
Charles University in Prague
Faculty of Mathematics and Physics

MASTER’S THESIS

Ondrej Krč-Jediný

GIMPLE Model Checker

Department of Distributed and Dependable Systems

Supervisor: RNDr. Ondřej Šerý Ph.D.

Study programme: Informatics, Software Systems

2010

I would like to thank to my supervisor Ondřej Šerý for his valuable advice during
the whole process of creating the work. I would also like to thank to my father
Ján and friend Andrej for reviewing the text.

I declare that I wrote my master’s thesis independently and exclusively with the
use of the cited sources. I agree with lending and publishing the thesis.

In Prague, 8.12.2010 Ondrej Krč-Jediný

2

Contents

1 Introduction 6

2 GCC and GIMPLE 8
2.1 GCC overview . 8

2.1.1 Front end vs. back end . 8
2.1.2 LTO . 9

2.2 GIMPLE overview . 9
2.2.1 GIMPLE instruction set 10

3 Model Checking 12
3.1 Introduction . 12

3.1.1 Traditional model checking 12
3.1.2 Code model checking . 13

3.2 Advantages and disadvantages . 14
3.3 Existing Tools . 15

3.3.1 Java PathFinder . 15
3.3.2 MoonWalker . 16
3.3.3 SPIN . 16
3.3.4 ZING . 16
3.3.5 CMC . 16

4 Memory Module 17
4.1 Interface . 17

4.1.1 Content . 18
4.1.2 Pointers . 18
4.1.3 MemoryState . 19
4.1.4 Exceptions . 21

3

5 GIMPLE Model Checker 22
5.1 GIMPLE Iterator . 24

5.1.1 Interaction with GCC . 24
5.1.2 Important classes . 25
5.1.3 Unsupported GIMPLE constructs 32
5.1.4 Serialization . 32

5.2 GIMPLE Interpreter . 33
5.2.1 Interaction with GIMPLE Iterator 33
5.2.2 Thread introduction . 34
5.2.3 Implementation . 36
5.2.4 Program in simulated memory 40

5.3 Interpreter vs. Model Checker . 41
5.3.1 Interpreter . 41
5.3.2 Model checker . 43
5.3.3 Implemented functions . 46
5.3.4 Thread support . 48

6 Usage and Examples 51
6.1 Usage . 51
6.2 Examples . 52

6.2.1 Data race example . 52
6.2.2 Deadlock example . 54

7 Conclusion 56

Bibliography 58

A Thread configuration file 60

B Examples in GIMPLE 62
B.1 Data race . 62
B.2 Deadlock . 64

C The attached CD 65

4

Název práce: GIMPLE Model Checker
Autor: Ondrej Krč-Jediný
Katedra (ústav): Katedra distribuovaných a spolehlivých systémů
Vedoućı diplomové práce: RNDr. Ondřej Šerý Ph.D.
e-mail vedoućıho: Ondrej.Sery@mff.cuni.cz

Abstrakt: Ciělom práce je implementácia základných prvkov explicit-state model
checkeru pre jazyk C - pokročilého nástroja na ȟladanie chýb v programoch.
Tento nástroj preȟladáva všetky možné cesty, ktorými môže byť program vykonávaný
a zároveň vyskúša všetky možné kombinácie prekladania vlákien. Nástroj je
založený na GIMPLE - výstupe front-endu kompilátora GCC, ktorý berie za
svoj vstupný jazyk. Práca využ́ıva predchádzajúcu prácu ’Memory representa-
tion for GIMPLE Model Checker’, ktorá implementuje prácu s pamäťou pre tento
nástroj. Tým, že je nástroj vychádza z GIMPLE, umožňuje overovanie systémov
priamo v jazyku C, naviac je ľahko rozš́ıritělný na iné jazyky podporované GCC.

Kľúčové slová: model checking, GIMPLE, GCC, C

Title: GIMPLE Model Checker
Author: Ondrej Krč-Jediný
Department: Department of Distributed and Dependable Systems
Supervisor: RNDr. Ondřej Šerý Ph.D.
Supervisor’s e-mail address: Ondrej.Sery@mff.cuni.cz

The goal of the thesis is a prototype implementation of explicit-state model
checker of C - an advanced tool for finding errors in programs. This tool ex-
plores all possible paths of program execution as well as all thread interleavings.
It is based on GIMPLE - output of front-end of GCC compiler, which is the input
language for GMC. The thesis is based on the previous work ’Memory represen-
tation for GIMPLE Model Checker’, that implements work with memory for this
tool. Since it is based on GIMPLE, it makes it possible to verify systems directly
in C. In addition, it is easily extensible to other languages supported by GCC.

Keywords: model checking, GIMPLE, GCC, C

5

Chapter 1

Introduction

Over the time, software complexity has grown to the point that many programs
can be hardly understood by a single person. That implies an increased amount
of unforeseen errors because the programmer simply isn’t able to grasp the whole
program in his mind. Software testing is there to help finding such errors, but
it is not perfect. Experience shows that many errors pass the process of testing
unnoticed. Moreover, there are some errors that cannot be reliably detected by
normal testing. These are for example deadlocks and data race problems for
programs with multiple processes or threads.

Another fact is that software is nowadays used in many fields where a failure
may have catastrophic consequences - loss of a big amount of money or even
a human life. There was a need for an improvement of the process of software
testing to try to minimize the occurrence of such events. This is where model
checking comes to help.

Model checking is a process that given a model of a system, it automatically
verifies it against a specification. It decides whether the system satisfies the
specification or not. If not, it provides a counter-example or it informs the user
how the specification was violated. A more specific type of model checking is
code model checking. Rather than verifying the model of a program, it verifies
the code of the program itself. Model checking has been successfully applied to
verify hardware designs and communication protocols.

This work presents a prototype implementation of a GIMPLE Model Checker
(GMC), which is a code model checker for C language. GIMPLE is the output
of the front end of GCC1 [1], which is an input language of GMC. GIMPLE is
language independent, so GMC will be suitable for use for any language that is

1GCC stands for GNU Compiler Collection

6

compilable with GCC, however it focuses on C at the moment. These languages
are currently C, C++, Objective-C, Fortran, Java and Ada. Moreover, GIMPLE
is much simpler to interpret than C itself. GMC is a tool that finds various errors
in programs, including deadlocks and data race problems.

This work is based on a thesis that implemented the memory representation
for the model checker - the Memory Module [2].

In Chapter 2, overview of GCC and GIMPLE is presented. Chapter 3 de-
scribes model checking in more detail and explains important terms. Chapter
4 presents a brief description of the Memory Module work. Chapter 5, the key
Chapter of this work, presents the implementation of GMC. Finally Chapter 6
contains a description of how to work with GMC.

7

Chapter 2

GCC and GIMPLE

This chapter contains the necessary description of GCC and its intermediate
language GIMPLE, which is an input language for GMC.

2.1 GCC overview

GCC is a system of compilers supporting various programming languages which
are C, C++, Objective-C, Fortran, Java and Ada. As a part of the GNU
Project1, its sources are fully available to anyone. That allowed to base GMC
on GIMPLE, which is an intermediate representation of the compiled program
that emerges during the compilation process.

2.1.1 Front end vs. back end

As is usual for compilers, GCC can be divided into two separate parts, front
end and back end. A connection between these two parts is an intermediate
language, which is an output of the front end but input of the back end. The
reason for such splitting is as follows.

Front ends of GCC exist for various languages that are mentioned in the
beginning of this section. All of these languages can be converted by the front
end to the intermediate language.

On the other side, back ends of GCC exist for various architectures. The
intermediate language can be converted by a concrete back end of the compiler
to the target code for the architecture.

1GNU Project is a free collaboration project that allows access to all products and their
sources created using GNU.

8

Rather than having a compiler for each language on each architecture, split-
ting the compiler like this produces M*N compilers for M languages (front ends
for them) and N architectures (back ends for them).

An intermediate representation of GCC is called GIMPLE, which is therefore
source language and target architecture independent. [3]

2.1.2 LTO

A new feature of GCC that appeared in version 4.5.0 is called link time op-
timization (LTO) [4]. It allows GCC to make inter procedural optimizations.
All of the compilation units that make an executable can be included into the
optimization process.

Important for GMC is the fact that when using LTO, GCC dumps GIMPLE
representation of the program to the disk. After compiling (and dumping) all
of the units, LTO reads the GIMPLE representation of the whole program and
starts the optimization process. GMC takes advantage of this and reads the
GIMPLE representation at the same point as the Link Time Optimizer, obtain-
ing the whole GIMPLE representation of the program from one place. Therefore
GMC does not have to worry about programs split to more source files.

2.2 GIMPLE overview

As stated before, GIMPLE is a source language and target architecture inde-
pendent representation of a program used inside GCC. Statements in GIMPLE
are derived from GENERIC2 by breaking down its expressions into tuples of at
most 3 operands (with some exceptions, for example function calls). To achieve
this, GIMPLE uses temporary variables.

GIMPLE has a quite limited instruction set, which is one of the reasons why
it was chosen as an input language for GMC.

2GENERIC is a form of an intermediate representation that is a predecessor of GIMPLE.
The process of turning GENERIC into GIMPLE is called gimplification.

9

GIMPLE instruction set
Function Brief Description Supported
GIMPLE_ASM inline assembly statements No
GIMPLE_ASSIGN assignment statement Yes
GIMPLE_CALL function calls Yes
GIMPLE_COND conditional jump Yes
GIMPLE_DEBUG debug statement No
GIMPLE_EH_FILTER exception specification No
GIMPLE_GOTO unconditional jumps Yes
GIMPLE_LABEL label statements (jump targets) Yes
GIMPLE_NOP ’do nothing’ statement Yes
GIMPLE_PHI PHI nodes Yes
GIMPLE_RESX resumes execution after an exception No
GIMPLE_RETURN return from functions Yes
GIMPLE_SWITCH the multiway branch (switch statement) Yes

Table 2.1: GIMPLE instruction set

2.2.1 GIMPLE instruction set

Table 2.1 shows the GIMPLE instruction set3. A more detailed description of
these instructions can be found in the Doxygen documentation of the classes
that represent them in GIMPLE Iterator on the attached CD.

There are also instructions starting with prefix GIMPLE_OMP_, which serve to
handle OpenMP4 threads. These aren’t supported, since GMC supports POSIX
threads.

Reasons for not supporting some statements are:

• GIMPLE_ASM - inline assembly statements are assembly routines written as
inline functions. They are useful in system programming, because of their
high speed. Inline assembly routines can handle low-level instructions like
manipulating registers, which cannot be implemented in GMC, since it
doesn’t emulate registers. It is out of the scope of this work.

3GIMPLE has two forms, ’high GIMPLE’ and ’low GIMPLE’. High GIMPLE is not yet
fully lowered, while low GIMPLE already is. This is an instruction set of low GIMPLE, which
is the form GMC reads.

4OpenMP is an implementation of multithreading, a method of parallelization. To achieve
efficient parallelization, it uses declarative directives [5].

10

• GIMPLE_DEBUG - debug statements are used for debugging purposes inside
GCC, and are not ’real’ instructions.

• GIMPLE_EH_FILTER, GIMPLE_RESX - instructions handling C++ exceptions
are not supported, since GMC focuses on C.

11

Chapter 3

Model Checking

This chapter contains a more detailed description of model checking, explains
important terms and problems that model checking faces and describes existing
model checking tools. Solutions chosen for GMC are discussed at the end of this
chapter.

3.1 Introduction

3.1.1 Traditional model checking

Traditional model checking is an automated technique for verifying formal
systems. Verification is a process that checks whether particular properties
(specification) hold for the system in question. Formally speaking, given a struc-
ture M and a logical formula Φ, the model checker decides whether M is a model
of Φ, i.e. whether M satisfies Φ (M |= Φ). M is an abstract model of the verified
system, usually a Kripke structure or a labeled transition system (LTS). These
are graph structures where nodes of the graph represent states of the system and
edges represent transitions between the states. [6]

A Kripke structure over a set AP of atomic propositions is a 3-tuple
(S,R, I) where S is a set of states, R is a transition relation R ⊆ S × S and
I : S → 2AP is an interpretation. Applied to model checking, S is the finite
set of the possible states of the system. R represents all possible transitions
between the states of the system and I defines what local properties (atomic
propositions) hold for particular states.

A Kripke structure is total, if R is a total relation, i.e. ∀s ∈ S ∃s′ ∈ S such
that (s, s′) ∈ R. In total Kripke structures there is always a path through the

12

structure that is infinite1. Kripke structures that are not total are called partial.
[6]

A labeled transition system is a 3-tuple (S,Act,→), where S is a set
of states, A is a set of actions and → is a set of transitions →⊆ S × Act × S.
Therefore a transition (s, a, s′) ∈→ defines that the system can evolve from state
s to state s′ with an action a. [6]

Properties of the system that is being checked are represented by formulas
of temporal logic, which is a logic that includes a notion of time in its formulas.
There are many variants of temporal logic, notably linear temporal logic (LTL)
and computational tree logic (CTL) that are used in model checking. Logics vary
in expressive power of the formulas and complexity of model checking. The heart
of such model checker is the decision algorithm, that decides whether the system
satisfies the formula or not. If not, it provides a counter-example showing how
were the properties represented by the formula violated. Figure 3.1 illustrates
the described process.

Figure 3.1: Model checking

3.1.2 Code model checking

In software model checking the systems being verified are programs. An
approach that exhaustively enumerates all the states reachable by the system is

1In model checking, usage of total Kripke structures ensures that a deadlock state has a
single edge that leads back to itself.

13

called explicit-state model checking.
Model checkers, that accept as input the code of the program rather than a

model of the program are code model checkers. These eliminate the necessity
of creating a model of the program, but there are also some disadvantages to
this approach that will be discussed further.

A code model checker usually does not verify program properties defined by
formulas of temporal logic. Properties are hard-coded in the implementation of
the code model checker and all programs get checked for the same properties.
These are various errors that may occur in programs such as deadlocks and data
race conditions. [7]

According to the classification presented in this chapter, GIMPLE Model
Checker presented in this work is an explicit-state code model checker of the C
language.

3.2 Advantages and disadvantages

Model checking has several advantages over traditional testing. It is an auto-
mated process, therefore there is no extra work that has to be done to begin it (in
comparison to writing tests). It explores all possible states of the system, which
is hardly achievable by traditional testing. Moreover, it can detect important
errors that cannot be detected by traditional testing, like the already mentioned
data race problems and deadlocks.

However, there are some problems that model checkers face. Since model
checking is in general an undecidable2 problem, the model checker may fail to
finish and run out of time or memory. These problems may also occur for big
programs, since the number of states rapidly exceeds the computational limits
for complex programs. This problem is named state explosion.

Exploring all possible states of the program includes exploring all possible
interleavings of threads that may occur during program execution. For a program
with threads N1, N2, ...Nn where the i-th thread has ni atomic instructions, the
number of possible scheduling sequences of the threads can be computed by the
formula [9]:

M =
(
∑N

i=1 ni)!∏N
i=1(ni)!

2Undecidable problem is a decision problem for which there is no algorithm that always
leads to a yes or no answer.

14

For example a program running in 3 threads with 5 atomic instructions in each
has 756756 different scheduling sequences. Model checkers thus have to provide
techniques for avoiding the state explosion problem.

First of these techniques is called state matching. While a model checker
explores a program, it maintains information about already visited states and if
such state is entered for the second time, the model checker recognizes it and
does not continue exploration from this state.

Another technique to reduce the state space is partial order reduction
(POR). It recognizes independent instructions which are instructions that re-
sult in the same state of the system when executed in any order [10]. The
model checker then does not have to try all the possible interleavings of these
instructions.

Backtracking refers to a capability of model checkers to restore previous
execution states and continue exploration following some yet unexplored branch.
Otherwise it would have to execute all the instructions from the beginning, which
is very inefficient. This requires the maximum effectiveness of the representation
of a state of a program and the state storage.

To minimize the memory used to represent the already explored states, model
checkers use state hashing. During the exploration of the program states only
the hashes of the states are computed and stored rather than the whole states.
When model checker checks if it has seen a state before, it computes its hash
first and compares it to the hashes stored in the set of hashes of visited states.

3.3 Existing Tools

Not all important properties of existing model checkers are mentioned in this
section. The description is aimed at the manner in which the model checkers
explore the state space or verify formulas.

3.3.1 Java PathFinder

Java PathFinder is a tool for verifying Java programs, based on the Java
bytecode. Therefore it can verify any language that can be compiled into the
Java bytecode. The user can select different algorithms according to which Java
PathFinder explores the state space. There is a simple depth-first search and a
priority-queue based search that can be configured to select the most interesting
successor of a given state. The search algorithm is based on a loop that iterates
through the state space until it is completely explored. [8, 9]

15

3.3.2 MoonWalker

MoonWalker is a model checker that automatically detects errors in CIL3 byte-
code programs - programs written for the .NET platform. It is capable of find-
ing deadlocks and assertion violations. MoonWalker is heavily inspired by Java
PathFinder. [11]

3.3.3 SPIN

SPIN4 (Simple Promela Interpreter) is a software tool for verifying distributed
software systems. The input language of SPIN is PROMELA (Process Meta
Language), that supports modeling of asynchronous distributed algorithms. The
properties to be verified about the system are specified as LTL formulas. SPIN,
rather than performing model checking itself, generates a problem-specific model
checker in C. That improves the performance and saves memory. SPIN supports
various modes of program simulation - random, interactive and guided simu-
lation. Proof techniques are either partial or exhaustive, based on either the
depth-first search or the breadth-first search algorithm. [12, 13]

3.3.4 ZING

ZING is a model checker aimed at concurrent software. It uses its own modeling
language for expressing models of concurrent systems. However, a component
of ZING is capable of translating programs written in common programming
languages into ZING models. Exploration of the state space in ZING is done in
depth-first search manner. [14, 15]

3.3.5 CMC

CMC is a code model checker that works on unmodified C or C++ programs.
It focuses on network implementations. The model checking algorithm of CMC
is based on breadth-first search. [16]

3CIL - Common Intermediate Language is the CLI-defined language used by .NET Frame-
work and Mono. CLI - Common Language Infrastructure is a specification allowing programs
written in various high-level languages to be executed on different platforms without being
rewritten.

4Using a modeling language and formulas for specifying properties, SPIN is the only tradi-
tional model checker in this section.

16

Chapter 4

Memory Module

This chapter describes the work that this thesis is based on, the Memory Module
[2]. It is extensively described in the referenced paper, so this is only a brief
description, focusing on the features important for GMC. Implementation details
and algorithms are not mentioned here. From now on, Memory Module will be
sometimes referred to as ’previous work’.

Memory Module is used in GMC as a memory representation of a program.
It was designed specifically for it.

4.1 Interface

MemoryState is the main class of the Memory Module interface. It is used
for the representation of the current state of the program. Apart from this, it
also represents the saved states. Therefore there are two types of methods of
MemoryState. First type of methods manipulate the memory of the simulated
program and load and store values into the current state of the memory. Second
type of methods is used to compute a hash of the states and save and load the
states.

Memory manipulation methods have two different forms, templated and non-
templated. The templated methods are used to store and load areas with a fixed
layout, the non-templated methods allow to store any value at any place in the
memory area.

Before we proceed to explaining how values can be stored in the simulated
memory, let’s explain what a value has to satisfy to be suitable for storing in the
simulated memory.

17

4.1.1 Content

For a value to be stored in a memory module, the value must implement the
Content interface, more precisely one of its subinterfaces, either PtrContent

or NonPtrContent. This applies to values stored via non-templated methods.
For templated methods, the values get wrapped into the interface automatically.
Content contains one method to implement, getUnitSize() which returns the
size of the value in bytes.

PtrContent

PtrContent interface has to be implemented for classes representing the value
of a pointer. Subclasses of this class have to implement the following methods:

Hash getTypeHash()

computes hash of the type of the represented value.

getPtr()

returns the address that the pointer represented by this object points to.

NonPtrContent

NonPtrContent interface is used for classes representing non-pointer values.
There is one additional method to implement:

Hash getHash()

computes hash of the represented value.

4.1.2 Pointers

Classes Ptr and Ref represent pointers. While Ptrs are used to work with
non-templated methods of MemoryState, Refs are used to work with templated
methods1.

Ptr

Ptr class is used as a representation of a memory address. It is returned by the
non-templated method MemoryState::alloc(size_t size), which allocates a
memory area of the desired size and returns an instance of Ptr pointing to the

1Ref is actually a templated class (Ref<T>).

18

allocated memory area. Similarly to pointers in C, instances of Ptr class can be
added, subtracted and compared by arithmetic and relational operators.

Ref

Ref is a templated class that represents a reference to an allocated memory area.
It is returned by the templated form of method MemoryState::alloc<T>().
Types and offsets of objects that will be stored in an area are specified by the
template argument of this function. This argument must be a POD (Plain Old
Data) structure. Fields of this structure determine types and offsets of the values
in the area. Each structure stored this way in the simulated memory has to
define how to compute its hash. This can be done by extending boost::hash()

function for the type [17].

4.1.3 MemoryState

As mentioned before, MemoryState is the main class of Memory Module inter-
face. Following sections describe MemoryState methods according to the classi-
fication mentioned at the beginning of this chapter.

Non-templated methods

Ptr alloc(size_t size)

Allocates an area with a specified size.

Ptr allocExpanding()

Allocates an area with no specified size, which automatically increases its
size if needed.

void free(Ptr ptr)

frees an allocated memory area; the argument points to the beginning of
the area.

void setRootArea(Ptr ptr)

sets an area that will be considered as the root for all areas. Therefore all
areas should be accessible from the root area2.

const Content* load(Ptr ptr)

Loads the content from the address ptr.

2In GMC, root area is ProgramInfo

19

std::pair<ContentIterator, ContentIterator>

loadOverlapping(Ptr ptr, size_t s)

Returns all the values within the area that begins at ptr and ends at ptr
+ s.

void store(Ptr ptr, std::auto_ptr<Content> c)

Stores a content c on the address that ptr points to.

size_t getSize(Ptr ptr)

returns the size of an area.

Templated methods

Ref<T> alloc<T>()

Allocates an area that can hold fields of structure T.

Ref<T> allocExpanding<T>()

Allocates an area that can hold fields of T. This area automatically increases
its size if needed.

void free(Ref<T> r)

frees an allocated memory area, which is referenced by r.

void setRootArea(Ref<T> r)

sets specified area as the root for all areas.

const V& load<T, V>(Ref<T> r, V T::* f)

Loads the value from r, stored at offset equal to the offset of f in structure
T.

void store<T, V> (Ref<T> r, V T::* f, const V v)

Stores a value v at the offset equal to offset of f in structure T into r.

Memory manipulation methods

void push()

Saves the current state of the memory on the stack of saved states.

void pop()

Removes the top state of the memory from the stack of saved states.

void backtrack()

Restores the current state according to the top state on the stack of saved
states.

20

Hash hash()

Computes hash of the top state on a stack of saved states.

bool hasSavedState()

Checks if there are any states on the stack of saved states.

size_t savedStatesCount()

Returns the number of states on the stack of saved states.

4.1.4 Exceptions

Memory Module checks for undefined operations and throws a corresponding
exception if such an event occurs (e.g. accessing a freed memory area). The
exceptions thrown by Memory Module are:

NullPointerException

Thrown when trying to dereference the null pointer or the null reference.

DeletedAreaAccessException

Thrown when trying to access an already freed area.

NotAreaBeginException

Thrown when a pointer does not point to the beginning of a memory area,
but it should.

OutOfBoundsException

Thrown when trying to store or load a value that does not lie within the
bounds of an area.

UndefinedMemoryLoadException

Thrown when trying to load an undefined value. The value on the address
a is defined if MemoryState::store() was called before to store the value
at the address a, and the value has not been overwritten (neither partially).
Otherwise the value is undefined.

21

Chapter 5

GIMPLE Model Checker

This chapter describes the implementation of GIMPLE model checker in detail,
its design, architecture and non-trivial data structures and algorithms.

GIMPLE Model Checker (GMC from now on) is a program for finding errors
in programs. It is not a model checker in a strict sense. It does not accept
formulas of temporal logic, but checks specific properties of the implementation.
GMC is based on GIMPLE - the output of the front-end of GCC, which is the
input language for GMC. It is an explicit-state model checker, systematically
exploring all possible paths of program execution. It also explores all possible
thread interleavings, therefore it is capable of finding errors that may remain
hidden during normal program execution or testing.

Basing model checker on GIMPLE brings several benefits. First, it makes
the implementation of interpreter easier. Interpreting GIMPLE is much simpler
than interpreting C. Second, GIMPLE being the output of the front-end of
GCC, GMC is easily extensible to check not only C programs, but programs in
all input languages supported by GCC, which are currently C, C++, Objective
C, Fortran, Java and Ada. Third, it promises compatibility with the majority
of open source projects.

GMC consists of three main parts as shown in figure 5.1. The first one is
the Memory Module, designed specifically for it. It allows GMC to simulate the
memory representation of the program, as well as saving, storing and comparing
program execution states. It is thoroughly described in the previous chapter.
The second one is the GIMPLE iterator, a module for converting a GIMPLE
representation of the program to a read-only representation, suitable for the use
in GMC. This read-only representation will be called GIMPLE++. The third
part is the GIMPLE++ interpreter, which takes a GIMPLE++ representation

22

Figure 5.1: scheme of GMC

of the program as an input. Depending on the mode in which it is run, it either
interprets the simulated program (interpreter mode) or model-checks it (model
checker mode). Model checking in this case means exploration of the whole state
space of the program. It reports all kind of errors supported by the Memory
Module - detection of memory leaks, access of freed memory areas, null pointer
access, undefined pointer operations, undefined memory loads, storage/loading
of values that don’t lie within areas and detection of pointers that do not point
to the beginning of the area, but they should. It also reports deadlocks and data
concurrency errors that occurred while interleaving threads.

This is a prototype implementation of GIMPLE Model Checker, therefore it
is not an all-covering model checker of C programs. It has several parts that will
have to be extended and completed in future, but it is designed to make this
process as easy as possible. It is capable of interpreting all C syntax constructs,
however support for built-in functions and threads is just to ensure basic func-
tionality and demonstrate correctness of implementation. The model checking
parts of the program are also subject to extension. All incomplete/extensible
parts will be explicitly mentioned and discussed in this chapter.

23

5.1 GIMPLE Iterator

GIMPLE Iterator is a module for converting the GIMPLE representation of
the program to a read-only representation called GIMPLE++, suitable for use
in the model checker. It is necessary to do a conversion like this, since GMC
is implemented in C++, while GCC is in C. It is also much clearer to use a
representation designed for purposes of GMC, rather than GCC’s internal tree
structures.

Figure 5.2: scheme of Gimple Iterator

5.1.1 Interaction with GCC

As shown in figure 5.2, GMC takes advantage of GCC’s Link Time Optimizer
(LTO), described in Section 2.1.2. Doing inter-procedural optimizations, LTO

24

holds representations of all the functions defined in the program at one place.
Therefore GMC does not have to worry about functions being defined in different
files, since processing of GIMPLE definitions of functions is called from inside of
LTO.

Main interaction of GMC with GCC is done via functions in the file gimplexx-
bridge.c. Function gb_process_cfun() is called for every function defini-
tion in LTO’s materialize_cgraph() function that processes all functions in
LTO. Before the first call to gb_process_cfun(), global declarations get pro-
cessed. gb_process_cfun() converts the representation of every function to a
GIMPLE++ representation, extracting the necessary information directly from
GCC’s internal structures. This is not easy because it requires knowledge of
GCC’s internal representation. Other problem is that some necessary infor-
mation like integer or real numbers already have a different representation for
purposes of the back end of the compiler. This is not suitable for use in GMC,
so the representation from earlier stages of the compiler has to be retrieved.

5.1.2 Important classes

Gimple class

The main class of GIMPLE Iterator is Gimple, which stores and holds the result-
ing GIMPLE++ representation of the program. Every time a type, declaration,
constant, statement, operation or operand occurs while processing the GIMPLE
representation, the appropriate subclass of class Type, Decl, Constant, Stmt,
Operation or Operand gets created, holding its GIMPLE++ representation.
Some of the classes were already implemented as a part of the previous work.
This work extends and completes these classes, to cover representation of most
of the standard use of C language. Classes inherited from the previous work are
mentioned in this text for its consistency, to serve as a complete description of
the interpreter. Everywhere where these classes are mentioned, it is explicitly
stated that they are inherited from the previous work.

After the processing of all the functions of the simulated program is done,
an instance of Gimple class holding the result gets serialized1. This process is
described in more detail in Section 5.1.4. gimplexx-bridge.c communicates
with Gimple class through functions defined in ConstructionHelpers.cpp.
These functions have C-like declarations, so they can be called from C code.

1Serialization is a process that flattens a data structure into a sequence of characters or
bits and stores them in a file that can be later turned back to the original object (deserialized).

25

However, they use C++ code which allows construction of Gimple class.

Function class

Function class represents a function definition retrieved from the GIMPLE
function structure. It stores the body of the function as blocks of statements.
Class Block serves this purpose. It is an equivalent to GCC’s basic block2. Each
Block contains a sequence of statements - instances of Stmt and Edges to other
blocks, defining all possible ways to continue execution.

Type class

Abstract class Type defines a common interface for all classes representing GIM-
PLE types. Subclasses of Type class represent concrete GIMPLE types. They
must implement the following methods:

Type methods
Function Description
getBitSize() Number of bits required to represent the type.
getUnitSize() Number of bytes required to represent the type.
getHash() Hash of the type.
getName() Name of the type.
isSame(Type&) Type comparison.

The number of bits required to represent the type gets retrieved from GIM-
PLE TYPE_SIZE that is defined for every GIMPLE tree node representing type.
getUnitSize() is then computed using the retrieved information. getHash()

serves for memory state equivalency purposes in GMC. It returns different hashes
for different types.

The name of the type is important, since the current implementation uses
the name to compute the hash of the type. Therefore it is necessary to ensure
that equal types have equal names, while not equal types have different names.
Type name is therefore constructed from all the information stored in the cor-
responding subclass of Type class. For example unsigned integer type, that has
size and precision of 32 bits, will have name 0int3232 (0 is for unsigned).

Possible subclasses of Type class are shown in following table:

2A basic block is a linear sequence of code with only one entry point and only one exit. No
call graph edge leads into the block.

26

Type subclasses
Class Represented GIMPLE type Part of prev. work
ArrayType ARRAY_TYPE Yes
BoolType BOOLEAN_TYPE Yes
EnumType ENUMERAL_TYPE No
FunctionType FUNCTION_TYPE Yes
IntegerType INTEGER_TYPE Yes
PtrType POINTER_TYPE Yes
RealType REAL_TYPE No
VoidType VOID_TYPE Yes
RecordType RECORD_TYPE, UNION_TYPE No

Decl class

Decl is an abstract class that defines a common interface for all classes represent-
ing GIMPLE declarations. Subclasses of Decl class represent concrete GIMPLE
declarations. They must implement the following methods:

Decl methods
Function Description
getUid() Unique ID of the declaration.
getName() Declaration name.
getType() Type of declaration, instance of some Type subclass.
isSame(Decl&) Declaration comparison.

Unique ID for a declaration gets retrieved from DECL_UID that is defined
for every GIMPLE tree node representing a declaration. Possible subclasses of
Decl class are shown in the following table:

Decl subclasses
Class Represented GIMPLE declaration Part of prev. work
FunctionDecl FUNCTION_DECL Yes
VarDecl VAR_DECL Yes
RecordDecl VAR_DECL No
ParamDecl PARM_DECL Yes
LabelDecl LABEL_DECL No
ResultDecl RESULT_DECL No
TypeDecl TYPE_DECL No
FieldDecl FIELD_DECL No
ConstDecl CONST_DECL No

27

Constant class

Abstract class Constant defines a common interface for all classes representing
constants. Subclasses of Constant represent concrete GIMPLE constants. They
must implement the following methods:

Constant methods
Function Description
getType() Type of the constant, instance of some Type subclass.

Possible subclasses of Constant class are shown in the following table:

Constant subclasses
Class Represented GIMPLE constant Part of prev. work
IntegerConstant INTEGER_CST Yes
EnumeralConstant INTEGER_CST with ENUMERAL_TYPE No
RealConstant REAL_CST No
StringConstant STRING_CST Yes

Stmt class

Stmt is an abstract class that defines a common interface for all classes represent-
ing GIMPLE statements. Subclasses of Stmt class represent concrete GIMPLE
statements. They are listed in following table:

Stmt subclasses
Class Represented GIMPLE statement Part of prev. work
AssignStmt GIMPLE_ASSIGN Yes
CondStmt GIMPLE_COND Yes
CallStmt GIMPLE_CALL Yes
ReturnStmt GIMPLE_RETURN Yes
GotoStmt GIMPLE_GOTO No
LabelStmt GIMPLE_LABEL No
NopStmt GIMPLE_NOP, GIMPLE_PREDICT Yes, No
PhiStmt GIMPLE_PHI No
SwitchStmt GIMPLE_SWITCH No

Each subclass of GIMPLE class stores all the information required to in-
terpret the statements. These are all the operands and operations that occur

28

in the statement. GIMPLE_PREDICT is an optimization feature specifying a hint
for branch prediction. Ignoring it does not affect program interpretation (apart
from a lowered speed). Therefore it is replaced with no operation statement.

Operand class

Abstract class Operand defines a common interface for all classes representing
GIMPLE operands. Subclasses of Operand class represent concrete GIMPLE
operands. They are listed in the following table:

Stmt subclasses
Class Represented GIMPLE operand Part of

prev. work
ArrayRefOperand ARRAY_REF Yes
ComponentRefOperand COMPONENT_REF No
LabelExprOperand CASE_LABEL_EXPR No
CstOperand GIMPLE constant Yes
DeclOperand GIMPLE declaration Yes
ConstructorOperand CONSTRUCTOR No
AddrOperand ADDR_EXPR Yes
IndirectRefOperand INDIRECT_REF Yes
ArrayConstructorOperand CONSTRUCTOR with RECORD_TYPE

or UNION_TYPE
No

RecordConstructorOperand CONSTRUCTOR with ARRAY_TYPE No

29

Operation class

Abstract class Operation defines a common interface for all classes representing
GIMPLE expressions. Subclasses of Operation class represent concrete GIM-
PLE expressions. They are listed in following table:

Operation subclasses
Class Repr. GIMPLE expression Part of

prev. work
NegateOperation NEGATE_EXPR No
AbsOperation ABS_EXPR No
FixTruncOperation FIX_TRUNC_EXPR No
FloatOperation FLOAT_EXPR No
BitNotOperation BIT_NOT_EXPR No
TruthNotOperation TRUTH_NOT_EXPR No
ParenOperation PAREN_EXPR No
NonLvalueOperation NON_LVALUE_EXPR No
NoOperation NOP_EXPR Yes
ConvertOperation CONVERT_EXPR Yes
PlusOperation PLUS_EXPR and

POINTER_PLUS_EXPR

Yes

MinusOperation MINUS_EXPR Yes
MultOperation MULT_EXPR Yes
RdivOperation RDIV_EXPR No
TruncDivOperation TRUNC_DIV_EXPR No
FloorDivOperation FLOOR_DIV_EXPR No
CeilDivOperation CEIL_DIV_EXPR No
RoundDivOperation ROUND_DIV_EXPR No
TruncModOperation TRUNC_MOD_EXPR No
FloorModOperation FLOOR_MOD_EXPR No
CeilModOperation CEIL_MOD_EXPR No
RoundModOperation ROUND_MOD_EXPR No
ExactDivOperation EXACT_DIV_EXPR No
MinOperation MIN_EXPR No
MaxOperation MAX_EXPR No

30

Operation subclasses
Class Repr. GIMPLE expression Part of prev. work
LshiftOperation LSHIFT_EXPR No
RshiftOperation RSHIFT_EXPR No
LrotateOperation LROTATE_EXPR No
RrotateOperation RROTATE_EXPR No
BitIorOperation BIT_IOR_EXPR No
BitXorOperation BIT_XOR_EXPR No
BitAndOperation BIT_AND_EXPR No
TruthAndOperation TRUTH_AND_EXPR No
TruthOrOperation TRUTH_OR_EXPR No
TruthXorOperation TRUTH_XOR_EXPR No
LtOperation LT_EXPR Yes
LeOperation LE_EXPR Yes
GtOperation GT_EXPR Yes
GeOperation GE_EXPR Yes
EqOperation EQ_EXPR Yes
NeOperation NE_EXPR Yes
OrderedOperation ORDERED_EXPR No
UnorderedOperation UNORDERED_EXPR No
UnLtOperation UNLT_EXPR No
UnLeOperation UNLE_EXPR No
UnGtOperation UNGT_EXPR No
UnGeOperation UNGE_EXPR No
UnEqOperation UNEQ_EXPR No
LtGtOperation LTGT_EXPR No
WidenSumOperation WIDEN_SUM_EXPR No
WidenMultOperation WIDEN_MULT_EXPR No

A more detailed description of the classes described in this section can be
found in the Doxygen documentation on the attached CD.

31

5.1.3 Unsupported GIMPLE constructs

Not all of the GIMPLE constructs are supported by GMC. This section describes
which the unsupported constructs are and why they are not supported.

In general, most of the unsupported constructs work with complex numbers
and vectors in GIMPLE. Constructs working with complex numbers (COMPLEX_CST,
COMPLEX_TYPE, COMPLEX_EXPR, ...) are used to represent implementations of
complex arithmetic from the complex.h library. This was not considered as a
part of the basic functionality of C and it is unimportant from the model checking
point of view. To ensure basic functionality associated with _Complex complex
type, many built-in functions handling various operations on the operands of
this type would have to be implemented as well.

GIMPLE vectors (VECTOR_CST, VECTOR_TYPE, ..) are not implemented for
similar reasons, since they are not needed for the interpretation of most C pro-
grams.

Other unsupported constructs include those that are used for a specific lan-
guage other than C, for example NAMESPACE_DECL for namespace declarations or
REFERENCE_TYPE for references, both in C++.

This section described only types of unsupported constructs. The complete
list can be found on the attached CD.

5.1.4 Serialization

To split the GIMPLE Iterator part of GMC (which is coded into GCC) from the
GIMPLE Interpreter (the outside-gcc part), serialization support was added to
all classes representing GIMPLE in Iterator. After processing the whole GIM-
PLE input and creating a GIMPLE++ representation, serialization routine is
executed and the whole GIMPLE++ representation gets effectively dumped to a
file. When running the Interpreter part, all dumped data structures get retrieved
(deserialized) and Interpreter can start. This allows to separate the Iterator and
Interpreter parts and run the Interpreter independently. The second benefit is
that once a GIMPLE++ representation of the program is obtained, Interpreter
can be run without running GCC, which is faster.

Boost C++ Libraries serialization implementation is used to create GIM-
PLE++ file.

32

5.2 GIMPLE Interpreter

GIMPLE Interpreter is the most important part of GMC. It takes a GIMPLE++
representation created by GIMPLE Iterator and, using the Memory Module, it
simulates the program execution and backtracks all reachable states and thread
interleavings. During this process, it keeps track of visited states, and if it detects
a previously visited state, this execution path is cut. If a Memory Module
exception is thrown, a deadlock is detected, or an assertion is violated, the
execution stops and the whole execution path that caused the error is displayed
to the user. GMC tries to minimize the state explosion problem and running
out of memory by effective storage of visited states.

Interpreting only GIMPLE instructions wouldn’t be of much practical use.
GIMPLE Interpreter therefore also implements some of the standard C language
functions, to allow user to model check programs that use them. It also focuses
on the usage of threads, since finding deadlocks and data race problems is one
of the main purposes of model checking. It focuses on POSIX threads from
<pthread.h> library, however these are not hard-coded in GMC and the use of
a different thread implementation is possible.

For program exploration, GMC uses the exploration algorithm inspired by the
MoonWalker model checker [18, 19]. It is a depth-first search based algorithm
that explores the whole state space of the program. A mild form of partial
order reduction is also implemented by classifying instructions as safe and unsafe
instructions. The model checker stores its state and backtracks only if it executes
an unsafe instruction. What are safe and what are unsafe instructions is further
explained in Section 5.3.2.

The raw design of this module is inherited from the previous work. It has,
however, served only as a simple interpreter for exemplar use, that counted only
with one thread of execution. Therefore it was widely extended and adapted to
meet the requirements of an advanced interpreter.

5.2.1 Interaction with GIMPLE Iterator

During the creation of a GIMPLE++ representation of the program, ergo during
the deserialization of a file previously created by Gimple Iterator, GimpleListener
class from the Interpreter is passed to a constructor of Gimple class. Gimple calls
the appropriate GimpleListener methods when anything interesting for the In-
terpreter happens. Interaction is illustrated in figure 5.3. For each constant and
function definition in a GIMPLE++ representation of the program, addCst()

33

or addFunc() functions get called on ConstantsManager, which saves the con-
stant or function definition into simulated memory. They can be later retrieved
during the program execution simulation by calling getCst() and getFunc()

functions. The same principle is applied for global variables, that are main-
tained by GlobalsManager(). Function definition holds all the statements and
local declarations inside the function. After the deserialization, GimpleListener
ensures that the simulated memory is properly initialized with all required data
needed to start the model checking of the program.

Figure 5.3: Interaction of iterator and interpreter

5.2.2 Thread introduction

Before we proceed to the description of the implementation of GMC, we will
define some terms related to threads that need to be explained because GMC
works with threads extensively.

• Thread of execution can be defined as a unit of processing that can be
scheduled by an operating system (by GMC in this case). It generally
results from a fork of a program into two or more concurrently running
tasks. Threads share some resources of the program (its instructions and
global memory).

• Mutex is designed to be used in concurrent programming to avoid simul-
taneous use of a common resource, such as a global variable, by two or more

34

critical sections. A critical section is a piece of code in which a thread ac-
cesses a common resource. Mutex, as a shortcut for mutual exclusion is a
program object that negotiates mutual exclusion among threads. Threads
can lock, unlock, and try to lock a mutex (described in the next sec-
tion). It can be locked only by one thread at a time, other thread trying
to lock the same mutex have to wait until the owner of the mutex unlocks
it. Using mutexes may result in a deadlock (explained further in Section
5.3.2). [20]

• Thread condition can be used as another way to synchronize threads.
While mutexes implement synchronization by controlling thread access to
data, condition variables allow threads to synchronize based upon the ac-
tual value of data. It is always used in conjunction with a mutex variable.
Condition operations include wait and signal (described in the next sec-
tion). [20]

35

5.2.3 Implementation

Relation between the most important classes of GIMPLE Interpreter can be seen
in figure 5.4:

Figure 5.4: relation between classes in GIMPLE Interpreter

36

Before the start of the model checking, an instance of Program class gets
created according to the data retrieved from the GIMPLE++ representation of
the program. Afterwards, the program’s ThreadPool contains one thread, the
main thread of the program. Then the model checking may begin.

Program class

Class Program serves for interpreting the simulated program. It stores informa-
tion about all threads in the simulated program. Calling method step() results
in the interpretation of a single GIMPLE instruction, which is done by calling
step() on a thread currently selected to run (i.e. the main thread at the begin-
ning). Afterwards, by calling method flush(), the current state of the memory
can be stored into simulated memory. This state can later be restored when
needed during model checking by calling reset(). Section 5.2.4 describes how
the active state of program is represented. Threads of the program are managed
by an instance of ThreadPool class.

Important Program methods
Function Description
init() Initialize program memory structures in the

simulated memory.
step() Interpret single GIMPLE instruction in the

active thread.
flush() Update state of the simulated memory ac-

cording to the current state of the program.
reset() Reset the program to a state according to

the current state of the simulated memory.
To be used after memory state backtracking.

ThreadPool class

Class ThreadPool manages all the threads of the simulated program. It is ca-
pable of creating a thread, destroying it and joining two threads. Apart from
this, ThreadPool also manages mutexes and thread conditions of the program.
What these are is described in Section 5.2.2. ThreadPool thus manages creation,
deletion, locking and unlocking of mutexes as well as creation, deletion, signaling
and waiting for thread conditions. The mechanism by which the mutexes and
conditions work with the simulated memory is the same as for Thread class.
Each Mutex and Condition maintains its own reference to the info structure

37

stored in the simulated memory, as shown for each Thread in figure 5.4. Same
as Program, ThreadPool is also able to flush() itself to simulated memory or
reset() according to the current state of memory.

Thread class

Class Thread represents a single thread of the program. Like class Program, it
has methods flush(), reset() and step(), the last one to interpret GIMPLE
instructions. This is done via an instance of GimpleStmtInterpreter class,
which is capable of executing GIMPLE++ instructions. During the program
execution, there are different states that thread may be in. These are listed in
the following table:

possible states of Thread
State Description
RUNNING Thread is currently selected for running.
STOPPED Thread has been terminated.
WAITLOCK Thread is waiting to acquire a lock.
WAITCOND Thread is waiting on a thread condition.
SLEEP Thread is sleeping (only during interpreting, not model check-

ing).
WAITJOIN Thread is waiting for another thread to terminate (to join

with this thread).

There are methods of class Thread that are used to get information about
the current state of a thread. These are:

Thread state methods
Function Description
isFinished() Returns true when there are no more instructions to

execute.
isAlive() Returns true when the thread is not stopped (its state

is not THREAD_STOPPED).
isRunning() Returns true when the thread is currently selected to

run (its state is THREAD_RUNNING).
isRunnable() Returns true when the thread is running (see above)

and there are more instructions to execute.
isTerminated() Returns true when the thread is stopped (its state is

THREAD_STOPPED).

38

GimpleStmtInterpreter class

GimpleStmtInterpreter is capable of executing GIMPLE++ statements that
are representations of GIMPLE statements. For each GIMPLE++ statement,
it implements a visitor3 method that interprets this statement. It is instanti-
ated inside Thread::step() to interpret the statement that the current thread’s
instruction pointer points to.

Value class

Abstract class Value defines an interface for all classes representing values. It
implements Memory Module’s interface Content, and it is used to store all kinds
of values into the simulated memory. Possible values are shown in the following
table:

Value subclasses
Class Description
BoolValue Value of a boolean.
PtrValue Value of a pointer.
IntegerValue Value of an integer.
EnumeralValue Value of an enumeration constant.
RealValue Value of a real number (float or double).
StringValue Value of a string.
FunctionValue Value of an user defined function.
BuiltinFunctionValue Value of a supported built-in function or a

supported function from a library.
ThreadFunctionValue Value of a supported thread function.
RecordValue Value of a record (structure or union).
ArrayValue Value of an array.
ArrayConstructorValue Value of an array constructor.
RecordConstructorValue Value of a record constructor.

A more detailed description of the described classes can be found in the
Doxygen documentation on the attached CD.

Now that these classes were described, we may proceed to the description of
how the program is represented in the simulated memory.

3Visitor is a design pattern that is used to separate an algorithm from an object it operates
on.

39

5.2.4 Program in simulated memory

The representation of a program state in the simulated memory contains just
enough information needed to compare two states of the program for equivalency.
Keeping the amount of information representing the state to a minimum is crucial
for the model checker to avoid running out of memory. The state of a program
is implemented in GMC by the ProgramInfo structure. A reference to this
structure is stored as an instance variable of Program class. The contents of
this structure as well as its collaboration with other Info structures is shown in
figure 5.5.

Figure 5.5: Collaboration diagram of *Info classes

40

As can be seen in figure 5.5, ProgramInfo contains ThreadPoolInfo, which
contains ThreadInfo for each thread of the program, MutexInfo for each mutex
and ConditionInfo for each thread condition. Further, it contains a pointer
to the read-only area with the defined functions and constants as well as a
pointer to the area with the global variables. The ThreadInfo contains the
current instruction pointer, FrameInfo pointer to the bottom stack frame, the
running state of the thread and a pointer to the thread’s local data. FrameInfo
representing stack frame, contains references to the previous and next stack
frames, a pointer to the area where the local variables and parameters of the
function are stored as well as the return address of the function.

5.3 Interpreter vs. Model Checker

GMC works in two possible modes, as an interpreter and as a model checker.

5.3.1 Interpreter

If GMC is run as an interpreter, the program gets interpreted step by step and
the thread scheduling policy is determined by ThreadPool class. The policy is
that a thread is selected to run after a previously selected thread is finished or
its state is not running (e.g. it is waiting for another thread to join, waiting for
a mutex or for a thread condition). It is non-preemptive scheduling policy since
the interpreter is not capable of forcibly selecting a thread to run.

During interpretation, visited states are not stored, therefore no state equiv-
alency matching is done. Following pseudocode shows how the interpreter algo-
rithm works:

Algorithm 1 The interpreter

1: program.init()
2: while not program.isF inished() do
3: program.step()
4: if not program.currentThread().runnable() then
5: program.selectRunnableThread()
6: end if
7: end while

Even though less errors can be detected in this mode than in model checking
mode, it can be used for programs that are too complex to be model checked.

41

Interpreter exceptions

Errors detected by interpreter are the Memory Module exceptions described in
Section 4.1.4. Apart from these, there are other exceptions that can be thrown:

Interpreter exceptions
Class Thrown when
AbortException Function abort() was called.
ExitException Function exit() was called4.
AssertException Assertion failed (assert() from assert.h).
InvalidPtrConvertException Invalid pointer conversion occurred (e.g. as-

signing nonzero integer to pointer).
OverlappingAreasException Overlapping memory areas were passed as

the arguments to the function memcpy(),
strcpy() or strcat().

4Apart from the other exceptions, this one is not considered to be an error, since exit() is
a function for normal program termination (compared to abort(), which signals an abnormal
program termination).

42

5.3.2 Model checker

If GMC is run as a model checker, an algorithm that explores all possible ways of
program execution is run. This algorithm is inspired by the MoonWalker model
checker (which is inspired by Java PathFinder) and it was selected for its relative
simplicity and easy extensibility. The algorithm in pseudocode is shown on the
next page.

It is a depth-first search based algorithm, that runs until all possible program
execution paths have been explored, a deadlock was encountered or a Memory
Module exception was thrown. Each iteration in the main loop corresponds to
a step forward or a sequence of steps backward. While stepping forward means
execution of instruction(s) and eventual rescheduling, stepping backward means
restoring a previous memory state and rescheduling (i.e. backtracking in the
depth-first search).

The rescheduler (called by reschedule()) compares the current memory
state with the previously stored ones, and if it finds that it is in a previously
visited state, it backtracks to the previous state. Additionally, it may select a
different thread as the running thread of the program for the the next iteration.

Taking the pseudocode step-by-step, lines 1-3 initialize the model checked
program and store its initial state into the simulated memory. Line 5 initial-
izes the structure that will be returned from rescheduler. This structure con-
tains the ID of next thread that rescheduler selected to run (resch_ret.next),
number of steps the rescheduler backtracked (resch_ret.backtrackCount) and
whether there are any more non-executed possible paths of the program to ex-
plore (resch_ret.continue). Variables on lines 6 and 7 are boolean flags that
control the execution and the rescheduler respectively.

The first if in the repeat cycle starting on line 12 checks if the current thread
has any more instructions to be executed and whether the thread is not waiting
for an event that is not available at the moment (e.g. waiting for another thread
to join). If this is the case, step of the program is executed (line 29) and it is
checked whether the rescheduler should be called. Rescheduler is called (line 24)
if the executed instruction is unsafe. This process is repeated until the whole
state space of the program has been explored or a deadlock has occurred.

A deadlock occurs when none of the threads are runnable but not all of
the threads are terminated. This is an undesirable situation, usually the cause
of incorrect locking or synchronization and is often hard to detect by classical
testing. Checking for deadlocks is implemented inside the rescheduler.

Function isCurrentInstructionUnsafe() on line 14 marks an instruction
as safe, when its result cannot depend on the different scheduling policies of

43

Algorithm 2 The model checker

1: program.init()
2: memoryState.init()
3: memoryState.store(program)
4:

5: resch ret← empty
6: execute← false
7: reschedule← true
8:

9: repeat
10: currentThread← program.currentThread()
11:

12: if currentThread.runnable() then
13: execute← true
14: reschedule← currentThread.isCurrentInstructionUnsafe()
15: else
16: execute← false
17: reschedule← true
18: if currentThread.running() then
19: currentThread.terminate()
20: end if
21: end if
22:

23: if reschedule then
24: resch ret← reschedule(program,memoryState)
25: execute ← execute and resch ret.backtrackCount ≥ 0 and

resch ret.continue
26: end if
27:

28: if execute then
29: program.step()
30: end if
31:

32: if reschedule then
33: program.currentThread← resch ret.next
34: end if
35: until resch ret.continue 6= false

44

threads. That means all instructions that manipulate with local variables are
marked as safe. On the other hand, unsafe instructions can be affected by
different scheduling policies. These are the instructions that manipulate global
variables.

There are some cases when the rescheduler is not called during the algorithm
and is skipped, but these are not mentioned for the pseudocode would become
unreadable. These are cases when the state of the memory does not change
between two calls of the rescheduler and it can therefore conclude that the state
was already visited.

Model checker exceptions

While model checking a program, (apart from Memory Module exceptions), a
DeadlockException can be thrown when a deadlock occurs.5

5Data race problems can be detected by user-defined assertions.

45

5.3.3 Implemented functions

GMC implements some standard C functions and some library functions that
can be used in the simulated programs. Behavior of some of them differs from
the original behavior. These differences include turning unsafe functions into
safe, for example memcpy throws an exception when the destination memory
space overlaps with the source memory space. All supported functions are listed
in this chapter including their descriptions that may differ from original ones.
Apart from exceptions that these functions throw and are listed in this chapter,
these function may throw more exceptions resulting from use of Memory Module
- the exceptions described in Section 4.1.4.

GMC supports these functions:6

• malloc() (N)7 - allocates bytes of dynamic memory and returns a pointer
to the allocated space.

• free() (N) - frees the memory space, which was allocated by a call to
malloc() before.

• printf() (Y) - writes output to standard output according to a specified
format. Types of arguments specified in the format string are ignored, the
arguments are printed according to their real type.

• puts() (N) - writes a string and a trailing newline to the standard output.

• putchar() (N) - writes a character to the standard output.

• scanf() (Y) - scans input from the standard input stream. Format string
is ignored, scanf is capable of reading only integer numbers.

• assert() (N) - (actually a macro) checks if an assertion was false. If it
was, AssertException is thrown and the execution stops.

• sleep() (Y) - has different behavior in interpreter and model checker. In
the interpreter, it makes the calling thread sleep until a specified number of
seconds have elapsed. Since the interpreter is slower than normal program
execution, the effect of sleep will be different from the original, so this

6Functions malloc, free, printf, puts, and scanf were implemented as a part of the previous
work.

7N means that behavior of the function does not differ from the original behavior, Y means
that it does and it is stated how.

46

should be taken into account. In the model checker, sleeps work only as
a backtracking spot (an equivalent for an unsafe instruction), where the
thread only resigns to the position of the currently running thread.

• abort() (N) - causes abnormal program termination, AbortException is
thrown and execution stops.

• exit() (N) - causes normal program termination, ExitException is throw
but is not considered as an error.

• abs(), labs(), llabs() (N) - computes the absolute value of an integer.

• atoi(), atol(), atoll(), strtol() (Y) - converts a string to an integer.
The first three functions are implemented like the latter, so they also detect
errors.

• atof(), strtod() (Y) - converts a string to a double. atof() is imple-
mented the same as strtod(), therefore atof() also detect errors. The
use of the second parameter of strtod() is not implemented. It is ignored,
if it is not null.

• rand() (N) - returns a pseudo-random integer.

• srand() (N) - sets a seed for generating pseudo-random numbers.

• memcpy() (Y) - copies bytes from one memory area to another. If the areas
overlap, an OverlappingAreasException is thrown.

• memmove() (N) - copies memory from one place to another.

• strcat() (Y) - concatenates two strings. If the strings overlap,
an OverlappingAreasException is thrown.

• strcpy() (Y) - copies a string from one location to another. Again, if the
strings overlap, an OverlappingAreasException is thrown.

• strcmp() (N) - compares two strings.

• strlen() (N) - calculates the length of a string.

Definitions of all of these functions, as well as functions for manipulating
threads described in the next section are kept at one place. They are all in

47

BuiltinFunctions.cpp for easy extensibility. Adding a new function imple-
mentation means adding its implementation into this source (and its header to
BuiltinFunctions.h) plus ensuring its proper recognition in GimpleListener’s
onDecl() method’s visitor for function declarations.

5.3.4 Thread support

Support for threads in GMC is aimed at POSIX threads from the <pthread.h>

library. However, there is a way to use different thread implementations de-
scribed at the end of this section. In the following text, POSIX thread names
for functions and types will be used. Since thread attributes (pthread_attr_t
structure and its use) are not implemented in GMC, threads work only in their
default mode. That means that the behavior of all of these functions differ from
the original. The common sign for all these functions is that they try to detect
as many errors as possible. On success, all the functions return 0. Starting with
pthread_mutex_create, all the functions return EINVAL when trying to work
with uninitialized mutexes or thread conditions.

Current support for threads consists of:

• pthread_create() - starts a new thread in the program.

• pthread_join() - blocks execution of the running thread until the joined
thread is finished. If the joined thread has already terminated, the function
returns immediately with an error code. A deadlock may occur (for ex-
ample when three threads are waiting in a loop to join), which is detected
and DeadlockException is thrown.

• pthread_exit() - terminates the calling thread. It is not capable of re-
turning a value via a parameter that is available to another thread in the
same process that calls pthread_join().

• pthread_t - type holding thread identifiers to access the threads.

• pthread_mutex_init() - initialize a mutex variable.

• pthread_mutex_destroy() - set a mutex state from uninitialized to un-
locked. Error code EBUSY is returned when trying to destroy a locked mutex
or a mutex used by a thread condition.

48

• pthread_mutex_lock() - lock a mutex or block the calling thread if the
mutex is already locked. Error code EDEADLK is returned when trying to
lock a mutex locked by the same thread.

• pthread_mutex_trylock() - lock a mutex or return immediately if the
mutex is already locked. Error code EBUSY is returned if the mutex is
locked.

• pthread_mutex_unlock() - release a mutex variable. Error code EPERM

is called when trying to unlock a mutex that is not owned by the current
thread.

• pthread_mutex_t - type holding mutex identifiers to access mutexes.

• pthread_cond_init() - initialize a thread condition.

• pthread_cond_destroy() - uninitialize a thread condition. Error code
EBUSY is returned when trying to destroy a condition that is in use (by
some condition wait function).

• pthread_cond_signal() - unblock a thread waiting on a condition vari-
able.

• pthread_cond_wait() - Blocks a thread until the specified condition is
signaled. Should be called while a mutex is locked by the calling thread.
This function releases the locked mutex while waiting and after the signal is
received from pthread_cond_signal(), the mutex will be automatically
locked for use by the thread. Error code EINVAL is also returned when
different mutexes were supplied for concurrent condition wait operations
on the same condition variable, or EPERM when the mutex is not locked by
the current thread (or not locked at all).

• pthread_cond_t - type holding identifiers to access the thread conditions.

Thread configuration

As mentioned before, there is some functionality available for the case when
other threads implementation than POSIX threads is needed to be used in GMC.
POSIX threads are not hard-coded in GMC, but their names and the order of
their arguments are in the configuration file that is show in Appendix A.

For example, let’s define the function for creating threads to be POSIX func-
tion:

49

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine) (void *), void *arg);

The first argument specifies where to store the the ID of the new thread. The
second argument determines attributes for the new thread. The third argument
defines the function where the execution of the new thread starts. Finally, the
fourth argument specifies the data to be passed to the new thread.

In the thread configuration file, the definition for the described function would
be:

CREATE=pthread_create 1 3 4

It defines the name of the function for creating threads and positions of ID
storage, start function and data arguments.

So there is variability in the syntax for threads, but the behavior is the
same as for POSIX threads. Threads with different behavior would have to be
implemented into the built-in functions (see previous section).

50

Chapter 6

Usage and Examples

In this chapter, instructions for the usage of GMC are presented, including ex-
amples.

6.1 Usage

Installation and configuration of GMC is described in detail in README files
on the attached CD. To run GMC, there is prepared script called GMC that
calls gcc to create a GIMPLE++ representation of the program and then runs
the model checker itself, using this representation as an input. The scheme for
running GMC is:

GMC -i|-m [--dump] source1 [source2 ...]

Therefore GMC has to be run with one of these options:

• -i Interpretation mode. GMC only interprets the input program, does not
model check it. Thread policy coded in the interpreter is the following: a
thread is selected to run after the previously run thread has finished or it is
not runnable (e.g. waiting for another thread to join, waiting for a locked
mutex or waiting for a thread condition). This policy is called sequen-
tial. In this mode, the model checker reports only Memory Module errors
(exceptions) described in Section 4.1.4, plus interpreter errors (exceptions)
described at the end of Section 5.3.1.

• -m Model checking mode. GMC runs the model checking algorithm on
the input program, explores all possible paths of program execution and

51

backtracks on unsafe instructions. Apart from Memory Module errors
(exceptions), it reports interpreter and model checker exceptions described
at the end of Section 5.3.2, most notably deadlocks and assertion violations.
Assertions may be used to check for data race problems (see example in
next section). If any of these occurred, the sequence of steps of the program
that has led to the error is reported to the user.

An optional option –dump can be used to print the GIMPLE representation
of the program to a file named GIMPLE.dump.

6.2 Examples

6.2.1 Data race example

Consider the following C code (let’s call it datarace.c):

#include <pthread.h>

#include <stdio.h>

#include <assert.h>

// Global variable accessed by both main thread and thread t1.

int i = 0;

void* thread1(void* data)

{

i += 1;

// This thread requires to be

// the second to access the variable.

assert(i == 2);

}

int main()

{

pthread_t t1;

pthread_create(&t1, NULL, thread1, NULL);

i += 1;

// This thread requires to be the first

// to access the variable.

assert(i == 1);

52

pthread_join(t1, NULL);

printf("%s\n", "OK!");

return 0;

}

This is a simple test that may cause a data concurrency error. Both threads
access the same global variable, but they count on a specific order of the execu-
tion, as described in comments. When running this code in interpretation mode,
we get:

~]$./GMC -i datarace.c

OK!

The sequential scheduling policy of the threads caused the correct order of ac-
cesses to the global variable i, so the data concurrency was not recognized. This
may be the case also during a normal execution of the program. But when we
run it in model checker mode, we get:

~]$./GMC -m datarace.c

OK!

Exception encountered:

Assertion failed. The assertion was:

datarace.c: main: Assertion ‘i == 1’ failed.

Logger: Instructions executed:

t1: i.4 = i

t1: i.5 = i.4 + 1

t1: i = i.5

main: i.2 = i

main: if (i.2 != 1)

main: &__assert_fail (&"i == 1"[0], &"datarace.c"[0],

22, &__PRETTY_FUNCTION__[0])

While backtracking the second possible order of the threads, the assertion in
thread t1 failed, therefore an exception was thrown and the order of the executed
GIMPLE++ statements that have led to the error were reported to the user.
The model checker has therefore successfully recognized the possible data race
problem. The GIMPLE++ representation of the program from this example can
be found in appendix B.

53

6.2.2 Deadlock example

Consider the following C code (let’s call it deadlock.c):

#include <pthread.h>

#include <stdio.h>

pthread_mutex_t m1, m2;

void* thread1(void* data)

{

// lock the mutexes in reverse order than the main thread

// order: m2 first, then m1

pthread_mutex_lock(&m2);

pthread_mutex_lock(&m1);

pthread_mutex_unlock(&m1);

pthread_mutex_unlock(&m2);

}

int main()

{

pthread_t t1;

pthread_mutex_init(&m1, NULL);

pthread_mutex_init(&m2, NULL);

pthread_create(&t1, NULL, thread1, NULL);

// lock the mutexes in order: m1 first, then m2

pthread_mutex_lock(&m1);

pthread_mutex_lock(&m2);

pthread_mutex_unlock(&m2);

pthread_mutex_unlock(&m1);

pthread_join(t1, NULL);

printf("%s\n", "OK!");

return 0;

}

This is a test for detecting a deadlock. The main thread locks mutexes
m1 and m2, the second thread locks them in the reverse order from the main
thread. This may or may not result in a deadlock, when the main thread has
locked mutex m1 and is waiting for m2, while the thread t1 has locked mutex m2
and is waiting for m1. Running this program in GMC in interpretation mode,
we get:

54

~]$./GMC -i deadlock.c

OK!

Again, sequential scheduling policy has caused that at first the main thread
locked an unlocked both mutexes and then the second thread did the same, but
in the reverse order. But since both mutexes were already unlocked, no deadlock
occurred. Running the same program in the model checking mode results in:

~]$./GMC -m deadlock.c

OK!

OK!

OK!

Exception encountered:

Deadlock occurred.

Logger: Instructions executed:

t1: &pthread_mutex_lock (&m2)

t1: &pthread_mutex_lock (&m1)

main: &pthread_mutex_lock (&m2)

We can see that while backtracking all possible thread interleavings, GMC
also detected the deadlock in one of them.

55

Chapter 7

Conclusion

GIMPLE Model Checker is an explicit-state code model checker of C. It can
detect many errors caused by incorrect work with memory, which is a common
problem when writing C programs. It can perform backtracking on the program,
explore the whole state space of the program and therefore detect deadlocks and
data concurrency errors via assertions.

To avoid the state explosion problem, GMC uses an effective storage for the
states of the program and while backtracking, it maintains a list of states it
was in before. When any of these states is revisited, the exploration does not
continue, therefore duplicate work is avoided. A simple form of partial order
reduction is implemented as well, by classifying instructions as safe and unsafe.
The state of the memory is saved only when executing unsafe instructions.

GMC takes GIMPLE as its input which is simpler to interpret than C and
it is language independent representation. GMC is therefore not limited to use
only with C programs. It can be easily extended to support all languages that
use GIMPLE as an intermediate representation. Such an extension would mean
completing the support for all the unsupported GIMPLE constructs (or at least
basic language-specific constructs) and implementing the support for the built-in
and library functions for the languages.

Function support can be extended also for C programs, since in its present
form, it covers only some of the basic C functions. Extensibility for functions was
considered during the design of GMC to make this process as easy as possible.
Another subject to extension is the GIMPLE Iterator, which does not cover the
whole GIMPLE. However, in its present form, it covers advanced use of C.

Since GMC is a prototype implementation of the model checker, it uses only
a very simple exploration algorithm. It may become insufficient if GMC was

56

heavily extended.
Memory Module, which was not part of this work, can be improved by im-

plementing advanced techniques of incremental hashing or support for symbolic
values.

57

Bibliography

[1] http://gcc.gnu.org/

[2] Kouba J. (2009): Memory Representation for Model Checker of C/C++,
Master’s thesis, Charles University in Prague.

[3] http://gcc.gnu.org/onlinedocs/gccint/

[4] http://gcc.gnu.org/wiki/LinkTimeOptimization/

[5] http://www.openmp.org/

[6] Müller-Olm M., Schmidt D.A., Steffen B. (1999): Model checking: a tutorial
introduction. Proc. 6th Static Analysis Symposium, G. File and A. Cortesi,
eds., Springer LNCS 1694, pp. 330-354.

[7] Jhala R., Majumdar R. (2009): Software model checking. ACM Computing
Surveys (CSUR), Volume 41 Issue 4.

[8] Havelund K., Pressburger T. (2000): Model Checking Java Programs Using
Java Pathfinder, International Journal on Software Tools for Technology
Transfer 2 (4), pp. 366–381.

[9] http://babelfish.arc.nasa.gov/trac/jpf

[10] Clark E. M., Grumberg O., Peled D. (2000): Model Checking, MIT Press,
Cambridge, MA.

[11] http://wwwhome.ewi.utwente.nl/ ruys/moonwalker/

[12] Holzmann G. J. (1997): The model checker Spin, IEEE T/SE, Vol. 23, No.
5, pp. 279-295.

[13] http://spinroot.com/spin/whatispin.html/

58

[14] Andrews T., Qadeer S., Rajamani S. K., Rehof J., Xie Y. (2004) Zing: A
Model Checker for Concurrent Software, MSR Technical Report: MSR-TR-
2004-10.

[15] http://research.microsoft.com/en-us/projects/zing/

[16] Musuvathi M., Park D. Y. W., Chou A., Engler D. R., Dill D. L. (2002):
CMC: A Pragmatic Approach to Model Checking Real Code., Proceedings
of the Fifth Symposium on Operating System Design and Implementation.

[17] http://www.boost.org/doc/

[18] de Brugh V. Y. (2006): Software Model Checking for Mono, Master’s thesis,
University of Twente.

[19] de Brugh V. Y. (2007): Optimizing Techniques for Model Checkers, Master’s
thesis, University of Twente.

[20] https://computing.llnl.gov/tutorials/pthreads/

59

Appendix A

Thread configuration file

This is an example thread configuration file, defining POSIX threads from the
pthread.h library to be used as threads recognized by GMC. A copy of it can
be found on the attached CD.

Defines a function for thread creation.

- First number specifies which argument

specifies where to store the created thread.

- Second number specifies which argument specifies

the name of the function to be started after the

thread is created.

- Third number specifies which argument

specifies the data to be passed to the new thread.

CREATE=pthread_create 1 3 4

Defines a function for thread join

(wait for the specified thread to terminate).

- The number specifies which argument

specifies the thread to be joined.

JOIN=pthread_join 1

Defines a function for thread exit.

- The number specifies which argument

specifies the data to be returned.

EXIT=pthread_exit 1

Defines a type holding thread identifiers

60

to access the threads

TYPE=pthread_t

The same pattern as mentioned in the comment before

applies for the following functions.

-First number specifies which argument specifies

where to store/obtain mutex/condition

MUTEX_INIT=pthread_mutex_init 1

MUTEX_DESTROY=pthread_mutex_destroy 1

MUTEX_LOCK=pthread_mutex_lock 1

MUTEX_TRY_LOCK=pthread_mutex_trylock 1

MUTEX_UNLOCK=pthread_mutex_unlock 1

MUTEX_TYPE=pthread_mutex_t

COND_INIT=pthread_cond_init 1

COND_DESTROY=pthread_cond_destroy 1

COND_SIGNAL=pthread_cond_signal 1

COND_WAIT=pthread_cond_wait 1

COND_TYPE=pthread_cond_t

61

Appendix B

Examples in GIMPLE

B.1 Data race

This is the GIMPLE representation of the example file datarace.c from Section
6.2.1:

mmain ()

gimple_bind <

int i.0;

int i.1;

int i.2;

pthread_t t1.3;

int D.3296;

pthread_t t1;

static const char __PRETTY_FUNCTION__[5] = "main";

gimple_call <pthread_create, NULL, &t1, 0B, thread1, 0B>

gimple_assign <var_decl, i.0, i, NULL>

gimple_assign <plus_expr, i.1, i.0, 1>

gimple_assign <var_decl, i, i.1, NULL>

gimple_assign <var_decl, i.2, i, NULL>

gimple_cond <ne_expr, i.2, 1, <D.3293>, <D.3294>>

gimple_label <<D.3293>>

gimple_call <__assert_fail, NULL, &"i == 1"[0],

&"datarace.c"[0], 22, &__PRETTY_FUNCTION__[0]>

gimple_label <<D.3294>>

62

gimple_assign <var_decl, t1.3, t1, NULL>

gimple_call <pthread_join, NULL, t1.3, 0B>

gimple_call <__builtin_puts, NULL, &"OK!"[0]>

gimple_assign <integer_cst, D.3296, 0, NULL>

gimple_return <D.3296>

>

thread1 (void * data)

gimple_bind <

int i.4;

int i.5;

int i.6;

static const char __PRETTY_FUNCTION__[8] = "thread1";

gimple_assign <var_decl, i.4, i, NULL>

gimple_assign <plus_expr, i.5, i.4, 1>

gimple_assign <var_decl, i, i.5, NULL>

gimple_assign <var_decl, i.6, i, NULL>

gimple_cond <ne_expr, i.6, 2, <D.3301>, <D.3302>>

gimple_label <<D.3301>>

gimple_call <__assert_fail, NULL, &"i == 2"[0],

&"datarace.c"[0], 13, &__PRETTY_FUNCTION__[0]>

gimple_label <<D.3302>>

>

63

B.2 Deadlock

This is the GIMPLE representation of the example file deadlock.c from Section
6.2.2:

main ()

gimple_bind <

pthread_t t1.0;

int D.3274;

pthread_t t1;

gimple_call <pthread_mutex_init, NULL, &m1, 0B>

gimple_call <pthread_mutex_init, NULL, &m2, 0B>

gimple_call <pthread_create, NULL, &t1, 0B, thread1, 0B>

gimple_call <pthread_mutex_lock, NULL, &m1>

gimple_call <pthread_mutex_lock, NULL, &m2>

gimple_call <pthread_mutex_unlock, NULL, &m2>

gimple_call <pthread_mutex_unlock, NULL, &m1>

gimple_assign <var_decl, t1.0, t1, NULL>

gimple_call <pthread_join, NULL, t1.0, 0B>

gimple_call <__builtin_puts, NULL, &"OK!"[0]>

gimple_assign <integer_cst, D.3274, 0, NULL>

gimple_return <D.3274>

>

thread1 (void * data)

gimple_bind <

gimple_call <pthread_mutex_lock, NULL, &m2>

gimple_call <pthread_mutex_lock, NULL, &m1>

gimple_call <pthread_mutex_unlock, NULL, &m1>

gimple_call <pthread_mutex_unlock, NULL, &m2>

>

64

Appendix C

The attached CD

The sources and the documentation of the GIMPLE Model Checker can be found
on the attached CD. Most important content of the CD is listed in this section,
however a more detailed description can be found in README files on the CD.

dist/

Contains the script for running GMC as well as the scripts for running the
automated tests of GMC.

gcc/

Contains version of GCC that was used to implement GIMPLE Iterator
part of GMC (version 4.5.0).

gmc/

Contains the sources and the Doxygen documentation of GMC.

thesis/

Contains the text of this thesis.

65

