
http://d3s.mff.cuni.cz

NPRG065: Programming in Python
Lecture 6

Tomas Bures

Jan Kofron
{bures,kofron}@d3s.mff.cuni.cz

Std library overview
(important modules)

2

3

Logging

import logging

Similar to any other logging framework

5 levels

DEBUG, INFO, WARNING, ERROR, CRITICAL

Loggers

hierarchical names

Logging configuration – handlers, formatters

in code

external file

several formats

See
logs/*.py

Low level OS functions

import os

Operating system API

See
os/os.py – Miscellaneous operating system API

os/os.file.py – File operating system API

4

General – different file access APIs

There are several ways how to access files in Python

Build-in open()

This is a generic way how to open files.

Use this if there are no special requirements to use os API.

Returns a file object with read, write, … methods.

pathlib Path.open()

Behaves like open() but provides nice path abstraction.

Returns the same file object.

os.open()
Provides low level file API, maps to native C functions.

Returns native file descriptor as used by the underlying operating system (an integer).

os contains methods for low level file access
File is passed in form of a file descriptor

Some methods also accept file name if possible

For instance os.lseek does not make sense with just file name

Use when necessary

5

os – low level file access API

There used to be 2 versions of each function

One for working with path (like os.stat)

Another one for working with file descriptors (like os.fstat)

Since Python 3.3 the os.stat and similar methods naturally working with paths also take fd or dir_fd
argument, thus the fd only versions prefixed with f are redundant.

Everything does not work everywhere

Quite big part of the API is Unix only.

Sometimes only part of the functionality is available.

Sometimes the result of the operation is platform dependent.

It is possible to ask whenever particular function supports something by checking the function being
present in os.supports_...

os.supports_dir_fd

os.supports_effective_ids

os.supports_fd

os.supports_follow_symlinks

6

The os file API is similar to C file API

Windows, Unix, usually Mac Unix only
os.open os.mkfifo os.chown
os.close os.readlink os.get_blocking
os.dup os.remove os.lockf
os.pipe os.removedirs os.possix_fallocate
os.read os.rename os.possix_fadvise
os.sendfile os.replace os.set_blocking
os.write os.rmdir os.chroot
os.access os.scandir os.sync
os.chdir os.stat
os.chflags os.stat_float_times
os.chmod os.symlink
os.getcwd os.truncate
os.link os.unlink
os.listdir os.utime
os.lstat os.walk
os.mkdir os.mkdirs

7

File path access via pathlib

import pathlib

Working with filesystem paths

See
path.py

8

Argument parsing

import argparse

Parsing command-line arguments

See
arguments.py

9

Regular expressions

import re

Regular expression support

See
regexp.py

10

System

import sys

System-specific parameters and functions

See
system.py

11

Shell utils

import shutil

High-level file API

See
sh/sh.py

12

XML

import xml

Parsing XML documents

See
xml/xmltree.py

13

CSV

import csv

Reading and writing CSV files

See
csv/*.py

14

JSON

import json

Reading and writing json formatted data

15

16

YAML

Is not in the std library

pip install pyyaml

Or better pip install ruamel.yaml

• Newer, maintained, supports yaml 1.2

• Almost the same usage (API)

import yaml

Reading and writing yaml formatted data

See
y/y.py

Unit testing

17

18

Unit testing

unit testing

testing “small” units of functionality

a unit – independent on other ones

tests are separated

creating helper objects for tests
context

typically in OO languages

unit ~ method

ideally – unit tests for all units in a program

typically in OO languages
for all public methods

19

Unit testing in Python

Modules in std. library

doctest

unittest

Other

pytest

20

doctest

Placing testing code in pydoc comments

Executing tests

python -m doctest -v example.py

Or

placing doctest.testmod() to “main” and executing the module with the argument -v

def echo(value):

"""

Documentation here

>>> echo(0)

0

"""

return value

Code to be executed as a test

Expected value of the test

See
doctesting.py

21

unittest

Tests in a special class

import unittest

class TestStringMethods(unittest.TestCase):

def test_upper(self):

self.assertEqual('foo'.upper(), 'FOO')

def test_isupper(self):

self.assertTrue('FOO'.isupper())

self.assertFalse('Foo'.isupper())

if __name__ == '__main__':

unittest.main()

Have to extend this class

Many assertSomething
methods for evaluation

conditions. If the condition
is true, the assertSomething
method does nothing. If not
true, an exception is raised,

i.e., the test fails.

Individual tests

22

unittest

23

unittest

import unittest

class WidgetTestCase(unittest.TestCase):

def setUp(self):

self.widget = Widget('The widget')

def test_default_widget_size(self):

self.assertEqual(self.widget.size(), (50,50),

'incorrect default size')

def test_widget_resize(self):

self.widget.resize(100,150)

self.assertEqual(self.widget.size(),

(100,150), 'wrong size after resize')

def tearDown(self):

self.widget.dispose()

Called before each test
method

Called after each test method

24

unittest

Methods called before/after each all tests in a particular class

Tests execution

python -m unittest test_module1 test_module2

@classmethod

def setUpClass(cls):

...

@classmethod

def tearDownClass(cls):

...

See
unittesting.py

Packing and distributing code

25

Installing packages using PIP

PIP – a tool that enables automated installation of packages from a large repository

packages from pypi.org

As of Python 3.4 PIP is part of the default Python installation

Usage:

python -m pip install SomePackage

python -m pip install –user SomePackage

python -m pip install SomePackage==1.0.4

python -m pip install --upgrade SomePackage

Problems:

May interfere with system package managers on Posix systems

install package just for single user using “--user” or use virtual environment
described later

Packages with native content need to be build from source

26

Installing packages from source

By convention installable Python sources have setup.py installation script in their root
directory

setup.py should ensure installation of the packages and modules included in the codebase as
intended by author.

It can be invoked as this:

python setup.py install

python setup.py install –user

if possible, prefer PIP and pypi.org

27

28

Virtual Environment

venv

a tool for creating virtual Python environments

sets up virtual environment in the DIRECTORY

new packages are installed to the DIRECTORY

activates the environment

virtualenv

similar, just another package for the same

python3 -m venv DIRECTORY

source /path/to/DIRECTORY/bin/activate

python3 -m virtualenv DIRECTORY

Managing Dependencies

pipenv

combination of PIP and virtualenv

creates virtualenv and install dependencies there

list of dependencies stored in a file within the project

cd myproject

pipenv install <package>

pipenv shell

29

Packaging Applications

setuptools

Tool for packaging python applications

… and describing requirements

Driven by setup.py

30

Writing setup.py

In theory any arbitrary code can be in setup.py

it is a normal script

but typically contains only the package description

In fact all the installation code does not need to be written again

The setuptools package contains the necessary functions

Particularly the setup function is used to configure what to install

For most projects a call to the setup is everything that is needed

See
myhello directory

and setup.py there

31

What does an installed package look like

Packages are installed as python eggs

each installed package has a directory or an egg archive containing its files:

python source code

any other resource necessary for the package to work properly

precompiled .pyc files in the __pycache__ subdirectory

each package also has its own text file describing package metadata

contains name, version, summary, url, authors, licence, dependencies, …

32

Where are the installed packages

Python looks for packages to import on several places

The lookup is controlled by the Python Path variable

By default it contains:

the directory where the script is located

python installation package directory

other system Python packages (site-packages directory)

user local package directory

content of PYTHONPATH environment variable

Path can be accessed and modified at runtime

import sys

print(sys.path)

sys.path.append(“some path”)

33

34

The slides are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

	Slide 1: NPRG065: Programming in Python Lecture 6
	Slide 2: Std library overview (important modules)
	Slide 3: Logging
	Slide 4: Low level OS functions
	Slide 5: General – different file access APIs
	Slide 6: os – low level file access API
	Slide 7: The os file API is similar to C file API
	Slide 8: File path access via pathlib
	Slide 9: Argument parsing
	Slide 10: Regular expressions
	Slide 11: System
	Slide 12: Shell utils
	Slide 13: XML
	Slide 14: CSV
	Slide 15: JSON
	Slide 16: YAML
	Slide 17: Unit testing
	Slide 18: Unit testing
	Slide 19: Unit testing in Python
	Slide 20: doctest
	Slide 21: unittest
	Slide 22: unittest
	Slide 23: unittest
	Slide 24: unittest
	Slide 25: Packing and distributing code
	Slide 26: Installing packages using PIP
	Slide 27: Installing packages from source
	Slide 28: Virtual Environment
	Slide 29: Managing Dependencies
	Slide 30: Packaging Applications
	Slide 31: Writing setup.py
	Slide 32: What does an installed package look like
	Slide 33: Where are the installed packages
	Slide 34

