
http://d3s.mff.cuni.cz

NPRG065: Programming in Python
Lecture 3

Tomas Bures

Jan Kofron
{bures,kofron}@d3s.mff.cuni.cz

2

Lists

Dynamic arrays

mutable

Indexing and slicing like with strings

warning: slicing returns a new list

squares = [1, 4, 9, 12, 25]

squares[3] = 16

print(squares) # -> [1, 4, 9, 16, 25]

squares[-1] # -> 25

squares[-3:] # -> [9, 16, 25]

squares[:] # -> [1, 4, 9, 16, 25]

a copy of the whole list

3

Lists

Concatenation via +

returns a new list

append() method

adding at the end of the list

modifying the list

squares + [36, 49, 64, 81, 100] # ->

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

squares.append(36)

print(squares) # -> [1, 4, 9, 16, 25, 36]

4

Lists

Assignment to slices

Length

letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']

letters[2:5] = ['C', 'D', 'E']

-> ['a', 'b', 'C', 'D', 'E', 'f', 'g']

letters[2:5] = [] # -> ['a', 'b', 'f', 'g']

letters[:] = [] # -> []

len(letters) # -> 0

5

Lists

Lists in lists

a = ['a', 'b', 'c']

n = [1, 2, 3]

x = [a, n]

print(x) # -> [['a', 'b', 'c'], [1, 2, 3]]

print(x[0][1]) # -> 'b'

6

Lists

del statement

del can do more

a = [-1, 1, 66.25, 333, 333, 1234.5]

del a[0]

print(a) # -> [1, 66.25, 333, 333, 1234.5]

del a[2:4]

print(a) # -> [1, 66.25, 1234.5]

del a[:]

print(a) # -> []

del a

print(a) # -> error

7

Tuples

Similar to lists

But immutable

Literals in round parentheses

alist = ['a', 'b', 'c']

atuple = ('a', 'b', 'c')

alist[0] = 'A' # -> ['A', 'b', 'c']

atuple[0] = 'A' # -> error

8

Operations over sequences

Sequence = list, tuple, string, … and many more

See
sequences.py

9

Comparing sequences

Lexicographically

following comparisons are true

(1, 2, 3) < (1, 2, 4)

[1, 2, 3] < [1, 2, 4]

'ABC' < 'C' < 'Pascal' < 'Python'

(1, 2, 3, 4) < (1, 2, 4)

(1, 2) < (1, 2, -1)

(1, 2, 3) == (1.0, 2.0, 3.0)

(1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)

10

Conditions in general

Non-zero number -> true

Non-empty sequence -> true

and and or – short-circuit evaluation

no assignment inside expressions (like in C, Java,…)

a = [1, 2, 3]

print('yes' if a else 'no') # -> yes

a = []

print('yes' if a else 'no') # -> no

if (a = get_value()) == 0: # -> syntax error

print('zero')

11

set, dict

set – unordered collection of distinct objects

literals – {'one', 'two'}

frozenset – immutable set

dict – associative array (hashtable)

literals – {'one': 1, 'two': 2, 'three': 3}

See
sets_and_dicts.py

12

dict

Indexing by anything

Iterating

adict = {'one': 1, 'two': 2, 'three': 3}

print(adict['one']) # -> 1

adict['four'] = 4

print(adict)

-> {'one': 1, 'two': 2, 'three': 3, 'four': 4}

for k, v in adict.items():

print(k, v)

for k in adict.keys():

print(k, adict[k])

13

Comprehensions

a concise way to create lists, sets, dicts

this works

but comprehension is better

and shorter, more readable, …, more Pythonic

list comprehension
brackets containing an expression followed by a for clause, then zero or more for or if
clauses

squares = []

for x in range(10):

squares.append(x**2)

squares = [x**2 for x in range(10)]

14

Comprehensions

Can be nested

[(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]

-> [(1, 3), (1, 4), (2, 3), (2, 1), (2, 4),

(3, 1), (3, 4)]

a matrix

m = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

and a transposed matrix

tm = [[row[i] for row in m] for i in range(4)]

15

Comprehensions

set comprehensions
like for lists but in curly braces

dict comprehensions
also in curly braces but we need to specify both the key and value

separated by :

word = 'Hello'

letters = {c for c in word}

another example

a = {x for x in 'abracadabra' if x not in 'abc'}

word = 'Hello'

letters = {c: c.swapcase() for c in word}

-> {'H': 'h', 'e': 'E', 'l': 'L', 'o': 'O'}

See
comprehensions.py

16

More collection types

bytes

immutable sequences of single bytes

bytearray

mutable counterpart to bytes

b'bytes literals are like strings but only with ASCII chars'

b'escape sequences can be used too\x00'

See
strings_vs_bytes.py

17

More collection types

namedtuple a factory function for creating tuple subclasses with named fields

deque a list-like container with fast appends and pops on either end

ChainMap a dict-like class for creating a single view of multiple mappings

Counter a dict subclass for counting hashable objects

OrderedDict a dict subclass that remembers the order entries were added

defaultdict a dict subclass that calls a factory function to supply missing values

heapq an implementation of the heap queue algorithm

See
other_collections.py

18

Naming conventions

PEP 8, PEP 423

Classes – camel case
MyBeautifulClass

Functions, methods, variables – snake case
my_beautiful_function, local_variable

“Constants” – capitalized snake case
MAX_VALUE

Packages, modules
lower case, underscore can be used (discouraged for packages)

no conventions as in Java (i.e., like reversed internet name)

“pick memorable, meaningful names that aren’t already used on PyPI”

The Zen of Python says “Flat is better than nested”.
two levels is almost always enough

The Zen of Python
import this

Try import this in the
interactive shell

PEP = Python
Enhancement Proposals

19

Special variables/methods of objects

Many special variables/methods
not all objects have all of them

Naming schema
surrounded by double underscores

__name_of_the_special_variable_or_method__

__name__

name of the object

Others later

import sys

sys.__name__ # -> 'sys'

20

The slides are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

