i.e. whether
they are actively developed or abandoned) (C4b)

In order to take into consideration also the requirements coming from the
domain of embedded and real-time system, we additionally define the following
criteria. They are again based on general requirements put on embedded and
real-time system [?,7]

— support for coupling with hardware (C5a)

— small or configurable memory footprint of the run-time environment or the
synthesized glue code, which are necessary to components’ execution and
interaction (C5b)

— support for modeling real-time attributes (e.g. period, budget) and schedul-
ing analysis (C6a)

— support for periodic and aperiodic tasks (C6b)

— support for real-time scheduling of components at run-time (C6c)

3 Component Frameworks Overview

In this section, we briefly describe component frameworks targeting development
of real-time applications for embedded devices.

As we stated in Sect. 1, we have restricted ourselves to frameworks, which
have some execution support. This leaves out purely modeling approaches (e.g.
Marte). We have also deliberately omitted component frameworks for enterprise
systems (e.g. CCM, EJB, COM, DCOM) as well as for user interfaces (e.g. Jav-
aBeans) and web applications (e.g. JSF). These frameworks are not suitable for
development of real-time embedded systems. Additionally, we do not cover mod-
eling, analysis, and simulation tools like Mathlab/Simulink, Scade. These could
be considered under some circumstances also as component based models but
their concept of a component is basically on the level of logical or mathematical
operator, which makes them incomparable with classical component models that
rely on components with functional interfaces.

Based on this criteria, we have chosen the following frameworks: PECOS,
MyCCM-HI, PROGRESS, AUTOSAR, Pin, Koala, ROBOCOP, THINK, SOFA
HI and BlueArX.

3.1 PECOS

PECOS (Pervasive Component Systems) [?] is a project targeting domain of
field devices, i.e. reactive real-time embedded systems that are typically non-
distributed systems reading periodically sensors, analyzing results, and react by
influencing actuators [?].

PECOS uses a component model, whose syntax is described by a meta-model
and its execution by Petri nets. The meta-model enables specifying hierarchical
components, component types, and property bundles that hold extra-functional
properties of components.

Composition checking is implemented by generating Prolog facts during com-
position process and then by verifying appropriate semantic rules against a set
of Prolog queries. Timing schedules were planed to be generated from timing
Petri nets.

PECOS does not seem to aim at providing development methodology or ad-
vanced development tools like IDE or shared component repository. Just compo-
sition tools are available for download, run-time environment and composition
compilers are not available. Project was actively developed in the past; now,
according to its web pages [?], it seems to be dead.

3.2 MyCCM-HI

MyCCM-HI [?] is based on OMG LwCCM [?]. MyCCM-HI offers composite
components and it supports C and Ada95 languages.

The main idea behind MyCCM-HI is transformation of application model
based on component approach (described in language called COAL) to lower-
level AADL Language[?]. Then, Ocarina AADL compiler [?] can be used to
produce executable files or Petri nets model of the application. Ocarina libraries
are also used to perform schedulability analysis [?] using the Chedar tool [?].
Distributed inter-component communication is realized by Poly-ORB-HI — mid-
dleware specialized for high integrity systems. Mode based reconfiguration of
inter-component connections is also supported.

Similarly to PECOS, neither MyCCM-HI seem to be aiming at producing
support tools or methodology such as development IDE, direct support for
repository to enable or simplify component reuse, and systematic development
methodology. On the other hand, command line tools are in mature development
stage. These tools and runnable examples are freely available.

3.3 PROGRESS/ProCom

PROGRESS is an ambitious project aiming at providing theory and tools for
a cost-efficient engineering and re-engineering of distributed component based
software, mostly focused on embedded systems. Because PROGRESS is primarily
intended to be used in the vehicular, telecommunication and automation indus-
try, strong emphasis is given to time analysis and reliability of modeled systems.

PROGRESS component model (called ProCom [?]), which is based on SaveCCM
[?] and Rubus [?], distinguishes two levels of granularity — ProSys and ProSave.

ProSave, the lower layer, operates with low-level, passive, hierarchically struc-
tured components. Computation on this level is based on the pipe-and-filter
paradigm, the functionality of the ProSave component is described as a set of
services. A component can have several independent (and possibly concurrently
running) services. The communication between components is realized by data
ports and triggering ports. Each service contains one input port group and sev-
eral output port groups. Passivity means that components can not start any
activity themselves. The services can be started only by triggering the input
port.

ProSys, the upper layer, describes a set of concurrent subsystems. These
subsystems can run potentially on several computation hardware units, called
physical nodes. ProSys subsystem is composed of a set of concurrent function-
ality that can be either event driven (sporadic) or periodic. The only way, how
ProSys subsystems can communicate with each other is sending asynchronous
messages via channels. The channels are strictly typed. Channels with more mes-
sage senders and more receivers are also allowed. A ProSys component may be
modeled as a assembly of ProSave components.

PROGRESS is a currently running project. Thus, related analysis methods,
deployment tools, etc., are not yet implemented. At present, there is only a
prototype of the Eclipse-based IDE and documentation to the component model.

3.4 Autosar

AUTOSAR (Automotive Open System Architecture) [?] is an open industrial
standard aiming at precise architecture description enabling many different man-
ufacturers from the automotive industry to integrate their products together.

AUTOSAR distinguishes atomic software components, representing pieces of
functionality, and compositions, representing logical interconnection of compo-
nents. An atomic component is limited to one exucutable unit (ECU).

The standard supports two communication models — Client-Server (both
blocking and non-blocking communication semantic are supported) and Sender-
Receiver. AUTOSAR provides basic software support to components (including
run-time environment, micro-controller abstraction or support for component
communication).

Support for real-time properties is not clearly specified. Nevertheless, taking
into account that AUTOSAR requires a real-time operating system, it is rea-
sonable to assume that atomic components can use real-time primitives of the
operating system.

AUTOSAR defines development process methodology; it describes develop-
ment activities and their mutual dependencies.

3.5 Pin

Pin Component technology [?] is an initiative with the goal to provide freely dis-
tributable technology providing a basic set of features to design and implement
predictable real-time software for embedded devices with support for the UML
state-charts semantic.

Components in the Pin model are architectural units specifying stimulus-
response behavior by a set of input ports (sink pins), output ports (source
pins), and reactions to sink pins (this is very close to ProSave layer found in
PROGRESS). Each Pin component consists of a container and custom code and
is delivered as a dynamically linkable library with well specified interactions with
environment and other components. Custom code logically consists of sink port
message handlers and timeout handlers; for each reaction a single thread is cre-
ated. In the current version of Pin, architectural topology is fixed at run-time, no
dynamic reconfigurations are allowed, and system can not run in a distributed
environment. Real-time features are provided via a support of an underlying
external commercial environment.

Pin supports synchronous and asynchronous connectors, while message size
and message queue lengths are fixed. Components are defined in CCL (Con-
struction and Composition Language), the functionality is specified in the host
language (C). Pin is currently ported to Windows NT and Windows CE oper-
ating systems.

Pin model is not connected to any development methodology and supporting
tools like IDE or repository, but it is implemented and with a set of basic tools
available for download.

3.6 Koala

Koala [?] is a component model for embedded devices developed by Philips?.
Primary goals of Koala are to manage increasing complexity of software used
mostly in consumer electronics and to manage its diversity.

The component model itself is inspired by COM and Darwin component
models. Its basic elements are components defining set of provided and required
interfaces. There is also a concept of diversity interfaces, which are used to
capture variation points of components.

The component model supports hierarchical components (the called com-
pound components). The components are implemented in the C language. Koala
compiler is used to generate C header files responsible for connecting components
together.

The component interfaces are statically connected to each other at design
time, and Koala does not support reconfiguration. However, the component
model offers different ways to handle diversity at design time such as switches
which can be used to handle structural diversity.

* http://www.philips.com/

The Koala component model targets simple embedded devices, therefore it
is strongly focused on optimization. This, however, makes it really difficult to
do the analysis of run-time properties.

Koala uses a global web-based repository to store interfaces and components.

3.7 ROBOCOP

The Robust Component Model for Consumer Electronic Products (ROBOCOP)
[?] is a component model developed as an ITEA® project, which defines open,
component-based architecture for the middleware layer in high-volume consumer
electronic products.

The ROBOCOP architecture consists of different frameworks. The devel-
opment framework defines a number of aspects relevant for the development
and trading of components consisting of a number of different elements such
as the stakeholder roles and their relations, the component model, and tooling.
The run-time framework defines the execution environment for components.

The download framework enables dynamic upgrade and extension by allow-
ing controlled downloading of components from a repository to a device, while
the resource management framework provides mechanism for components to ne-
gotiate their resource needs. The resource management framework can be then
used to specify for example timing properties if the implementation supports
them.

Beyond the frameworks described, the ROBOCOP also defines components.
A component in ROBOCOP is defined as a collection of models and relations
between these models. This allows different concepts to be employed such as
trading, composition and execution-time properties specification.

Functionality of components is encapsulated in services, each of which defines
a set of provided and required interfaces and also third party bindings. The
interfaces are considered as first-class entities.

At run-time, services are dynamically instantiated; these service instances
are an analogy of objects. The interfaces, described using RIDL language, are
represented by interface instances at run-time. They also supports interface in-
heritance. One object can be accessed through multiple interface instances by
multiple clients.

The programming model strictly follows the Microsoft COM model; binary
mappings to different programming languages can be defined. During run-time,
the application is composed of executable components and Robocop Run-time
Environment, which takes care of component creation.

3.8 THINK

THINK [?] is a C-implementation of the Fractal [?] component model targeted
at embedded systems.

® http://www.itea2.org/

The original purpose of THINK was to simplify the development of kernels
for embedded devices, but gradually it developed into a full-featured component
system generally usable for embedded software development.

Because THINK is a Fractal implementation, each component provides the stan-
dard API for introspection, configuration and instantiation of component repre-
sented by different controllers.

Component functional code is written in the C language extended with an-
notations, called nuptC. Using THINK Compiler, different transformations and
optimizations can be applied to the code.

Non-functional properties of components are managed using the extension
of the THINK ADL, which allows specifying properties for any architectural
entity. There are few already predefined properties and new properties may be
added using THINK Compiler plug-in mechanism. These can be used to define
additional views on component model, such as behavioral and reconfiguration
view as described in [?].

Due to its origins, THINK offers Kortex library, which is a component library
containing generic as well as hardware specific components that can be used to
build and access operating systems services.

Part of the THINK project is also IDE based on Eclipse called thinkClipse.
This offers a basic support for development of components using THINK com-
ponent system.

3.9 SOFA HI

SOFA HI [?] is an extension of SOFA 2 component model [?] targeted at high-
integrity real-time embedded systems.

The effort behind SOFA HI is to bring the knowledge of component systems
gained from SOFA and SOFA 2 development into the real-time environment to
speed up the development and lower the costs of high-integrity systems.

SOFA 2 is an advanced distributed component system employing hierarchi-
cally composed components. Moreover, SOFA 2 provides complete framework
supporting all the stages of application development and deployment life-cycle.
The component model itself is defined by means of its meta-model. The artifacts
of the application component model are stored in repository, which manages their
versioning and provides access to development tools and run-time environment.

SOFA 2 components are types specifying provided / required interfaces and
observable behavior. Each component internally contains microcomponents which
defines control part of component (in a similar way to Fractal / THINK).

As a profile of SOFA 2 targeted at real-time embedded systems, SOFA HI
employs various restrictions on the component model in order to make it more
predictable and lightweight. The component meta-model also supports specifi-
cation of extra-functional properties such as component timing properties.

SOFA HI restricts dynamic architecture reconfigurations to mode switches
at run-time only. As opposed to SOFA 2, SOFA HI disallows generation of con-
nectors and controllers at run-time.

SOFA HI run-time as well as SOFA HI primitive components are imple-
mented in the C programming language with the help of existing SOFA 2 tools
and infrastructure. To ensure sufficient independence of the component imple-
mentation, SOFA HI defines an abstraction layer on top of the underlying OS
and HW.

A wide range of existing development tools for SOFA 2 component model
can be also used for developing SOFA HI application. They include Cushion as
a command line development and management tool, SOFA 2 IDE for application
modeling and development based on top of Eclipse as well as SOFA 2 MConsole
for application deployment. There are also tools allowing formal analysis and
verification of components.

3.10 BlueArX

BlueArX[?] is a component system developed and used by Bosch® intended for
use in automotive domain especially in embedded devices.

The BlueArX focuses on the design time component model to support con-
strained domains considering various non-functional requirements while provid-
ing different views of a developed system.

The static view defines two types of components, an atomic component, which
has an implementation, and a structural component. While atomic components
represents leafs in the software architecture tree, the structural components rep-
resents nodes. Structural component may be composed of several atomic and/or
structural components.

A component has interfaces, which are divided into two types — import and
export interfaces — where import interface are required and export interfaces are
provided by the component. A structural component can import or export a
subset of interfaces from each atomic and structural component it is composed
of. Connection between interfaces is implicit based on interface name. Com-
munication between components is done using special type of variable called
message where component specifies its message access properties in its interface
description.

The dynamic view consists of component scheduling specification, which con-
tains mapping of services to periodic or event-triggered tasks and the order of
services inside these tasks. This information is used to generate a system sched-
ule which is therefore used by the operating system called ERCOS. ERCOS is
a specially designed operating system for automotive applications supporting
cooperative and preemptive tasks.

The BlueArX component model also defines modes, which can be used to
define either different scheduling or different control strategies of the real-time
system. The modes are also referenced by the analytic interface, which allows to
specify non-functional properties and semantic context information associated
with components. The concept of modes is important because it allows to express
real-time properties of processes much more precisely.

S http://www.bosch.com/

BlueArX also defines a simple development process composed of different
steps and roles associated together with different activities of application devel-
opment life-cycle.

The BlueArX component system also provides various development tools
such as a tool, which can automatically generate annotations for AbsInt aiT[?]
which allows to extract WCET of a component, XGen for semi-automatic ex-
traction of mode candidates based on heuristic, and Artus-eMercury IDE built
on top of Eclipse.

4 Evaluation

In this section, we evaluate the frameworks briefly described in the previous
section. For better readability and comprehensibility, we divide the evaluation
into several parts; each of them based on a different criterion defined in Section 2.

4.1 Component models and their features

In this section we evaluate the component models used in the frameworks (i.e.
the criterion C1). Also we briefly consider models’ features which are important
from component-based development in general but not directly related to real-
time and/or embedded systems.

Most of the considered frameworks offer a hierarchical component model,
at least at design time. These are MyCCM-HI, PECOS, PROGRESS (on both
ProSave and ProSys layer), AUTOSAR, Koala, and ROBOCOP. The Pin frame-
works allows only a flat architectures without any hierarchy. Conversely THINK,
SOFA HI, and BlueArX hierarchical components supports from design time to
run-time.

Considering other advanced features of component models, SOFA HI offers
first-class connectors with multiple communication styles. Koala and ROBOCOP
also have connectors but they are used at design-time for modeling variability
in component design. Most of the consider models provide a kind of formal
specification or execution model of component behavior and its validation — some
of them have full support for validation (Petri nets are used for MyCCM-HI and
PECOS, behavioral protocols for SOFA HI), other have well defined execution
model (UML state-charts for Pin, exact description in manual for ProCom).
Fractal execution model has been described using Alloy specification language
[?]; this technique could be also used for THINK as it is Fractal implementation.

In Table 1 a summary is presented.

4.2 Development support

In this section, we focus on existence of development tools and development
methodologies (or at least development guidelines) for the selected frameworks
(i.e. the criterion C2a and C2b).

Table 1. Evaluation of component models

Hier. comp. Connectors Formal. behav./Ex. model

PECOS design-time yes yes
MyCCM-HI design-time no yes
PROGRESS design-time no yes
AUTOSAR fully no no
Pin no no yes
Koala design-time yes yes
ROBOCOP design-time yes yes
THINK fully no yes
SOFA HI fully yes yes
BlueArX fully no yes

To some extent, development tools exist for all of the selected frameworks.
However, it is hard to evaluate them for frameworks like ROBOCOP and BlueArX
since they are not publicly available. Since AUTOSAR is more a standard, so no
tool support is required. For the other considered frameworks, tools are available,
nevertheless, some of them are obsolete (Koala, Pin), incomplete (PECOS) or
under development (PROGRESS, SOFA HI). Therefore, the ready-to-use tools
are at this time available only for MyCCM-HI and THINK. Both of them trans-
form the component descriptions into other technologies and then reuse the
tool of these technologies. MyCCM-HI transforms the component description to
AADL and use an existing compiler to create executable files. This approach
is ideal from the point of view of reuse of existing tools, but it has also some
significant disadvantages: at least, all the information about the structure is lost
and the advantage of structure knowledge can not be used neither in any further
phase of verification nor deployment process, nor at run-time. This could have
important consequences, for example state explosion during verification process
and restrictions in (at least theoretical) possibilities of dynamic reconfigurations
at run-time.

A described development methodology is available for AUTOSAR and BlueArX.
Table 3 summarizes the subsection.

Table 2. Development support

Devel. tools Devel. methodology
PECOS incomplete no
MyCCM-HI basic no
PROGRESS under development no
AUTOSAR no yes
Pin basic no
Koala basic no
ROBOCOP no no
THINK yes no
SOFA HI under development no

BlueArX yes yes

4.3 Support of distributed and dynamic applications

Evaluation of support of distributed (the criterion C3a) and dynamic (the crite-
rion C3b) applications is rather easy since the component model of a framework
either supports it or not. Distributed applications are supported by MyCCM-HI,
PROGRESS, AUTOSAR, and SOFA HI. The rest of the frameworks allows for
non-distributed systems only.

By support of dynamic applications, we mean an ability to develop an ap-
plication which can change its architecture at run-time, i.e. to add/remove com-
ponents and/or bindings among them. The frameworks with such an ability are
MyCCM-HI, ROBOCOP, SOFA HI, and BlueArX. ROBOCOP allows for partial
dynamism only, since it offers dynamic upgrade and download of a component
to a device. MyCCM-HI, SOFA HI, and BlueArX support dynamic applications
via so called modes [?], i.e. an application can have several possible architectures
and they can be switched among each other at some well-defined points.

Table 3 summarizes the subsection.

Table 3. Support of distributed and dynamic applications

Distributed apps. Dynamic apps.

PECOS no no
MyCCM-HI yes yes
PROGRESS yes no
AUTOSAR yes no
Pin no no
Koala no no
ROBOCOP yes partial
THINK no no
SOFA HI yes yes
BlueArX no yes

4.4 Status of the frameworks

The availability of documentation (the criterion C4a) and the overall status (the
criterion C4b) are other important aspects.

At least a partial documentation exists for all of the considered frameworks.
Nevertheless, in many cases such documentation consists only of several research
papers (e.g. Koala, BlueArX, PROGRESS, SOFA HI, PECOS). On the other
hand, specification of industrial systems like ROBOCOP and detailed documen-
tation is not publicly available. AUTOSAR documentation is publicly available
under AUTOSAR partnership license.

With respect to the status of the frameworks, unfortunately several of them
seems currently to be abandoned. These are PECOS, Pin, Koala, and ROBO-
COP, as there are news for them for rather longer time (results of ROBOCOP
have been currently extended in the SpacedU [?] and Trust4All [?] projects).

PROGRESS and SOFA HI are currently under heavy development, while MyCCM-
HI and THINK are rather stable, maintained, and further developed. The AU-
TOSAR and BlueArX are used in the industry, however, again since they are
not publicly available, any other conclusions are not possible.

Table 4 summarizes the section.

Table 4. Status of the frameworks

Status

PECOS abandoned
MyCCM-HI ready-to-be-used
PROGRESS under development
AUTOSAR ready-to-be-used

Pin not actively developed
Koala abandoned
ROBOCOP abandoned
THINK ready-to-be-used
SOFA HI under development
BlueArX ready-to-be-used

4.5 Coupling with hardware and suitability for embedded systems

All of the considered frameworks are intended for embedded systems by allow-
ing low-level coupling with hardware and by aiming at low memory footprint
and other necessary features for embedded systems (i.e. criteria Cha and C5b).
Coupling with hardware is typically provided by run-time environment, which
provides an abstraction over a supported set of hardware platforms. For ex-
ample the implementation of Pin framework relies on OS services of Windows
NT and Windows CE; SOFA-HI, PECOS and PROGRESS require other particu-
lar real-time operating systems. Similarly, AUTOSAR requires micro-controller
abstraction as defined in its specification.

4.6 Support of real-time applications

The frameworks Koala, ROBOCOP, and THINK do not offer support for real-
time application at all (i.e. they do not meet any criterion from C6a, C6b, and
C6c). For AUTOSAR, the support of real-time properties is not clearly specified,
however, since it is used for real-time applications in industry, it can be assumed
that it supports them. The rest of the considered frameworks primarily target
real-time systems and satisfy all three criteria (C6a, C6b, and C6c¢).

Table 5 summarizes the section.

Table 5. Support of real-time applications

Support for periodic.

Attr. lysis .
ttr. and analysis aperiodic tasks

Schedulability analysis

PECOS yes both was planned
MyCCM-HI yes both yes
PROGRESS yes both is planned
AUTOSAR yes not specified yes

Pin yes aperiodic external
Koala no no no
ROBOCOP no no no
THINK no no no
SOFA HI yes both is planned
BlueArX yes both yes

4.7 Summary

As apparent from the sections above, there is no clear winner framework suitable
for everything. However, with some limitations, the best frameworks can be
chosen.

For the automotive domain, the clear winners are AUTOSAR and BlueArX.
The downside is that they are not publicly available, however, for the intended
domain it is not an issue. Additionally, AUTOSAR can be considered as a little
bit better since it is designed and developed by a consortium of companies while
BlueArX is backed by a single company.

For non-automotive domain, from the short time point of view, the options
are MyCCM-HI or THINK as both of them are ready-to-be used, with tool
support, and publicly available. A downside of THINK is that it does not support
real-time properties, however there is also a new project MIND [?] that has been
started recently. Its attempt is to build a new framework for industrial use based
on THINK, which will support also RT properties.

From the long-term perspective, most promising technologies seems to be
the SOFA-HI and PROGRESS frameworks as they target a clear model-driven
approach of design and development. Moreover, SOFA-HI builds on existing
SOFA 2 development environment, which comprises a large tool-set including
graphical Eclipse-based IDE, graphical deployment, run-time console, shared
component repository, and various analysis tools.

5 Conclusion

In this paper, we have overviewed a number of state-of-the-art component frame-
works suitable for building real-time embedded systems. Our aim was to provide
some orientation among them, as they significantly differ in offered features
and maturity. To provide common criteria, we have consulted existing literature
and identified the features which are important for building real-time embedded

systems using components. We have evaluated the discussed component frame-
works and compared them with respect to the defined criteria. The results of
the evaluation show that there is no single universal “winner”, therefore we have
formulated recommendations based on the intended use of a component frame-
work. These recommendations therefore provide quite a useful guide in selection
of a suitable component technology according to the specific requirements of
each application. The presented results also open space for further research in
this area of software research.

