NPRGO065: Programming in Python
Lecture 5

http://d3s.mff.cuni.cz

Department of
Distributed and
Dependable

FACULTY Tomas Bures

OF MATHEMATICS
AND PHYSICS Jan Kofron
Charles University {bures,kofron}@d3s.mff.cuni.cz

Basic 1/O and Exceptions
(cont.)

Handling exceptions
e BB B

® Reminder

import sys

try:
f = open(sys.argv[l], 'r')

except OSError:
print ('cannot open', sys.argv[1l])

else:
print('File has', len(f.readlines()), 'lines')
f.close()

with
O ® 5. 0 2 © s

* partially similar to Java’s “try with resources” or C#'s with

= calls close () but does not handle exceptions

* usable not only with files

= will be covered later

with open('workfile') as f:

read data = f.read()

// do something with read data
print(f.closed) // prints true

Examine and run
basic_io.py

Raising exceptions

—m

raise NameError ('HiThere')

® raise

raise ValueError

* Exceptions can be re-raised

try:
raise NameError ('HiThere')

except NameError:
print ('An exception flew by!')
raise

Own exceptions

—m

* exception ~ an instance of a class extending the Python’s built-in Exception class

= classes, extending, etc. will be covered the next lecture

class MyException (Exception) :
pass

try:
raise MyException
except:
print ('Exception occurred')

Functions and their parameters

Functions

—m

e def function name (parameters):
body
return value # optional

® Are first-class entities

= e.g., can be assigned or passed as arguments

def say hello():
print ('Hello world')

say hello()

print hello = say hello

print hello()

Functions
N

* Five kinds of parameters

= positional-or-keyword — most common and default variant
edef func(foo, bar=None):

= positional-only — used only in several builtin functions

= keyword-only
edef func(arg, *, kw onlyl, kw only2):

= var-positional — an arbitrary sequence of positional arguments
edef func(*args, **kwargs):

= var-keyword — an arbitrary sequence of keywords arguments

edef func(*args, **kwargs):

®* Parameters — passing by-value

Examine and run

functions.py

Functions
ﬁ

® Functions can be defined in functions

= e.g., to hide implementation

def factorial (number) :
error handling
if not number >= 0:
return -1

def inner factorial (number):
if number <= 1:

return 1
return number*inner factorial (number-1)
return inner factorial (number)

10

Functions and visibility

ﬁ

* Visibility of variables in function is as usual

def outer() :
test = 1
def inner|():
test = 2
print (' 1inner:',6 test)
inner ()
print (' outer:',6 test)

test = 0 # global scope
outer ()
print(' global:', test)

11

Functions and visibility

ﬁ

®* But we can access variables in different scope

nonlocal test

global test

12

The slides are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

13

http://creativecommons.org/licenses/by-nc/4.0/

