
Charles University in Prague
Faculty of Mathematics and Physics

MASTER’S THESIS

Jan Kouba

Memory Representation for Model Checker
of C/C++

Department of Software Engineering

Supervisor: RNDr. Ondřej Šerý

Study programme: Informatics, Software Systems

2009

I would like to thank to my supervisor Ondřej Šerý for his valuable advices
and appreciated comments.

I declare that I wrote my master’s thesis independently and exclusively with
the use of the cited sources. I agree with lending and publishing the thesis.

In Prague, 9.12.2009 Jan Kouba

2

Contents

1 Introduction 7

2 Related work 10
2.1 Model checkers . 10

2.1.1 CMC . 10
2.1.2 ZING . 10
2.1.3 SPIN . 11
2.1.4 dSPIN . 11
2.1.5 Java PathFinder . 11
2.1.6 MoonWalker . 12

2.2 Memory representation . 12
2.3 Saving states . 12

2.3.1 Delta saving . 13
2.3.2 Collapse compression 13

2.4 Detection of explored states 13
2.4.1 Hashing . 14
2.4.2 Bitstate hashing . 14
2.4.3 Incremental hashing 14
2.4.4 Area placement independent program 15
2.4.5 Equivalent heaps . 15

3 Memory module 20
3.1 Design . 20

3.1.1 GIMPLE . 20
3.1.2 Requirements . 21
3.1.3 Simplification of program memory structures 21
3.1.4 High-level vs. low-level memory access 21
3.1.5 Memory manipulation methods 22

3

3.1.6 Type safety . 23
3.1.7 Values . 23
3.1.8 Pointers . 24
3.1.9 Area life-cycle . 25
3.1.10 Saving states . 26
3.1.11 Detecting explored states 27
3.1.12 State hash computation 27
3.1.13 Heap canonicalization 29

3.2 Interface . 30
3.2.1 Values . 30
3.2.2 Ptr class . 31
3.2.3 Ref class . 32
3.2.4 MemoryState class 33

3.3 Implementation . 37
3.3.1 Example . 39
3.3.2 ContentEntry class 41
3.3.3 RefContentEntry class 41
3.3.4 AreaEntry class . 41
3.3.5 State class . 42
3.3.6 Heap graph . 42
3.3.7 AreaContentUndo class 43
3.3.8 AreaUndoSet class 43
3.3.9 MemoryState . 43
3.3.10 Entries life-cycle . 44
3.3.11 Containers . 45

3.4 Space and time complexities 45
3.4.1 Time complexity . 45
3.4.2 Space complexity . 48

3.5 Automated tests . 50
3.6 Benchmark . 50

4 GIMPLE Interpreter 53
4.1 Implementation . 55

4.1.1 Values . 56
4.1.2 Memory structures emulation 56
4.1.3 Interpreting . 57

4

5 GIMPLE Iterator module 58
5.1 Gimple class . 58
5.2 Function class . 59
5.3 Block class . 59
5.4 Other classes . 59

6 Conclusion 62
6.1 Future work . 63

Bibliography 64

A Examples 66
A.1 State manipulation . 66

A.1.1 Non-templated methods 66
A.1.2 Templated methods 67

A.2 Saved states management 68

B Program source codes 70
B.1 Fibonacci numbers . 70

B.1.1 fib.c . 70
B.1.2 fib.c.127t.interpret 71

B.2 Benchmark test program . 72

C The attached CD 73

5

Název práce: Memory Representation for Model Checker of C/C++
Autor: Jan Kouba
Katedra (ústav): Katedra softwarového inženýrství
Vedoucí diplomové práce: RNDr. Ondřej Šerý
e-mail vedoucího: Ondrej.Sery@mff.cuni.cz

Abstrakt: V předložené práci je popsán návrh a C++ implementace nově
vytvořeného paměťového modulu, který bude použit k reprezentaci paměti
zkoumaného programu v GIMPLE Model Checkeru (explicit state model
checkeru). Modul se liší od většiny ostatních code model checkerů v tom,
že umožňuje uložit do simulované paměti libovolné C++ objekty splňu-
jící jisté rozhraní. To umožňuje ukládat například data hodnot spolu s je-
jich typy, symbolické hodnoty používané při symbolickém vykonávání pro-
gramu nebo predikáty o hodnotách používané při predikátové abstrakci.
Pro efektivní ukládání stavů, kanonikalizaci haldy a výpočet hashe stavu
používá modul delta ukládání, inkrementální hashování a inkrementální
kanonikalizaci haldy.

Klíčová slova: code model checking, reprezentace paměti, GIMPLE, C++

Title: Memory Representation for Model Checker of C/C++
Author: Jan Kouba
Department: Department of Software Engineering
Supervisor: RNDr. Ondřej Šerý
Supervisor’s e-mail address: Ondrej.Sery@mff.cuni.cz

Abstract: We describe the design and C++ implementation of the newly
created memory module (MM) in this work. It will be used in the GIMPLE
Model Checker, an explicit state model checker, to represent the memory of
checked program. MM differs from other code model checkers in the fact,
that it stores ordinary C++ objects fulfilling a given interface as values. This
allows to store, e.g., value data together with its type, a symbolic value used
in a symbolic execution or a predicate over a stored value used in predicate
abstraction. MM uses delta saving, incremental hashing and incremental
heap canonicalization to save the state, canonicalize the heap and compute
the hash of the state efficiently.

Keywords: code model checking, memory representation, GIMPLE, C++

6

Chapter 1

Introduction

Model checking is an algorithmic technique to verify a system description
against specification. Given a system description and logical specification,
the model checking algorithm proves that the system description satisfies
the specification, reports a counter-example that violates the specification,
or runs out of time or memory, since model checking is an undecidable
problem in general.
Historically, model checking has been successfully used to find errors in

hardware and protocol designs. Later, it was adapted to analyze software
source code. First code model checkers like Java PathFinder 1 [1], JCat [2]
or AX [3] transformed the source code into the input notation of their back
end model checker (SPIN in all mentioned examples). The drawback of this
approach was that some language constructs were hard to translate (e.g.,
dynamic memory operations). Later, explicit state model checkers like Java
PathFinder1 [4] or MoonWalker [13, 14] emerged. They do not transform the
source code to some other notation, they rather search the program state
space by directly simulating execution of the program. This removes the
transformation step and moreover it allows the model checker to represent
the state of the checked program more efficiently.
The state of a program is defined by the content of its modifiable mem-

ory, so integral part of every explicit state model checker is representation of
the program memory. To lower memory consumption, explicit state model
checker does not construct the whole state graph, but rather generates the
graph on the fly by simulating execution of the program: The search is
started in the initial state. Whenever a non-determinism is encountered dur-
1Successor of Java PathFinder 1.

7

ing the execution, the code model checker continues the search in one of the
branches, but first it saves the current state, so it will be able to return to it
later on and explore all the remaining branches. When the execution reaches
a state that has been visited before (explored state), the search does not de-
scend to the branches, but rather a state with some unexplored branches
left is loaded and the search continues from there. When all branches of a
saved state has been explored, it can be freed, since the model checker will
never return to this state again. To sum up, explicit state model checker
must be able to save current state, load it later on, free a saved state and
also to maintain a set of explored states in order to perform the state space
search. Note that the only two operations that must be supported by the
set of explored states are addition of a state and test if the current state is
in the set.
This thesis is a part of an effort to make the GIMPLE Model Checker

(GMC), an explicit state model checker of GIMPLE. The input of GMC will
be a GIMPLE representation of the program, which is a source language and
target architecture independent representation of program source code inter-
nally used in GNU Compiler Collection (GCC) [5] compilers. Since GIMPLE
is source language independent, GMC will be able to check programs writ-
ten in any of the programming languages the GCC can compile, which are
currently C, C++, Objective C, Fortran, Java and Ada. Also GMC will not
have to parse directly the source code, which can be challenging, e.g., for
C++ programs with templates.
The goal of this thesis was to design and implement in C++ a memory

module (MM) for GMC (see Figure 1.1). MM is responsible only for the
representation of checked program memory.
Because GMC does not exist yet, two other helper modules were created

in its place (see Figure 1.1) to test MM and to verify, that MM provides
enough functionality for GMC. The GIMPLE Iterator module transforms
the GIMPLE representation of the program into a read-only representation
(from now on called GIMPLE++), that is easier to work with from within
C++. This module can be used by the future GMC. The second module,
GIMPLE Interpreter, then uses the GIMPLE++ representation to interpret
the program. This module also acts as an example of the usage of both MM
and the GIMPLE Iterator module.
The rest of this text is organized as follows. In Chapter 2 is discussed,

how existing code model checkers represent the memory of the programs they
check. Chapter 3 contains the description of MM, that was implemented as a

8

Figure 1.1: The diagram showing the modules created as a part of this thesis
and the future GMC.

part of this thesis. Chapter 4 describes the GIMPLE Interpreter and Chapter
5 describes a GIMPLE Iterator Module.

9

Chapter 2

Related work

This chapter describes how the existing code model checkers represent the
memory of the checked program. First, there is a brief description of the
popular code model checkers. Then it is discussed, how they represent saved
and explored states and how they deal with equivalent heaps.

2.1 Model checkers

2.1.1 CMC

CModel Checker (CMC) [7] is a code model checker of C and C++ programs
used to check implementation of network protocols. It runs unmodified C or
C++ code from the implementation. CMC can simulate multiple processes,
where the state of the process consists of a copy of its stack, static data,
heap and context registers.

2.1.2 ZING

ZING [11, 12] is a model checker that verifies ZING models, which support
constructs that can be found in languages like Java or C#. First, the program
needs to be translated into the ZING model, which is then compiled by ZING
into the ZING object model, a CIL1 object code that is used to explore the
program state space.

1CIL stands for Common Intermediate Language (formerly called Microsoft Interme-
diate Language or MSIL) which is the bytecode used in Common Language Infrastructure

10

2.1.3 SPIN

SPIN [8] is a generic verification system, that accepts design specifications
written in the verification language PROMELA (a Process Meta Language)
and it accepts correctness claims specified in the syntax of the standard
linear temporal logic. SPIN represents state as a simple sequence of bytes
and heavily depends on it. SPIN does not have any explicit support for
checking of programs that use dynamic memory.
As mentioned before, some code model checkers use SPIN or one of its

extensions as their back end model checker.

2.1.4 dSPIN

“Its intention is to provide SPIN with a number of dynamic features which
allow for object-oriented programs to be modeled in a natural manner and
efficiently verified.” [9]
The state is represented by more variable sized vectors. Every simulated

process has its own vector with static data and a stack. There is one global
heap vector that contains all dynamically created objects and global data.
Because SPIN represents the state as a sequence of bytes, all the vectors are
linearized into a single state vector at every step of the model checker. In
this linearization step the heap is canonicalized (see 2.4.5).

2.1.5 Java PathFinder

Java PathFinder (JPF) [4] is a code model checker of Java. It accepts Java
bytecode as an input, so any language that can be compiled into the bytecode
can be analyzed. JPF uses its own Java virtual machine to search program
state space.
The state is composed of three components: static area, dynamic area and

thread list. Static area is an array of entries, one for each class loaded. The
entry contains the values of static fields of the class and monitor associated
with it. Dynamic area is an array of entries, one for each object. The entry
contains the values of the fields of the object and the monitor associated
with it. Thread list is a list containing information about each thread. It
contains ,e.g., the status of the thread, but it also contains all the stack
frames created by method calls.

11

2.1.6 MoonWalker

MoonWalker [13][14] is a code model checker of CIL that is inspired by JPF.
The state is represented in a very similar way as it is represented in JPF.

2.2 Memory representation

According to the experience from existing code model checkers, the biggest
problem is limited memory and not the time. The code model checkers usu-
ally stop, because they have run out of memory. This is caused by the fact
that the implementation of a problem contains more details than only its
high-level description. Therefore the states that the code model checkers
work with, when checking the implementation of the problem, are usually
much bigger than the states that the model checkers work with, when check-
ing only its high-level description. Also the state space of the implementation
is usually much bigger, which increases the number of saved states and ex-
plored states, that must be maintained by the code model checker.
The state of the program is represented by the content of its memory,

which – from the point of view of the program – usually consists of three
different structures: static data, stack for every thread and heap. Static data
occupy constant number of bytes and therefore is the simplest structure. It
usually contains global variables and constants. Every thread has its own
stack composed of stack frames. Stack frame is pushed onto the stack, when-
ever a function is called, and it is popped from the stack when the function
returns. Heap is the most complicated memory structure. It allows the pro-
gram to allocate and free arbitrary sized blocks of memory (areas). Heap is
a place where all dynamically allocated data are stored.
The following text describes, how existing code model checkers deal with

the limited memory, especially how they represent saved and explored states.

2.3 Saving states

The representation of saved states is influenced by the way the code model
checkers search the state graph. The code model checkers like ZING, JPF
and MoonWalker explore the state space in a depth first manner[11, 4, 13],
while for example SPIN allows to use more complex algorithms[8].
When a depth first search algorithm is used to explore the state space,

12

every time a state is loaded, it is a predecessor of the current state on the
current execution path. This allows the code model checker to store all saved
states on the stack. When a state should be saved, it is pushed onto the stack.
Later, when it is loaded, all the states on the stack above the loaded state
can be freed, because they are not needed any more. This approach, when
the execution returns only to the states on the current execution path, is
called backtracking.

2.3.1 Delta saving

Saving the whole state on a stack would be very inefficient, so all the three
code model checkers that use backtracking (mentioned above) save only dif-
ferences between states (deltas). When a state is about to be saved, only the
delta is pushed onto the stack. When restoring the state, the modifications
saved in the delta(s) are undone and the delta(s) are removed from the stack.

2.3.2 Collapse compression

Collapse compression (or recursive indexing) is another approach to lower
the memory consumption. The code model checkers like JPF, MoonWalker
and SPIN use this technique[4, 13, 19]. The principle of collapse compression
is to split the program state into parts. The parts are then stored in a global
pool, which assigns a unique index to every stored part. Once the part is
stored in the pool, it is never removed and therefore its index remains the
same. That means, the index of two parts is the same if and only if the two
parts are the same. Then every state can be collapsed by substituting the
parts by their indexes in the pool. E.g., both JPF and MoonWalker collapse
the heap by storing whole areas in the pool. The collapse compression has
the disadvantage, that all different parts (e.g., areas in case of JPF and
MoonWalker) that appeared in some saved state are stored in the memory,
even the ones that are not used in any saved state any more.

2.4 Detection of explored states

The simplest approach to detect explored states is to maintain a set of
explored states and every time the model checker needs to test if a given
state is explored, it tries to find the state in the set. If the state is found, it
means that it has already been explored. If the state is not found, it means

13

that it has not been explored yet and therefore is added into the set. With
this approach the model checker must store all explored states, even though
their content will never be used.

2.4.1 Hashing

To lower the memory occupied by the set of explored states, only hashes of
the explored states can be saved, not the whole states. When the code model
checker needs to check, if a state has already been explored, it calculates the
hash of the given state first and then tries to find the hash in the set of hashes
of explored states. Note that comparing only hashes and not the states as
a whole can lead to hash collisions and therefore mark a state as explored,
even if it has not been explored yet, but probability of such a collision can
be made very small. All the code model checkers listed at the beginning of
this chapter are using hashing.

2.4.2 Bitstate hashing

In order to save more memory, SPIN uses a technique called bitstate hash-
ing [8]. This approach represents the set of hashes of explored states as a
huge array of bits. Let a be the array of bits and s the number of elements
in the array a. Then hash h is in the set represented by the array a if and
only if a[h mod s] is set to true.

2.4.3 Incremental hashing

Representing explored states only by their hashes greatly reduces the mem-
ory used by the code model checker, but there still stays the performance
bottleneck that is the hash computation. When no optimizations are used,
every time a state hash is computed, a whole state must be examined. This
is mostly redundant work, because two consecutive states usually do not
differ that much.
A technique called incremental hashing [15] can be used to speed up the

hash computation. This technique assumes, that the hash of the whole state
is composed of a hashes of its parts (in case of heap e.g. from partial hashes
of areas). There must also exist a function, that given the hash of the pre-
vious state and the partial hashes of the modified parts before and after
the modifications, computes the hash of the new state. When the hash of

14

the state is computed, only the modified parts must be examined. The time
needed to calculate the hash depends only on the size of modified parts and
not on the size of the entire state.
An example of an incremental hash function used in MM can be found

in Section 3.1.12.

2.4.4 Area placement independent program

In order to do model checking, a program being model checked must be area
placement independent. This means that the behavior of the program must
not depend on the placement of areas on the heap. If the program was area
placement dependent2, the code model checker would have to check every
possible placement of the areas in order to validate the program, because
the address on which a dynamically allocated area is placed is undefined.
Examples of problematic operations, that make a program area place-

ment dependent, are as follows: In languages that allow low-level access to
memory (like C and C++), these are comparison and computing a differ-
ence of pointers to different areas3. Java does not allow low-level access to
memory, but there is a similar problem. The default implementation of the
method Object.hashCode() can return various values between different in-
vocations of the same program and therefore acts like the address of the
object4. Therefore area placement independent program should not call the
default implementation of Object.hashCode() at all.

2.4.5 Equivalent heaps

When a code model checker is checking a program that uses heap, it can
happen that it comes across a state, that differs from some explored state
only in the positions of areas on the heap. An example of such two states
can be seen in Figure 2.1.
Since code model checkers usually represent the heap as a sequence of

bytes, from the code model checker’s point of view these two states are differ-
ent, but from the checked program point of view they are the same, because

2A program that is not area placement independent is area placement dependent.
3C99 standard states, that such operations have undefined behavior, which means that

performing such operation can even cause the program to crash.
4In fact Object.hashCode() is typically implemented by converting the internal ad-

dress of the object into an integer.

15

Figure 2.1: Two equivalent heaps.

Figure 2.2: The heap graph for the heaps shown in Figure 2.1.

the program is area placement independent. This is caused by the fact, that
the sequential representation of the heap contains excess information (in the
form of area addresses) which has no influence on program behavior.

Heap graph

In order to get rid of this excess information, we can define the heap graph.
The vertices are the areas on the heap. Each vertex in the heap graph is
labeled by the non-pointer values stored in the area it represents. For each
pointer p, that resides in an area u at an offset ou and points to an area v
to an offset ov, there is the directed edge (u, v) labeled by the pair of values
(ou, ov). The heap graph captures the state of the heap, but abstracts the
absolute addresses of the areas. An example of the heap graph for the heaps
shown in Figure 2.1 can be seen in Figure 2.2.
In order to capture the whole state of a program in the heap graph,

we can emulate all program memory structures on the heap. All the global
variables can be considered as a part of a root area. A thread stack can be
represented by a linked list of stack frames, where each stack frame is an
area. The root area then contains a constant sized array that represents the
threads, where each element contains the pointer to the stack of the thread.

16

Now the heap graph represents the entire state of the program. Also the
heap graph has a well defined root, which is the vertex representing the area
that contains all the global variables.
Now we can say that two states are equivalent, if their (rooted) heap

graphs are isomorphic5. Since checked programs are area placement inde-
pendent, they can not differentiate between equivalent states, therefore it
is sufficient if a code model checker explores only one state among all the
equivalent states.
In order to achieve that, code model checkers try to rearrange the areas on

the heap in order to form the same canonical representation for all equivalent
states. They use two strategies: Some use a heuristic to place the area on
the right position at the time it is allocated, while others exploit the heap
graph and rearrange the areas right before the state hash is computed to
form a really canonicalized heap.

Heap pseudo–canonicalization

JPF or MoonWalker use the first strategy [4, 14]. They try to place the
same areas from different execution paths on the same address at the time,
the areas are allocated. During the state space exploration when a new
allocation is encountered, it is remembered where the area has been put.
The next time the same allocation is made, the area is put on the same
address. Two allocations are considered the same, if they were invoked by
the same instruction I, executed by the same thread T and the number of
executions of the instruction I by the thread T is the same. Note that when
using this approach not all heap equivalences are found.

Heap canonicalization

dSPIN is an example of the code model checker that rearranges the heap
right before the state hash is computed [10, 9] to form a really canonicalized
heap. First, it sorts the areas on the heap in the order in which they are
visited by the depth first traversal of the heap graph, where the edges are

5The graph isomorphism problem on undirected non-labeled graphs is the NP problem
not known to be solvable in polynomial time, but a graph isomorphism for two rooted
directed labeled graphs that have unique labels for all edges originating from each vertex
can be found easily in polynomial time.

17

traversed in the order given by their labels6. Then the areas are laid down one
after another in that order. Note that all the equivalent heaps are rearranged
to the same canonical representation.
This simple algorithm has the disadvantage that it causes relocation of

many areas and therefore hinders the effect of incremental hashing. Even
small changes to the objects on the heap can lead to relocation of many
areas in the canonicalized heap. E.g., when a new area that is visited early
by the depth first search appears, all the following areas must be moved in the
canonicalized memory7. This will lead to the recomputation of the partial
hashes of all the moved areas, because the partial hash of an area must
depend on its position in the simulated memory to minimize the number of
state hash collisions.

Incremental heap canonicalization

Zing and CMC use the incremental heap canonicalization algorithm[15], that
also detects all equivalent heaps, but does not hinder the effect of incremen-
tal hashing that much. This algorithm tries to do as little relocations as
possible and hence minimize the number of areas whose partial hashes must
be updated. The main idea of the algorithm is to compute the canonical
address of an area from its shortest path to the root area. When a transition
makes only small changes to the heap, the shortest path to the root area
of most of the areas is likely to remain the same. Therefore the code model
checker needs to examine only those areas, whose shortest path to root has
changed.
The canonical addresses of the areas can be computed by performing the

breadth first traversal of the heap graph, where the order in which the output
edges are traversed is given by the edge labels. The root area is placed at
some fixed canonical address. Let P be a set of all memory addresses. When a
vertex (area) v is discovered for the first time by following an edge e = (u, v)
with a label (ou, ov), a canonical address C(r, s) is assigned to the area v,
where r is the canonical address where the pointer corresponding to the edge
e is stored (the address can be computed as the sum of the canonical address
of the area u and the offset ou), s is the size of the area v and C : P×N → P
6All outgoing edges of a vertex have different labels; more precisely, they have different

first values in their labels, therefore it suffices to compare only the first values of the labels.
7Code model checkers (including MM) usually do not really copy the areas. They only

update the canonical addresses of the beginning of the areas and then use them to update
the partial hashes of the moved areas (and values).

18

is a function such that

∀p1, p2 ∈ P,∀s1, s2 ∈ N : C(p2, s2) < C(p1, s1) ∨ C(p1, s1) + s1 ≤ C(p2, s2)
(2.1)

holds true8. Note that the areas whose shortest path to root have not changed
are really placed to the same addresses by this algorithm.
The last problem is how to define the function C. The function can not be

expressed in a closed form, but it can be constructed incrementally. When-
ever it is called with a new pair of parameters, a value fulfilling Equation
2.1 is returned. The next time the function is called with the same pair of
parameters, the same value is returned. The easiest way, how to achieve that
the returned values fulfil Equation 2.1, is to maintain the pointer pf to the
next free canonical address. Every time the function is called with a new
pair of parameters (p, s), the value of the pointer pf is returned and pf is
incremented by s.

8This says that the areas in the canonicalized memory do not overlap.

19

Chapter 3

Memory module

The description of MM can be found in this chapter. Section 3.1 describes
the design decisions made when implementing MM. Section 3.2 describes
the interface of MM, while Section 3.3 describes the implementation of MM.
Section 3.4 discusses the space and time complexities of MM, in Section 3.6
is the benchmark of MM and in Section 3.5 it is noted how was MM tested.

3.1 Design

The decisions made when designing MM are described in this chapter. First,
the requirements on MM are listed. Then the methods that are used to access
values in simulated memory are discussed and how are pointers represented
is show. Finally, it is stated how MM saves states, detects explored states
and canonicalizes the heap.

3.1.1 GIMPLE

GIMPLE is the source language and target architecture independent rep-
resentation of a program source code internally used in GCC [5] compilers.
Since GCC supports many input languages and target architectures, the
compilers are split into three parts: The front-end parses a source code
of a program and transforms (gimplifies) it into the GIMPLE representa-
tion. Then the middle-end performs most analysis and optimizations on the
GIMPLE representation. Finally, the back-end uses the GIMPLE represen-
tation to generate an executable code for a target architecture. This division
allows GCC to maintain only one back-end for each target architecture, one

20

front-end for each input programming language and single middle-end. Cur-
rently, GCC supports the front-ends for C, C++, Objective C, Fortran, Java
and Ada.
In GIMPLE, program statements are expressed by tuples with no more

than three operands (with some exceptions like function calls). Temporary
variables are introduced to hold intermediate values needed to compute com-
plex expressions.

3.1.2 Requirements

MMmust support two kinds of operations: memory manipulation operations
and state manipulation operations. The memory manipulation operations al-
low GMC to manipulate with the values in the simulated memory. In order
to compile C and C++ programs, GIMPLE supports low-level access to
memory, therefore MM must allow low-level (pointer) access to all memory
structures (global data, stack, heap). It must also detect and forbid all at-
tempts to do a memory operation with undefined behavior. The examples of
such operations are access to unallocated memory and reading of uninitial-
ized memory. MM must also detect memory operations with area placement
dependent behavior. The examples of such operations are a computation of
the difference between two pointers pointing to different areas and moving
a pointer between different areas.
The state manipulation operations allow GMC to manipulate with the

state of the simulated memory as a whole. These operations will be used by
GMC to do a state space search. MM must support saving and loading the
current state and it must also allow GMC to detect the explored states.

3.1.3 Simplification of program memory structures

To ease the implementation of MM, it simulates only the most complex
memory structure, the heap. The other memory structures (global data and
stack for every thread) can be easily emulated on the heap. An example of
how to do this can be seen in Section 4.1.2.

3.1.4 High-level vs. low-level memory access

Programming languages allow two kinds of memory access: low-level and
high-level. Language with the low-level memory access allows the program

21

to load and store values at any memory addresses (by using pointers). On
the other hand, a programming language that allows the high-level memory
access abstracts from the details of how are values laid out in the memory
and lets the programmer to access the values by using variables. E.g., C
and C++ are the languages that provide both the high-level and low-level
memory access, while Java supports only the high-level memory access.
Since GCC can compile C++, GIMPLE allows both the high-level and

low-level memory access, but MM provides only low-level memory access
methods. The first reason why MM does not provide methods for high-
level memory access is, that we do not want MM to depend on GIMPLE.
It is required to know the types of variables and the sizes and alignment
requirements of these types in order to implement the high-level memory
access, therefore it is required to access the information in the GIMPLE
representation of the program. The other reason is, that GMC can have
special requirements on which variables to store in the simulated memory1

and on the layout of the variables within an area, therefore it is natural,
that the high-level access will be implemented in GMC (or in some other
module).

3.1.5 Memory manipulation methods

MM provides only five methods to support the low-level memory access:

alloc() allocates a new area and returns a pointer to the beginning of the
allocated area.

free(p) frees the area that begins at the address p.

save(p, v) stores the value v at the address p.

load(p) loads the value stored at the address p.

loadOverlapping(p, s) loads all the values that overlap with the range
of addresses ⟨p, p+is).

The detail description of all the memory manipulation methods can be found
in Section 3.2.
1Not all GIMPLE variables must reside in the simulated memory. In the compiled

program, values of some variables are never written into the memory, but they are kept
only in CPU registers. So GMC do not have to store these variables in the simulated
memory neither.

22

3.1.6 Type safety

GIMPLE supports the low-level memory access and therefore allows a pro-
gram to perform a type unsafe operations. A type unsafe operation is every
operation that tries to interpret data as a value of different type. Type
unsafe operations can be avoided in most cases (but sometimes they are
justifiable2), therefore MM must allow GMC to detect all type unsafe oper-
ations3.
To detect a type unsafe operation GMC must be able to detect, if the

data loaded from the simulated memory are really of the expected type.
Programs using the low-level memory access are able to store a value of any
type to any writable address in the memory, therefore GMC can not make
any assumptions about what type of data can be stored at a specific address.
This means, that both the type and the data of a value must be stored into
and loaded from the simulated memory.

3.1.7 Values

Since the data and the type of a value are tied together, MM allows to store
any object fulfilling a given interface into the simulated memory. MM does
not need to understand the type or the data of a stored value. It only needs
to know the size of a value being stored and, if it is a pointer, than also
to which address it is pointing. MM needs to know about all the pointers
stored in the simulated memory to be able to perform the canonicalization
algorithm and to check for unreachable areas. Representing stored values as
GMC supplied objects will allow GMC to store anything as a value (e.g.
a symbolic value used in a symbolic execution or a predicate over a stored
value used in predicate abstraction) not only its bytes. The other advantage
of this approach is, that MM allows to simulate programs compiled for a
different architecture than the one it is running on, since the sizes of values
and the layout of values in areas are completely under the control of GMC.

2E.g., device drivers and network protocol implementations often need to serialize or
deserialize a structure, which is done most efficiently and easily using some kind of a type
unsafe operation.
3It is up to GMC when or if ever it will allow type unsafe operations.

23

Value overwriting

When an old value is overwritten by a new one, it is removed from the
simulated memory. The old value is removed, even if it is overwritten only
partially, because values are opaque to MM, and therefore it has not enough
information to update the old value. However GMC can use the method
loadOverlapping() to load all values that would be overwritten and than
it can update the values itself.

3.1.8 Pointers

MM provides a pointer type for representing the memory addresses. It is used
as the parameter type and the return type of memory manipulation methods,
but it will be probably used to represents pointers in GMC as well. Instances
of the pointer type (pointers) represent raw memory addresses, which means
there is no type information stored in them. The pointer type supports
the operators +i, -i (adding/subtracting a byte offset), -p (computing the
difference between two pointers), ==, !=,<, <=, > and >= with the semantics
similar to the same operators on the type char* in C.
In order to detect area placement dependent operations, MM must be

able to check, if the relative positions of a pointer p and an area A would be
the same in all the equivalent heaps (for short, if the pointer p belongs to the
area A). This is needed, because a value stored in an area A can be accessed
only by using pointers that belong to the area A. Similarly, MM must check,
if operands of -p, <, <=, > and >= operators belong to the same area. If
they do not belong to the same area, the result of the operation would not
be the same in all the equivalent heaps and therefore the operation is area
placement dependent.
Knowledge of the area a pointer belongs to is also needed to implement

the operators == and !=. Two pointers are equal (==) if and only if they
belong to the same area and point to the same address. Two pointers are
unequal (!=) if and only if they are not equal.
A pointer must hold the information about the area it belongs to, because

it is impossible to determine this information only from the memory address
the pointer is pointing to. Consider a program that has two areas A and
B and the pointers to their beginnings a and b. The program creates the
new pointer p by adding the size of the area A to the pointer a, so that the
pointer p points just beyond the area A. Now, if the area B was placed right
after the area A (as shown in Figure 3.1), the pointer p and the pointer b

24

Figure 3.1: Example of the two pointers p and b pointing to the same address,
but belonging to the different areas.

would both point to the same address, but the pointer p belongs to the area
A and the pointer b belongs to the area B.
Because every pointer must contain the information about the area it

belong to, new pointers can be obtained only from other pointers using the
operators +i and -i (the new pointer belongs to the same address as the
pointer it has been created from) and by calling the method alloc() (the
new pointer belongs to the allocated area). MM also provides GMC with a
null pointer.
Since it is forbidden to move a pointer between areas, the program does

not need to use the operators +i and -i to produce a result that does not
point into or just beyond the area it belongs to4, therefore the pointer type
detects these pointer overflows. Because this checking is done early, GMC
will be informed about the program misbehavior much closer to the source
of the error, than if the checking was done only in the memory manipulation
methods. In order to do the pointer overflow checking, every pointer must
be able to find out the size of the area it is pointing to.

3.1.9 Area life-cycle

The life-cycle of an area during the execution of a program can be seen in
Figure 3.2. Once an area is allocated (transition 1), values can be stored
in it. When the area is freed (transition 2), there can still be pointers to it
in the simulated memory, so MM must keep the freed area in the state, in
order to detect access to it. It also matters if two pointers are pointing to
the same freed area, or to two different freed areas5. All values stored in an

4The behavior of such operation is marked as undefined by the C99 standard.
5E.g., the result of the comparison of two pointers pointing to the beginning of the

same freed area differs from the result of the comparison of two pointers pointing to the

25

Figure 3.2: Area life-cycle.

area must be discarded after it is freed, because the content of a freed area is
undefined. An area is removed from the state once it becomes unreachable6

(transitions 3 and 4), because it has no influence on the program behavior.
When an allocated area becomes unreachable (transition 3), it is a sign that
the program leaks memory (if it is not a language with garbage collection),
so MM reports the area to GMC.

3.1.10 Saving states

As stated before, the biggest problem of code model checkers is, that they
need huge amount of memory, so MM should be optimized for space.

Delta saving

To lower memory consumption, MM uses delta saving. When a state is saved,
only a delta containing the modifications since the last saved state is stored.
The existing code model checkers like JPF and MoonWalker usually save in
the deltas the whole modified areas, because they represent the area as a
simple sequence of bytes and copying a simple sequence of bytes is simple
and efficient. But MM represents values stored in the simulated memory
as opaque objects, so the representation of the area is more complex than
a simple sequence of bytes, therefore copying of the area would not be so
fast. MM takes the advantage of the more complex structure of the area

beginning of two different freed areas.
6An area A is reachable, if there is a path from the root area to the area A in the heap

graph. Otherwise it is unreachable.

26

and stores only the modified values in the deltas instead of saving the whole
areas.
Because MM creates the deltas with value granularity, the deltas do not

contain any redundancies, unlike the other code model checkers that store
the whole areas in the deltas. This means that MM does not need to use
techniques like collapse compression to remove these redundancies.
Since MM uses delta saving, loading of saved states is limited to back-

tracking only. MM maintains a stack of saved states and it allows GMC to
save the current state on the stack (push()), remove the top state from the
stack (pop()) and restore the current state to the top state on the stack
(backtrack()). A detail description of the state manipulation methods can
be found in Section 3.2.

3.1.11 Detecting explored states

GMC must be able to maintain the set of already explored states. To limit
the memory used to represent the set of explored states it should store only
the hashes of the states (as all other code model checkers do), or even use
bitstate hashing. In order to do that, MM must be able to compute the hash
of the state.

3.1.12 State hash computation

MM uses incremental hashing to speed up the state hash computation. The
state hash function used in MM is based on the hash function described in
[15]7

The state is defined by the values stored in the memory, but also by
the positions and sizes of all the reachable non-freed areas. The positions
and sizes of the reachable non-freed areas are needed, because two states
differing only in one area that is freed in one state and non-freed and empty

7The hash function described in [15] is defined as

H =
∑
p∈P

V (p) · R(p) (mod M).

where P is the set of all memory addresses, H is the set of all the state hash values, V (p)
is the value of the byte at the address p, R : P → H is a function assigning random values
to memory addresses andM ∈ H is a big prime number. The bytes with undefined values
are set to 0.

27

in the other should have different state hashes, because the program behavior
would be different for such two states. E.g., it is perfectly valid to store a
value into the area in the second state, but it would be an error to store a
value into the area in the first state.
To minimize the probability of a state hash collision, a state hash is

composed from partial hashes of both areas and values and the partial hashes
involve in their computation the position, type and data of the value and the
size and position of the area respectively. The definition of the state hash
function used in MM can be found in the following text.

State hash function

Let H be the set of all state hash values, M ∈ H be a big prime number,
V (s) be the set of all the values in a state s and A(s) be the set of all the
non-freed areas in a state s. Also assume, that Ha(a) is the area partial hash
of an area a and Hv(v) is the value partial hash of a value v (the partial
hashes are described later). The state hash of a state s is computed as:

H(s) =
∑

a∈A(s)

Ha(a) +
∑

v∈V (s)

Hv(v) (mod M) (3.1)

With such state hash function it is easy to update a state hash, knowing
which values were removed and added and which areas were allocated and
freed or became unreachable. If s and s′ are states, then the state hash H(s)
of the state s can be expressed as:

H(s) = H(s′)

+
∑

a∈A(s)\A(s′)

Ha(a) −
∑

a∈A(s′)\A(s)

Ha(a)

+
∑

v∈V (s)\V (s′)

Hv(v) −
∑

v∈V (s′)\V (s)

Hv(v) (mod M) (3.2)

In this way, the time needed to update the state hash depends only on the
number of the modified values and areas.

The area partial hash must involve the information about the position
and size of the area, so it is defined like this. Let P be the set of all memory
addresses, S(a) be the size of an area a, B(a) ∈ P be the address of the
beginning of an area a and Ra : P → H be a function assigning random

28

values to memory addresses. Then the area partial hash of an area a is
computed as:

Ha(a) = Ra(B(a)) · S(a) (mod M) (3.3)

The value partial hash must involve the information about the data,
type and position of the value, so it is defined in the following way. Let
B(v) ∈ P be the address of the beginning of a value v, Rv : P → H be
a function assigning random values to memory addresses. Then the value
partial hash of a value v is computed as:

Hv(v) = (Rv(B(v))) · Ho(v) (mod M) (3.4)

where Ho(v) is the object hash of the value v. The only remaining question
is, how to compute the object hash Ho(v).

The object hash computation depends on the kind of the value. If the
value is a non-pointer value, MM does not know anything about the data or
the type of the value, therefore the object hash of the value must be supplied
directly by the object that represents the value. If the value is a pointer value,
MM knows its data (the address where it points) but does not know its type
(the other information contained in the object representing the value), so
GMC supplied object must provide the type hash for the type of the value it
represents. The object hash is then computed in MM by combining the type
hash and the address the value it pointing to. How are the address a pointer
value is pointing to and the object hash of a non-pointer value passed to
MM is described in Section 3.2.

3.1.13 Heap canonicalization

GMC should examine only one state among all the equivalent states to
speed up state space exploration (see Section 2.4.5). MM must return the
same state hash for all the equivalent states, because GMC will use the
returned state hash to detect explored states.
MM canonicalizes the heap before every state hash computation in order

to return the same state hash for all equivalent states. Because MM uses
incremental hashing, the canonicalization step should move as few areas as
possible (see Section 2.4.3). The best algorithm for this is the incremental
heap canonicalization algorithm (see Section 2.4.5), so MM uses it. In order
to implement the incremental heap canonicalization algorithm, MM must

29

know about all the pointer values stored in the memory, to be able to walk
the heap graph.

3.2 Interface

The interface of MM is described in this section. Only the classes and the
methods that are meant to be used directly by GMC are described here.
All these classes, types and functions are in the namespace mmodule. For a
more detailed description of the classes, types and functions see the Doxygen
documentation on the attached CD.
The class MemoryState is the main class of MM interface. It represents

the current state of the simulated memory, but also all the saved states. The
methods of this class can be divided into two groups: The memory manipu-
lation methods and state manipulation methods. The memory manipulation
methods are used to inspect and modify the values and areas in the current
state, while the state manipulation methods are used to save and load the
states and to compute the hash of a state.
The memory manipulation methods come in two forms: templated and

non-templated. The memory manipulation methods of the templated form
allow GMC to work with the areas that have fixed layout (known at the
compile time of MM), while the methods of the non-templated form allow
to store any value at any offset within the area. The non-templated methods
are needed to simulate the execution of a program, while the templated
methods considerably simplify the manipulation with internal areas, that
are not accessible to a simulated program.
The methods of the templated form allow to store any objects in the

simulated memory, not only objects derived from the interface PtrContent
or NonPtrContent. The objects are automatically wrapped into a helper
classes that implements the interface PtrContent or NonPtrContent.
The rest of this section is organized as follows. First, the requirements

on the objects representing stored values are stated. Then the classes Ptr
and Ref representing pointers are introduced and finally the main class
MemoryState is described.

3.2.1 Values

MM represents the values stored in the simulated memory as arbitrary ob-
jects implementing the interface PtrContent or NonPtrContent. If GMC

30

wants to save an object that represents a pointer value, the object must im-
plement the interface PtrContent. If GMC wants to save an object that
represents a non-pointer value, the object must implement the interface
NonPtrContent.

Content class

The interface Content is the common parent of the interfaces PtrContent
and NonPtrContent. The objects supplied by the GMC must not implement
directly the interface Content, rather they must implement one of the inter-
faces PtrContent or NonPtrContent. The interface Content contains only
one method to implement, getUnitSize(). This method returns the size of
the value in bytes.

PtrContent class

The interface PtrContent is derived from the interface Content and contains
two additional methods to implement, getPtr() and getTypeHash(). The
method getPtr() returns the address to which the pointer represented by
the object is pointing, while the method getTypeHash() returns the type
hash of the value the object represents.

NonPtrContent class

The interface NonPtrContent is derived from the interface Content and
contains only one additional method to implement, getHash(). This method
returns the object hash of the non-pointer value represented by the object.

3.2.2 Ptr class

The class Ptr represents a memory address. It is represented as a pair
(area; offset within area). The class Ptr has only one no-argument public
constructor, which creates a null pointer. An objects of the class Ptr is
returned by the non-templated form of the method MemoryState::alloc()
(see Section 3.2.4).
The class Ptr has +=, -=, + and - operators, that take size_t as their

second argument. These operators move a pointer by the number of bytes
specified in the second argument.

31

Two pointers can be compared for equality or inequality. Two pointers
pointing to the same area can be compared by <, <=, > and >= operators.
The result of the comparison of their offsets is returned. The exception
UndefinedPtrOperationException is thrown, when an attempt is made to
compare two pointers that belong to different areas.
The class Ptr supports computation of the difference between two point-

ers using the operator -, but they must point to the same area. As the result
the difference in bytes is returned. If the two pointers belong to different ar-
eas, the exception UndefinedPtrOperationException is thrown.
The class Ptr contains few other utility methods. The method isNull()

checks, if the pointer is null, the method getAreaId() returns the ID of the
area to which the pointer is pointing and the method getOffset() returns
the offset within the area to which the pointer is pointing.

3.2.3 Ref class

The class Ref represents a reference to an area allocated by the templated
form of the method MemoryState::alloc(). The class has one template
parameter S that must be a POD class8. S specifies the types and positions
of the objects that can be stored in an area. Each field of the class S that
has a type T specifies, that an object of the type T can be stored in the
area at the same offset, as is the offset of the field in the class S. The size
of the value the object represents is sizeof(T) bytes. This means that the
layout of the objects in the area depends on the architecture on which is the
MM compiled, but this is not a problem, because the areas allocated by the
templated form of the method MemoryState::alloc() are not accessible
from the simulated program.
An object of the class Ref (reference) does not represent the pointer to

a specific address, but rather it represents the pointer to an area. When a
value needs to be loaded from or stored into an area, the offset must be
specified as a pointer to the member of the class S.
In order to store an object of the type T into the simulated memory

using the templated form of the memory manipulation methods, the type T
must fulfil some requirements: The expression boost::hash<T> () must be
a valid expression returning a functor that can compute the data hash of an

8POD stands for Plain Old Data. For example every C structure is a POD class in
C++.

32

object of type T9, or T must be the class Ptr or Ref. Note that the data hash
returned by the functor does not need to depend on the type of the object,
because when the wrapper class computes the object hash, it combines the
data hash returned by the functor with the hash of the type T10. To extend
boost::hash() function to cover another type T, a function

size_t hash_value (const T& value);

can be defined. The function must have exactly this signature and exactly the
same name. The declaration of the function must be available at the point,
where the templated form of MemoryState::store() method is called. The
next requirement on the type T is, that it must be copy constructible, be-
cause the copy of a value passed to the templated form of the method
MemoryState::store() is stored in the simulated memory. An example of
a simple class that can be used as the template parameter of Ref class can
be seen on Example A.1.2;
Only the Ptr and Ref objects are interpreted as the pointer values, when

they are stored using the templated form of MemoryState::store(). The
objects of all other types are considered non-pointer values.
The class Ref has only one no-argument constructor, that creates the

null reference, which represents the reference that does not point to any
area. The class supports only two operators == and !=. They check if two
references point to the same area. Whether a reference is null can be found
out using the method isNull().

3.2.4 MemoryState class

The class MemoryState is the main class of MM’s interface. The object of
this class represents the current state of the simulated memory, but also all
the saved states.

Memory manipulation methods

The current state can be changed by the methods alloc(), free(), store()
and setRootArea() and inspected by load(), loadOverlapping() and

9All the primitive types fulfil this requirement as well as many classes from STL. For
a more detailed information see the boost documentation[17].
10The hash of a type is computed from the address of the type info object that is
returned by the call to typeid().

33

getSize(). The methods alloc(), free(), store(), setRootArea() and
load() exist in two forms: templated and non-templated.

The non-templated methods take as a parameter or return an object
of the class Ptr. These methods are used to save and load values, whose
type is not known at the compile time of MM. These methods allow to
store values of any size to any offset within an area. These methods will be
typically used for storing and inspecting the values of a simulated program.
The non-templated methods are described in Table 3.1 and their usage can
be seen on example in Appendix A.1.1.
When loading a value from the memory using the non-templated form

of the method load(), a constant pointer to Content is returned, because
either a pointer or a non-pointer value can be returned. The exact type of
the value can be found out at runtime using dynamic_cast or typeid.

The templated methods take as a parameter or return an object of the
class Ref. These methods are used to store and load values, whose sizes
and positions are know at the compile time of MM. They exist to save GMC
from dynamic casting the Content objects returned from the non-templated
forms of the memory manipulation methods and from wrapping every value
it wants to store into an object derived from PtrContent or NonPtrContent
class. These methods will be typically used for the manipulation with the
internal data of GMC, that are not accessible to the simulated program, but
are also part of the state. The manipulation with the areas containing the
internal data is greatly simplified when using the templated methods. The
templated methods are described in Table 3.2 and their usage can be seen
on example in Appendix A.1.2.

There is no way how to convert the class Ref to the class Ptr or vice versa,
so once an area is allocated, it can be later used only by the methods of the
same form as was the method alloc() that was called to allocate the area.
MM must know which area is the root area, so it can perform the incre-

mental heap canonicalization algorithm. The methods setRootArea() exist
for this purpose. One of these methods must be called exactly once prior to
the first call to push(). The root memory area must not be freed.

34

Function Description

Ptr
alloc(size_t size)

Allocates an area of size bytes and
returns the pointer to the beginning
of the allocated area.

void
free(Ptr ptr)

Frees the area to which ptr is point-
ing. The pointer ptr must point to
the beginning of the area.

void
setRootArea(Ptr ptr)

Sets the area to which the pointer
ptr is pointing as the root area.

void
store(Ptr p,

AP<Content> v)

Stores the value represented by the
object v on address p. (AP is a short-
hand for std::auto_ptr)

const Content*
load(Ptr ptr)

Loads the value from the address
ptr.

std::pair<CI, CI>
loadOverlapping(Ptr f,

size_t s)

Returns the range of values
that overlap (even partially)
with the range ⟨f ; f + s).
(CI is a shorthand for
MemoryState::ContentIterator.)

size_t
getSize(Ptr ptr)

Returns the size of the area to which
ptr is pointing.

Table 3.1: The non-templated state manipulation methods.

35

Function Description

Ref<T>
alloc<T>()

Allocates an area that can hold fields
of class T.

void
free(Ref<T> ref)

Frees the memory area referenced by
ref.

void
setRootArea(Ref<T> ref)

Sets the area referenced by ref as the
root area.

void
store<T, V>(Ref<T> r,

V T::* f,
const V v)

Stores the value represented by the ob-
ject v into the area referenced by r at
the offset equal to the offset of the field
f in the class T.

const V&
load<T, V>(Ref<T> ref,

V T::* f)

Loads the value from the area refer-
enced by ref stored at the offset that is
equal to the offset of the field f in the
class T.

Table 3.2: Templated state manipulation methods.

State manipulation methods

The saved states are manipulated using the methods pop(), push() and
backtrack(). The hash of the state is returned by the method hash().
These methods are described in Table 3.3 and Appendix A.2 demonstrates
their usage.
From GMC’s point of view, MM saves the states on the stack. The

method push() saves the current state on the stack and the method pop()
removes the top state. When backtrack() is called, the current state is
restored to the top state on the stack.
The MemoryState class supports only getting the hash of the top saved

state by calling the method hash(). If GMC wants to get the hash of the
current state, it must save the state first by calling push() and then call
hash(), which will return the state hash. If GMC does not want to backtrack
to the current state later on, it can call pop() right away.

Exceptions

The memory manipulation methods of the class MemoryState do not prevent
GMC from doing an undefined operation, like freeing an already freed area
or saving a value outside the bounds of an area. However MemoryState

36

Function Description

void
push()

Saves the current state on the top of
the stack of saved states.

void
pop()

Removes the top state from the stack
of saved states.

void
backtrack()

Restores the current state to the top
state on the stack of saved states.

Hash
hash()

Returns the hash of the top state on
the stack of saved states.

bool
hasSavedState()

Checks if there are any states on the
stack of saved states.

size_t
savedStateCount()

Returns the number of the states on the
stack of saved states.

Table 3.3: Saved states management methods.

detects whenever GMC tries to do such undefined operation and throws an
appropriate exception. The exceptions are described in Table 3.4.

MemoryAccessListener interface

The class MemoryState needs a way how to inform GMC about memory
leaks. The MemoryAccessListener interface exists for this purpose. An ob-
ject implementing this interface is passed to the constructor of the class
MemoryState and the created object than uses the listener to inform GMC
about memory leaks. Whenever an unreachable area that was not freed
is detected, the method unreachableArea() is called on the listener. The
unreachable areas are detected and reported during the execution of the
method MemoryState::push().

3.3 Implementation

An overview of the implementation of MM is in this chapter. On a simple
example, we demonstrate how the MM represents the current state and the
deltas. Then the main classes and some of their methods are described.
This chapter is important for anyone who wants to extend or modify MM.
For a detailed description of all the types and methods see the Doxygen
documentation on the attached CD.

37

Exception Description

NullPointerException Thrown when trying to dereference
the null pointer or the null refer-
ence.

DeletedAreaAccessException Thrown when trying to access an al-
ready freed area.

NotAreaBeginException Thrown when a pointer does not
point to the beginning of a memory
area, but it should.

OutOfBoundsException Thrown when trying to store or load
a value that does not lie within the
bounds of an area.

UndefinedMemoryLoadException Thrown when trying to load
an undefined value. The value
on the address a is defined, if
MemoryState::store() was called
before to store the value at the
address a, and the value was
not overwritten (even partially).
Otherwise the value is undefined.

Table 3.4: Exceptions thrown by MemoryState methods.

38

struct S {
int i;
Ref<S> ref;

};

void test (MemoryAccessListener* l)
{

MemoryState ms (l);
Ref<S> a1 = ms.alloc<S> ();
Ref<S> a2 = ms.alloc<S> ();
ms.setRootArea (a1);
ms.store (a1, &S::i, 1);
ms.store (a1, &S::ref, a2);
ms.push ();

Ref<S> a3 = ms.alloc<S> ();
ms.store (a1, &S::ref, a3);
ms.free (a2);
ms.push ();

}

Figure 3.3: MM usage example.

3.3.1 Example

We start with a simple example of the usage of MM. The code of the example
is shown in Figure 3.3. It simply allocates two areas, sets the first area
as the root area, writes the integer and the pointer (that is pointing to
the second are) into the first area and saves the current state using the
method MemoryState::push(). In the second part, it allocates the third
area, overwrites the pointer in the first area with the pointer to the third
area, frees the second area and saves the current state.
Figure 3.4 shows the objects used by MM that are used to represent the

current state and the delta. The black objects and associations show the
objects right before the first call to MemoryState::push(), while the gray
objects and associations show the objects that were created by the first call
to MemoryState::push().
Figure 3.5 shows the objects used to represent the current state and

the delta after the execution of the second part of the example (the delta
created in the first part is omitted). The black objects and associations show
the objects right before the second call to MemoryState::push(), while the

39

Figure 3.4: The objects after the first part of the example in Figure 3.3.

gray objects and associations show the objects that were created by the
second call to MemoryState::push().
The diagrams showing the objects are very simplified. They do not con-

tain many associations that exist between the objects and attributes. Also
there should be the objects implementing the interfaces PtrContent and
NonPtrContent and not the interfaces themselves. Despite the simplifica-
tions and inaccuracies, the diagrams give a good overview of the internal
classes used to store the current state and the deltas.
As can be seen, the current state is represented by the class State. It

contains the list of areas that are reachable from the root area (including the
freed areas). The area is represented by the class AreaEntry, which contains
the values stored in it. The user supplied objects representing the values
(implementing the interface Content or PtrContent) are wrapped into the
ContentEntry or RefContentEntry objects.
The delta is represented by the class AreaUndoSet, which contains the

list of areas that were added (uncreateArea) and removed (undeleteAreas)
during the modifications represented by the delta and also the list of the
AreaContentUndo objects. The object of the class AreaContentUndo repre-
sents the modifications made on an area. It contains the list of the values
that were added (unaddContent) and removed (unremoveContent) together
with the pointer to the area the object belongs to.
Note that whenever a value is overwritten or an area becomes unreach-

able, the objects representing them are not deleted. They are kept in the

40

Figure 3.5: The objects after the second part of the example in Figure 3.3.

delta, so they can be later added back into the current state, when the
modifications stored in the delta are reverted.

3.3.2 ContentEntry class

An object of the class ContentEntry holds a non-pointer value stored in
the simulated memory. It contains the pointer to the GMC supplied object
representing the value and the offset within the area at which the value is
saved.

3.3.3 RefContentEntry class

An object of the class RefContentEntry holds a pointer value stored in
the simulated memory. The class is derived from ContentEntry. It contains
pointer to the area in which the value is saved.

3.3.4 AreaEntry class

An object of the class AreaEntry represents an area. It contains the set of
the ContentEntry and RefContentEntry objects holding the values stored

41

in the area. Next it contains the in-link list and out-link set. The in-link list
is the list of the RefContentEntry objects representing pointer values that
are pointing to the area. The out-link set is the set of the RefContentEntry
objects representing all the pointer values stored in the area that are not
null and point to an other area. When computing canonical addresses, only
the elements of this set are explored during the BFS traversal, which speeds
up the computation. The out-link set is sorted according to the offset within
the area. Finally this class contains the list of modified values, whose partial
hashes may need to be updated. These are the values that were added into
or removed from the area, or pointer values if the canonical address to which
they are pointing has changed.
The class also contains the canonical address of the beginning of the

area it represents. When an area is moved during the canonicalization, no
bytes are really copied, only the canonical address is updated. Also the area
partial hash of the moved area is updated and the value partial hashes of
the values the moved area contains and of the pointer values pointing to the
moved area are updated.

3.3.5 State class

The class State represents the current state of the memory. It contains
the list of all the areas in the state, including freed areas, but excluding
unreachable areas. The class maintains the list of modified areas. An area is
modified if it was allocated or freed or if any of its values is modified. The
class also maintains the pointer to the root area.

3.3.6 Heap graph

In order to implement the incremental heap canonicalization algorithm, MM
must be able to search the heap graph. The vertices of the heap graph are
the AreaEntry objects, while the edges are the RefContentEntry objects.
Because AreaEntry maintains the in-link list and out-link set, the incoming
and outgoing edges can be found efficiently. To ease the access to the heap
graph, the class State is a model of the Vertex List Graph and Incidence
Graph concepts defined in the boost::graph library[17]. This allows MM
to use the breadth first search algorithm from the library to calculate the
canonical addresses.

42

3.3.7 AreaContentUndo class

This class represents the modifications made to an area. It has two lists con-
taining ContentEntry and RefContentEntry objects. The first list contains
the objects representing the values that have been added into the area since
the last state was saved, while the second list contains the objects represent-
ing the values that have been removed from the area since the last state was
saved.

3.3.8 AreaUndoSet class

This class contains the delta with differences between two saved states. For
every modified area it contains an AreaContentUndo object. It also contains
the list of the areas that have been allocated or freed since the last state was
saved.
The constructor of this class takes the pointer to a State object as a

parameter. It captures all the modifications made on the supplied object, so
they can be undone later by calling AreaContentUndo::undo(State*).

3.3.9 MemoryState

The class MemoryState contains the State object that represents the current
state, the undo stack with the deltas (the AreaUndoSet objects) and the
saved states stack with pointers to the elements of the undo stack. The undo
stack contains the deltas describing differences between the saved states,
while the saved states stack represents the saved states.

Methods

The alloc(), free(), store() and setRootArea() methods modify only
the current state object.

The method push() works in the following way. First it updates the
in-link lists and out-link sets of all the areas. This can be done efficiently,
because the current state object tracks all the modified values. As the in-
link lists and out-link sets are updated, it is also checked if the links were
significantly changed. The links are significantly changed, when the changes

43

in the links modify the breadth first search (BFS) tree11. If the links were
significantly changed, the canonical addresses of all the areas are updated.
The canonicalization step walks the whole area graph.
Next, the AreaUndoSet object is constructed, using the current state

object, and it is pushed onto the undo stack. Also the pointer that is pointing
to the AreaUndoSet object is pushed onto the saved states stack.
Next, the state hash is updated and stored in the top AreaUndoSet object

on the undo stack. It is necessary to update only the partial hashes of the
modified values and areas.
As the last step, the ContentEntry, RefContentEntry and AreaEntry

objects that are not needed are disposed. The AreaEntry object is not
needed if the area it represents was allocated and then became unreach-
able before the state was saved. The object of the class ContentEntry or
RefContentEntry is not needed, if the value it represents was stored and
then overwritten before the state was saved.

The pop() method is simple, it only removes the top element from the
saved states stack. It does not remove any elements from the undo stack.

The backtrack() method finds the delta u to which the top element on
the saved states stack is pointing, and then applies all the deltas that are
above u on the undo stack to the current state, taking the top-most delta
first. After that, all used deltas are disposed. This restores the current state
to the state it was in when the top element of the saved states stack was
pushed onto the stack.

The hash() method simply returns the state hash that is stored in the
AreaUndoSet to which the top element of the saved states stack is pointing.

3.3.10 Entries life-cycle

A ContentEntry, RefContentEntry or AreaEntry object is created, when
a value is stored into the memory or an area is allocated respectively. If the
object is not needed, after the delta is created, it is disposed. If it is needed,
the created delta takes the ownership of the object. Later, if the value is

11The BFS tree is a subtree of heap graph. It contains only the edges that, when
explored during the BFS traversal, lead to an undiscovered vertex.

44

overwritten or the area becomes unreachable, the corresponding object is
not disposed, but it is only removed from the current state. The object is
disposed once the delta that owns it is disposed. The delta is disposed after
it is applied to the current state object in the method backtrack().

3.3.11 Containers

MM uses intrusive containers from the boost::intrusive library [17] ev-
erywhere, except for the stack of saved states. The intrusive containers are
used to save some memory, but more importantly to be able to transform a
pointer to an element into an iterator in constant time.

3.4 Space and time complexities

The space and time complexities of MM are described in this section.

3.4.1 Time complexity

The time complexities of the memory manipulation methods are stated in
Table 3.5. Areas are stored in a linked list, so the addition of an area to or
the removal of an area from the state can be done in constant time. Note
that free() depends on the number of values stored in the area, because
when an area is freed, all its values must be removed from the state. Since
the objects holding the values are kept in sorted set (sorted by the offset
within the area), whenever a value is added into or removed from the area,
the time needed for this is in O(log(n)), where n is the number of values
in the area. When storing a value, all values it overwrites must be removed
from the area, hence the O((1 + r)log(v)) complexity in case of the method
store().
Time complexity of state manipulation methods is stated in Table 3.6.

It is important to note, that time complexity of the method push() – if
the links were not significantly changed – depends only on the number of
modified values and areas since the last call to push or backtrack(). This is
caused by the fact, that MM tracks the modifications with value granularity.
Similarly the method backtrack() depends on the number of modified val-
ues and areas since the state the method will backtrack to has been saved.12

12Time complexity of backtrack() method is in fact better than is stated in the Table

45

Method Time complexity Description

alloc() O(1)
alloc<T>() O(1)
free() O(v) v is the number of values in

the area
free<T>() O(v)
setRootArea() O(1)
setRootArea<T>() O(1)
store() O((1 + r)log(v)) r is the number of values

overwritten (even partially)
by the inserted value

store<T>() O(log(v) + tc) tc is the time needed to create
the copy of the value being
stored

load() O(log(v))
load<T>() O(log(v))
loadOverlapping() O(log(v))

Table 3.5: Time complexity of MemoryState value manipulation methods.

46

Method Time complexity Description

push() Average O(tm)
if links were
not significantly
changed, average
O(tm + a + p + m)
otherwise

tm is the time consumed
by calls to alloc(), free()
and store() methods (and
their templated forms) be-
tween this call and previ-
ous call to backtrack() or
push(), a is the number of
areas in the current state
(including freed, excluding
unreachable), p is the num-
ber of all non-null pointer
values pointing to an area
other than the one they are
stored in, m is the num-
ber of values in all areas,
whose canonical address has
changed

pop() O(1)
backtrack() O(tm + tp) tm is the time consumed

by calls to alloc(), free()
and store() methods (and
their templated forms) be-
tween this call and previ-
ous call to backtrack() or
push(), tp is the time con-
sumed by calls to push()
which created the deltas
that will be applied to the
current state by this call

hash() O(1)
hasSavedState() O(1)
savedStateCount() O(1)

Table 3.6: Time complexity of MemoryState methods (2).

47

The only method which time complexity does not depend on the num-
ber of modifications is the method push(). When calling this method after
the links were significantly changed, whole area graph must be traversed,
no matter how many values or areas were actually modified. This can be
improved by implementing an incremental shortest path algorithm, such as
[18].
The time complexity for the method push() is only for an average case,

because the method updates the state hash and the canonical addresses.
When the partial hashes of the modified values and areas are computed, the
results of the functions Ra and Rv must be obtained (see Section 3.1.12). .
Similarly when the canonical addresses are updated, the results of function C
must be obtained (see Section 2.4.5). Because these functions are constructed
incrementally, MM must remember the arguments that have been already
used and the corresponding returned values. The functions are implemented
using hash tables in whose the find and add operations take a constant time
on average, so the time complexity of the method push() is also expressed
for an average case only.

3.4.2 Space complexity

The overall space consumed by the MM depends on the space needed to
represent the current state and all the deltas and on the space that is needed
to represent the random functions Ra and Rv used in the computation of
the value and area partial hashes (see Section 3.1.12) and the function C
used in the canonicalization algorithm (see Section 2.4.5).
Since MM uses intrusive containers almost everywhere, the space needed

to represent the current state and all the deltas can be easily calculated
from the number and sizes of the objects that represent them. The numbers
of these objects are as follows. Every pointer or non-pointer value in the
current state or in any of the deltas consumes one RefContentEntry object
or one ContentEntry object respectively. Every area that is reachable in the
current state or in any of the saved states consumes one AreaEntry object.
Every delta (entry on the undo stack) consumes one AreaUndoSet object.
Finally whenever an area is modified (canonical address is modified or value
is added into or removed from it) between two consecutive saved states one

3.6. Simply put, it depends only on the number of modifications stored in the deltas,
that will be applied to the current state. But to express this precisely, would be quite
complicated, so a higher but simpler estimation is used.

48

Class Size in bytes

ContentEntry 48
RefContentEntry 76
AreaEntry 104
AreaUndoSet 32
AreaContentUndo 24

Table 3.7: Sizes of MM classes on 32-bit x86 architecture.

AreaContentUndo object is consumed. The sizes of these classes on 32-bit
x86 architecture can be seen in Table 3.7.
For every value in the current state or in any of the deltas there is one

user supplied object representing it. It can be seen that MM maintains only
one copy of every stored value contained in current state or any of the
saved states. Even if the value is contained in multiple saved states, only
one copy of it (and the ContentEntry and RefContentEntry object holding
it) exists. However, if two same values are stored by two different calls to
the method MemoryState::store(), two copies of the same value exist.
Very likely the memory of the running program contains many duplicities in
values. Implementing a cache of values to remove the duplicities is a possible
future work.
MM must represent also the random functions Ra and Rv and the func-

tion C. Because these functions are constructed incrementally, MM must
remember the arguments that have been already used and the correspond-
ing returned values. The functions are implemented using hash tables, so
the space occupied to hold n argument to return value mappings is in O(n).
However, the number of the different arguments the functions have been
called with can not be easily expressed, so the consumed space is added to
the overall space complexity under a single variable.
To sum up, the space occupied by MM to represent the current state and

the saved states can be expressed as:

T = NCE · SCE + NRCE · SRCE + NAE · SAE + NAUS · SAUS

+NACU · SACU + V + SSSS + F + SC (3.5)

where NCE, NRCE, NAE, NAUS and NACU are the number of objects of
the classes ContentEntry, RefContentEntry, AreaEntry, AreaUndoSet and
AreaContentUndo, the S∗ are the sizes of the classes, V is the size of the

49

memory occupied by the objects representing the values in the current state
and in the saved states, SSSS is the size of the saved states stack, F is
the space consumed to represent the functions Ra, Rv and C and SC is a
constant.

3.5 Automated tests

MM is tested by running GIMPLE Interpreter (see Chapter 4) on various
programs and checking, if it behaves correctly. For each test there are spec-
ified command line parameters to the interpreter, that are used to run the
test, the input for the test and expected output. A script that runs all the
tests exists to automate the testing process. The tests the script and their
description can be found on the attached CD.

3.6 Benchmark

The GIMPLE Interpreter is also used in the benchmark of MM. The bench-
mark compares the execution times of the native run of a program and the
interpreted run of the same program. The GIMPLE Interpreter is very sim-
ple. There are many places where it can be improved to run faster13, therefore
the benchmark gives only a very rough estimation of the slowdown caused
by the interpretation and the slowdown of the interpreter when saving states
or backtracking to previous states.
The test program is very simple and can be seen in Appendix B.2. At

the beginning it reads an unsigned integer m and then, in a loop, it allocates
an area of size m*sizeof(unsigned int), reads and unsigned integer n, fills
the area with values n and frees the area at the end of the loop.
Five tests were run, each with different input and interpreter parameters.

Every test was executed 100 times and the final execution time was calcu-
lated as the mean of all the executions. In every test, the value of m was set
to 1000, which means that in every loop an area for 1000 unsigned integers
was allocated and filled with 1000 values. The loop was run 128 times in
every interpreted test. In the native test (test 0) the loop was run 128000
times, so that the test execution time was of the same order of magnitude
as the interpreted tests.

13E.g., it should try to store fewer values into the memory, by not storing the temporary
variables.

50

Test Mean Variance
0 1.036 0.0000036
1 1.582 0.0000901
2 1.672 0.0001165
3 1.631 0.0000824
4 1.654 0.0002181

Table 3.8: Benchmark results.

The four interpreted tests differ in the way, how they save states and
backtrack to previous states. Test 1 does not save states at all, while the
other interpreted tests save state every time a value is read from the input
(so they save them in every loop). Test 2 saves states, but never backtracks,
so it behaves like a code model checker that searches a state space in a
form of path. Test 3 in every loop (except the first one) backtracks to the
previous saved state, so it behaves like a code model checker that searches
a state space in a form of star. Finally test 4 backtracks like a code model
checker exploring a state space in a form of binary tree.
The results are in Table 3.8 and Figure 3.6 shows the box-plots of the

measured values. It can be seen, that the interpretation (without saving
states) is 1527 times slower than a native run. On the other hand, when
backtracking is enabled, execution time increases only by 5.7%. Also the
differences between execution times of the variations in backtracking are
small (tests 2, 3, 4); they differ in less than 2.5%.

51

Test 0

1.
03

5
1.

04
0

1.
04

5

se
co

nd
s

Test 1 Test 2 Test 3 Test 4

1.
60

1.
65

1.
70

Figure 3.6: Box-plots for the measured values.

52

Chapter 4

GIMPLE Interpreter

To test the implementation of MM and to verify, that it provides enough
functionality to fulfil all the needs of GMC, a simple interpreter of GIMPLE
(GIMPLE Interpreter) has been created. It also serves as an example of
how to use MM. Source codes of GIMPLE Interpreter and its Doxygen
documentation can be found on the attached CD.
The interpreter is implemented as a patch for GCC that adds interpreting

functionality to it. GIMPLE Interpreter extends GCC with five additional
command line options which are described below.

--interpret enables interpretation. When this option is specified, GCC
directly interprets the input source code instead of compiling it.

--Ibacktrack enables backtracking. Before every call to scanf(), one in-
teger is read, that specifies how many user inputs to backtrack. For
example if 1 is specified, the interpreter does not read current input,
but it rather backtracks to the state, when last input was read, and
re-reads this last input.

--Ibacktrack-fine behaves in exactly the same way as previous option. It
differs only in the frequency of saving the states. When this option is
specified, the state is saved also before every gimple_cond statement.

--Istate-reentry-check enables state re-entry checking. Before every call
to scanf(), interpreter acquires the hash of the state and checks if
a state with the same has been visited before. If so, the interpreter
reports this fact and exits.

53

Statement Description

gimple_assign Assignment operation.
gimple_cond Conditional jump.
gimple_call Function call.
gimple_return Return from function.

Table 4.1: Supported GIMPLE statements.

--Istate-reentry-check-fine behaves like the previous option, but it
checks for the state re-entry also before every call to gimple_cond.

To see the GIMPLE representation of the program that will be inter-
preted, the option --dump-tree-interpret-raw can be used together with
--interpret option. This prints the GIMPLE representation of the program
to the file named like the input source file but with the .127t.interpret
suffix added. For example the command

gcc --interpret --dump-tree-interpret-raw fib.c

will interpret fib.c file, but it will also print the GIMPLE representation
of the program into the file named fib.c.127t.interpret. The source file
fib.c that prints out Fibonacci numbers and its GIMPLE representation
can be found in Appendix B.1. If only the option --dump-tree-interpret is
specified (without -raw suffix), the GIMPLE representation of the program
is printed using a C like syntax. However, to see the GIMPLE statements
used in the program, the option with -raw suffix must be used.

Supported program constructs

As said before, GIMPLE Interpreter is quite simple, so not all programs can
be interpreted. In the following text is described, what program constructs
are supported.
The set of data types supported by the interpreter is very limited. Sup-

ported are only all sorts of signed and unsigned integers, arrays of supported
types and pointers to supported types.
The interpreter also supports only four GIMPLE statements listed in

Table 4.1. However, these statements are sufficient to interpret simple C
programs.

54

The interpreter assumes that the input contains the program entry point
(the function main() in C and C++ programs) and the definitions of all the
used functions. There are however a few standard C functions that can be
used: malloc(), free(), printf(), puts() and scanf(). The behavior of
the functions malloc(), free and puts() is the same as it is defined by the
C standard, but the behavior of the other two functions differs. The function
printf() completely ignores the type specification of the parameters in the
format string (the first parameter of printf()). It prints the parameters at
the right positions, but the format of their output depends only on their
real type and not on the type and format specified in the format string. The
function scanf() ignores the format string completely. It reads n − 1 integer
values, where n is the number of the parameters the function was called with,
and stores them in the locations to whose the parameters that follow the
first parameter are pointing. If any of the second and later parameters is not
a pointer to an integer value, the interpreter aborts when the scanf() call
is interpreted. Whenever the interpreter detects an unsupported program
construct, an error message is printed on the error output and the interpreter
is aborted.

Output

GIMPLE Interpreter writes on its standard output the standard output of
the interpreted program and also few error and information messages. The
messages are enclosed between < and > characters. The list of the message
strings and their descriptions can be found in Table 4.2. The other error and
information messages produced by the interpreter are printed on the error
output, since the interpreting program can’t write to error output.

4.1 Implementation

GIMPLE Interpreter does not use the GIMPLE representation used in GCC
directly, rather it uses GIMPLE++ representation created by the GIMPLE
Iterator module (see Chapter 5). GIMPLE++ is a read-only representa-
tion of the program that has C++ interface and contains the information
extracted from GIMPLE that is relevant to GIMPLE Interpreter.

55

Printed string Description Aborts

<unreachable area
detected>

When an non-freed unreachable area
is detected for the first time.

No

<state re-entered> When a state was re-entered. Yes
<freed area access> FreedAreaAccessException has

been thrown.
Yes

<null pointer> NullPointerException has been
thrown.

Yes

<undefined pointer
operation>

UndefinedPtrOperationException
has been thrown.

Yes

<not area begin> NotAreaBeginException has been
thrown.

Yes

<undefined memory
load>

UndefinedMemoryLoadException
has been thrown.

Yes

<out of bounds> OutOfBoundsException has been
thrown.

Yes

Table 4.2: Message strings.

4.1.1 Values

The class Value is the common predecessor of all classes representing values
stored in the simulated memory. The sub-classes BoolValue, IntegerValue,
StringValue and PtrValue exist to represent the values of the bool, integer,
string and pointer types.

4.1.2 Memory structures emulation

GIMPLE Interpreter emulates program memory structures on the heap in
the following way. The root is a ProgramInfo area (an area that was allo-
cated by a call to the templated form of MemoryState::alloc() method
with ProgramInfo as the template parameter) that contains pointer to the
read-only area with the constants and functions used in the simulated pro-
gram and to a ThreadInfo area for the main and only thread of the pro-
gram. The ThreadInfo area contains the current instruction pointer and
the pointer to the bottom stack frame. The stack frame is represented by
a FrameInfo area, that contains the references to the previous and next
stack frames, the return address and pointer to the area with function local

56

variables and parameters. The areas that can be accessed by the simulated
program, are manipulated using non-templated form of MemoryState meth-
ods, while the templated methods are used to manipulate the areas backed
by *Info classes.

4.1.3 Interpreting

The interpreter sequentially interprets the GIMPLE statements. First, it
finds the program entry point (main function), takes the first block and
starts interpreting the statements in the block using the object of the class
GimpleStmtInterpreter. The interpreter stops after the program exits the
main function or if an error occurs.

57

Chapter 5

GIMPLE Iterator module

This module transforms GIMPLE, the internal representation of the pro-
gram used in GCC, into a representation that is easier to work with from
within C++ (GIMPLE++). GIMPLE++ is a read only representation of
the program. It is meant to be used only for the queries, all the optimiza-
tions and transformations must be done in GCC or during the initialization.
Once the GIMPLE++ representation is constructed, it can not be modified.

5.1 Gimple class

The class Gimple is the main class of the module, that holds the GIMPLE++
representation of program source code. To initialize a newly constructed
object of this class, the member function processCfun() must be run for
each function being compiled. This call transforms the currently compiled
function into the GIMPLE++ representation and saves it into the Gimple
object.
The constructor of the class Gimple takes one parameter, a listener used

to report encountered declarations, constants and function definitions. Dur-
ing the execution of processCfun() method, whenever a declaration, con-
stant or function definition is encountered the method onDecl(), onCst()
or onFuncDef() is called on the listener. The listener can be used to ini-
tialize the read only memory of the simulated program with constants and
functions.
After the initialization, the method entryPoint() can be used to get

the declaration of the entry point function.

58

Function Description

getFunctionType() Returns the type of the function.
getParamDeclarations() Returns the declarations of the

function parameters.
getLocalDeclarations() Returns function local declara-

tions (local variables, local func-
tions, . . .).

getFirstBlock() Returns the first block of the
function.

Table 5.1: Methods of the class Function.

5.2 Function class

The class Function represents a function and it is the place where the func-
tion body is stored. The most important methods are described in Table 5.1.
The body of the function is composed of blocks of statements.

5.3 Block class

The class Block represents an uninterruptible block of statements. When
any of the statements in a block is executed, they are all executed. This
means that the GIMPLE_COND or GIMPLE_RETURN statements are always the
last statement in the block. Every block contains pointers (edges) to all the
blocks that can follow it, to know where to continue with the execution. For
the list of most important methods see Table 5.2.

5.4 Other classes

Every class representing a statement, operation, operand, type, declaration
or constant is a sub-type of the class Stmt, Operation, Operand, Type,
Declaration or Constant respectively. The visitor pattern can be used to
work with the sub-types. When the user holding a pointer or a reference
to the super-class wants to perform an action on the sub-class, he can call
accept(Visitor&) method on the super-class and pass an object of a class
implementing the interface Visitor defined in the super-class. The method

59

Function Description

stmts() Returns the range of all the state-
ments in the block.

succEdges() Returns the range of all the out
edges.

predEdges() Returns the range of all the in
edges.

getTrueBranchEdge() Returns the edge that is taken,
when the last GIMPLE_COND state-
ment evaluates to true.

getFalseBranchEdge() Returns the edge that is taken,
when the last GIMPLE_COND state-
ment evaluates to false.

getFallthruEdge() Returns the edge that is taken,
when the last statement is neither
a conditional jump nor a return
statement.

Table 5.2: Methods of Block class.

60

accept(Visitor&) will call the method visit(SubType&) on the visitor,
where SubType will be the actual type of the object on which accept() was
called.

61

Chapter 6

Conclusion

The newly implemented memory module (MM) for GIMPLE Model Checker
(GMC) was presented in this thesis. MM is used to represent the memory of
a model checked program. It has the interface that allows low-level memory
access. It can backtrack to previously saved memory states and compute
the hash of the current memory state in order to allow exploration of the
program state space.
MM differs from other code model checkers in the fact, that it allows

to store any object implementing the given interface. It is possible to store,
e.g., the data of a value together with its type, a symbolic value used in
a symbolic execution or a predicate over a stored value used in predicate
abstraction, not only the byte representation of a value.
MM uses various techniques to lower the time and memory consumption.

It tracks all modifications to the memory state with value granularity, which
allows to store only the deltas capturing the differences between saved states
and efficiently compute the hash of a memory state. Unlike Java PathFinder
or MoonWalker, MM does not use collapse compression, therefore it does not
hold in the memory the values or areas that do not reside in the current state
or any of the saved states. This means, that the memory consumption of MM
is proportional to the number of values and areas in the current state and
in all the deltas.
MM uses incremental hashing to compute the hash of a memory state.

Before every state hash computation, the incremental heap canonicalization
algorithm is used which reorganizes the areas in the memory to form a canon-
icalized heap, so the returned state hash is the same for all the equivalent
heaps.

62

MM detects attempts to do an invalid memory operation, like access a
value in non-allocated memory, read a value from uninitialized memory or
double free an area. It also allows to detect area placement dependent oper-
ations like moving pointers between areas, computing the difference between
pointers belonging to different areas and comparing pointers belonging to
different areas.
To test MM and to verify, that it provides enough functionality to fulfil all

the needs of GMC, a simple interpreter of GIMPLE (GIMPLE Interpreter)
was created. As a part of GIMPLE Interpreter the GIMPLE Iterator module
was created, to ease the access to the GIMPLE representation of a program
from within C++.

6.1 Future work

There are few possibilities of how to further lower the memory consumption
of MM and how to increase its speed. Currently, when the heap is canoni-
calized, the whole heap graph is examined by the breadth first search algo-
rithm. Before the canonicalization step, it is checked, whether the canonical
addresses really need to be updated (the links were significantly changed).
This check takes the time proportional only to the number of the modifica-
tions made since the last saved state. In many cases the check succeeds and
allows to skip the canonicalization step, but if the check fails, the whole heap
graph still needs to be examined. The slowest operation in the canonicaliza-
tion algorithm is finding the areas, whose shortest path to the root area has
changed. Currently MM uses the breadth first search algorithm to find these
areas, but a more effective incremental shortest path[18] algorithm can be
used.
Whenever a value is stored into the simulated memory, MM saves the

object that represents the value, even if there already is the same object
present. It is very likely, that there will be many duplicated values stored in
the memory, so a value caching can be implemented to lower the memory
consumption.
Multiprocessor and multi-core systems are common at the present time,

therefore MM should be extended to support multi-threading or even be
distributable across multiple hosts.

63

Bibliography

[1] Havelund K., Pressburger T. (2000): Model Checking Java Programs
Using Java Pathfinder. International Journal on Software Tools for
Technology Transfer 2 (4), pp. 366–381

[2] Demartini C., Iosif R., Sisto R. (1999, June): A Deadlock Detection
Tool for Concurrent Java Programs. Software: Practice and Experience
29 (7), pp. 577–603.

[3] Holzmann G. J. (2000): Logic Verification of ANSI-C code with SPIN.
In Proc. of the 7th International SPIN Workshop, Volume 1885.
Springer-Verlag.

[4] Lerda F., Visser W. (2001): Addressing Dynamic Issues of Program
Model Checking. Model Checking Software, pp. 80-102.

[5] http://gcc.gnu.org/

[6] http://gcc.gnu.org/onlinedocs/gccint/

[7] Musuvathi M., Park D. Y. W., Chou A., Engler D. R., Dill D. L. (2002):
CMC: A Pragmatic Approach to Model Checking Real Code. Proceed-
ings of the Fifth Symposium on Operating System Design and Imple-
mentation

[8] Holzmann G. J. (1997): The Model Checker SPIN. IEEE Transactions
on Software Engineering 23, pp. 279–295.

[9] Demartini C., Iosif R., Sisto R. (1999): dSPIN: A Dynamic Extension
of SPIN. In SPIN, pp. pp. 261–276.

[10] Iosif R. (2001): Exploiting Heap Symmetries in Explicit-State Model
Checking of Software. In Proc 16th IEEE Conference on Automated
Software Engineering, pp. 254–261

64

[11] Andrews T.,Qadeer S.,Rajamani S. K., Rehof J., Xie Y. (2004): Zing:
Exploiting Program Structure for Model Checking Concurrent Soft-
ware. CONCUR 2004

[12] Andrews T., Qadeer S., Rajamani S. K., Rehof J., Xie Y. (2004): Zing: A
Model Checker for Concurrent Software. MSR Technical Report: MSR-
TR-2004-10.

[13] Ruys T. C., Aan de Brugh N. H. (2007): MMC: the Mono Model
Checker. Electron. Notes Theor. Comput. Sci. 190, 1 (Jul. 2007), pp.
149–160.

[14] Aan de Brugh N. H., Nguyen V. Y., Ruys T. C. (2009): MoonWalker:
Verification of .NET Programs. Proceedings of the 15th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems: pp. 170–173.

[15] Musuvathi M., Dill D. L. (2005): An Incremental Heap Canonicalization
Algorithm. SPIN 05: SPIN Workshop, Springer Verlag

[16] ISO (1999): The ANSI C Standard (C99). Technical Report WG14
N1256, ISO/IEC.

[17] http://www.boost.org/doc/

[18] G. Ramalingam, T. W. Reps (1996): An incremental algorithm for a
generalization of the shortest-path problem. J. Algorithms 21, pp. 267–
305

[19] Holzmann G. J. (1997): State compression in spin: Recursive indexing
and compression training runs. In Proc. of the 3th International SPIN
Workshop

65

Appendix A

Examples

A.1 State manipulation

A.1.1 Non-templated methods

This example demonstrates the usage of the non-templated memory manip-
ulation methods of the class MemoryState.

using namespace mmodule;

class IntValue : public NonPtrContent {
private:
// The hash of this type
static const size_t typeHash = 0xc6685ae6;

public:
IntValue (int iv) : i (iv) {}
size_t getUnitSize () const { return 4; }
Hash getHash () const
{ return ((size_t)i)+typeHash; }

int i;
};

static void example1 (MemoryState* ms)
{

Ptr area1 = ms->alloc (2*4);

std::auto_ptr<Content> contAP (new IntValue (11));
ms->store (area1, contAP);
contAP.reset (new IntValue (12));

66

ms->store (area1+4, contAP);

const Content* cont1 = ms->load (area1);
assert (typeid (*cont1) == typeid (IntValue));
assert (dynamic_cast<const IntValue*> (cont1)->i == 11);
const Content* cont2 = ms->load (area1+4);
assert (typeid (*cont2) == typeid (IntValue));
assert (dynamic_cast<const IntValue*> (cont2)->i == 12);

std::pair<MemoryState::ContentIterator,
MemoryState::ContentIterator> range;

// get range of all values in the area
range = ms->loadOverlapping (area1, ms->getSize (area1));
assert (range.first->first == 0);
assert (range.first->second == cont1);
range.first++;
assert (range.first->first == 4);
assert (range.first->second == cont2);
range.first++;
assert (range.first == range.second);

contAP.reset (new IntValue (13));
const Content* cont3 = contAP.get ();
ms->store (area1 + 2, contAP); // overwrite values
range = ms->loadOverlapping (area1, ms->getSize (area1));
assert (range.first->first == 2);
assert (range.first->second == cont3);
range.first++;
assert (range.first == range.second);

const Content* cont4 = ms->load (area1+2);
assert (typeid (*cont4) == typeid (IntValue));
assert (dynamic_cast<const IntValue*> (cont4)->i == 13);

ms->free (area1);
}

A.1.2 Templated methods

This example demonstrates the usage of the templated memory manipula-
tion methods of the class MemoryState.

struct SizeWrapper {
size_t s;

};

67

size_t hash_value (const SizeWrapper& sw)
{ return sw.s; }

struct Struct {
int i;
SizeWrapper sw;

};

static void example2 (MemoryState* ms)
{

SizeWrapper sizeWrapper = { 11 };

Ref<Struct> ref = ms->alloc<Struct> ();

ms->store (ref, &Struct::i, 1);
ms->store (ref, &Struct::sw, sizeWrapper);
assert (ms->load (ref, &Struct::i) == 1);
assert (ms->load (ref, &Struct::sw).s == 11);

sizeWrapper.s = 12;
ms->store (ref, &Struct::sw, sizeWrapper);
ms->store (ref, &Struct::i, 2);
assert (ms->load (ref, &Struct::i) == 2);
assert (ms->load (ref, &Struct::sw).s == 12);

ms->free (ref);
}

A.2 Saved states management

This example demonstrates the usage of state manipulation methods of the
class MemoryState.

struct Struct2 {
int i1;
int i2;

};

static void example3 (MemoryAccessListener* listener)
{

MemoryState ms (listener);
Ref<Struct2> ref = ms.alloc<Struct2> ();
ms.setRootArea (ref);

68

ms.store (ref, &Struct2::i1, 1);
ms.store (ref, &Struct2::i2, 2);
ms.push ();
Hash h1 = ms.hash ();

ms.store (ref, &Struct2::i1, 11);
ms.push ();
Hash h2 = ms.hash ();
assert (h1 != h2);

ms.store (ref, &Struct2::i2, 12);
ms.push ();
Hash h3 = ms.hash ();
assert (h1 != h2 && h2 != h3);
assert (ms.savedStateCount () == 3);

ms.pop ();
ms.pop ();
ms.backtrack ();
assert (ms.load (ref, &Struct2::i1) == 1);
assert (ms.load (ref, &Struct2::i2) == 2);
assert (ms.savedStateCount () == 1);

ms.store (ref, &Struct2::i1, 11);
ms.push ();
Hash h4 = ms.hash ();
assert (h4 == h2);

}

69

Appendix B

Program source codes

B.1 Fibonacci numbers

This is an example of C program and its GIMPLE representation. The file
containing the GIMPLE representation is created by the GCC when it is
run with --interpret and --dump-tree-interpret-raw options.

B.1.1 fib.c

#include <stdio.h>

int main()
{
int n = 0;
int f_2 = 0, f_1 = 0, f;
int i;

printf ("Enter how many numbers of Fibonacci sequence to show: ");
scanf ("%d", &n);

for (i = 0; i <= n; i++)
{
if (i <= 1)
f = 1;

else
f = f_1 + f_2;

f_2 = f_1;
f_1 = f;

70

printf ("fib (%d) = %d\n", i, f);
}

return 0;
}

B.1.2 fib.c.127t.interpret

;; Function main (main)

main ()
{
int i;
int f;
int f_1;
int f_2;
int n;
int D.1635;
int n.0;

<bb 2>:
gimple_assign <integer_cst, n, 0, NULL>
gimple_assign <integer_cst, f_2, 0, NULL>
gimple_assign <integer_cst, f_1, 0, NULL>
gimple_call <printf, NULL, \\

&"Enter how many numbers of Fibonacci sequence to show: "[0]>
gimple_call <scanf, NULL, &"%d"[0], &n>
gimple_assign <integer_cst, i, 0, NULL>
goto <bb 7>;

<bb 3>:
gimple_cond <le_expr, i, 1, NULL, NULL>
goto <bb 4>;

else
goto <bb 5>;

<bb 4>:
gimple_assign <integer_cst, f, 1, NULL>
goto <bb 6>;

<bb 5>:
gimple_assign <plus_expr, f, f_1, f_2>

<bb 6>:
gimple_assign <var_decl, f_2, f_1, NULL>

71

gimple_assign <var_decl, f_1, f, NULL>
gimple_call <printf, NULL, &"fib (%d) = %d\n"[0], i, f>
gimple_assign <plus_expr, i, i, 1>

<bb 7>:
gimple_assign <var_decl, n.0, n, NULL>
gimple_cond <le_expr, i, n.0, NULL, NULL>
goto <bb 3>;

else
goto <bb 8>;

<bb 8>:
gimple_assign <integer_cst, D.1635, 0, NULL>
gimple_return <D.1635>

}

B.2 Benchmark test program

This is the program used in the benchmark of MM.

#include <stdio.h>
#include <stdlib.h>

int
main ()
{
unsigned n, i, m;
unsigned* a;

scanf ("%d", &m);
n = 1;
while (n > 0)
{
a = (unsigned*) malloc (m*sizeof(unsigned));
scanf ("%d", &n);

for (i = 0; i < m; i++)
a[i] = n;

printf ("%d\n", a[0]);
free (a);

}
return 0;

}

72

Appendix C

The attached CD

The sources and the documentation of the implemented modules can be
found on the attached CD. The most important files and directories are
stated in the following list, but a more detailed description can be found in
the README files on the CD.

ginterpreter/ Contains the sources and the Doxygen docu-
mentation for MM, GIMPLE Interpreter and
GIMPLE Iterator.

benchmark/ Contains the inputs and the scripts that were
used to run the benchmark of MM and the
results of the benchmark.

tests/ Contains the inputs and the scripts that were
used to test MM.

scripts/ Contains various helper scripts.
Jan_Kouba-thesis.pdf Text of this thesis.

73

