
NPRG065: Programming in Python Lecture 10

http://d3s.mff.cuni.cz

Tomas Bures
Jan Kofron

{bures,kofron}@d3s.mff.cuni.cz

Class Design Example – SIS

- "Student Information System"
 - Domain relationships
 - A course has description which is valid for several years
 - Name, e-credits
 - The way it is taught
 - e.g. 2 hours lecture + 2 hours labs once a week, 4 hours labs once per two weeks, 2 x 2 hours lecture + 2 hours labs once a week
 - Each year the course is scheduled to different slots and for different number of parallel groups
 - Each course slot may be taught by a different teacher
 - A student registers to a course and which lecture and labs slots in the schedule he/she will attend
 - Use-cases
 - List courses taught in a particular year
 - Allow students to register to a course
 - List students that are registered to the course but which have not selected slots they will attend
 - Show student schedule
 - Show statistics per teacher (which courses, number of teaching hours, number of students)

Matematicko-fyzikální fakulta

Vytíženost katedry - aktuální data pro 2018/2019

Studijní sestavy (verze: 166)

57:18 🖻 🔀 🐧 Sestavy Výkazy Chybějící údaje Podezřelé předměty Statistiky Mezifakultní studium Přístupy Změna ak.roku Výuka Vytíženost Agregovaná vytíženost Všechny katedry Diplomanti Archiv vytíženosti Výkony

Katedra a semestr

Katedra: 32-KDSS ▼ Semestr: letní ▼ 🔎 Zobraz

⊠ Csv				
Ústav	Uč			
32-KDSS	Al.			
32-KDSS	As			
32-KDSS	As			
32-KDSS	Bu			
32-KDSS	Bu			
22 1/000	_			

Ústav	Učitel	Kód	Název	Тур	Podíl hod 🕰	Celkem hodin	Podíl stud 🗗	Celkem stud	Z toho mimofak	Вс	Dipl	Obhaj Bc	Obhaj Dipl	Dokt
32-KDSS	Al Ali Rima	NPRG021	Pokročilé programování na platformě Java	Х	28	112	9	52	0					
32-KDSS	Aschenbrenner Vojtěch	NPRG065	Programování v Pythonu	X	28	84	14	50	0					
32-KDSS	Aschenbrenner Vojtěch	NSWI095	Úvod do UNIXu	X	56	280	28	201	0					
32-KDSS	Bulej Lubomír									1				1
32-KDSS	Bulej Lubomír	NSWI143	Architektura počítačů	Р	56	56	92	92	0					
32-KDSS	Bulej Lubomír	NPRG043	Doporučené postupy v programování	Р	28	28	26	26	0					
32-KDSS	Bureš Tomáš									1	2			2
32-KDSS	Bureš Tomáš	NPRG065	Programování v Pythonu	Р	14 / 28	28	24,5 / 49	50	0					
32-KDSS	Bureš Tomáš	NSWI054	Softwarové inženýrství pro spolehlivé systémy	X	29,6	30	8	8	0					
32-KDSS	Bureš Tomáš	NSWE001	Vestavěné systémy a systémy reálného času	Р	28	28	6	6	0					
32-KDSS	Bureš Tomáš	NSWE001	Vestavěné systémy a systémy reálného času	X	28	56	6	6	0					
32-KDSS	Čepelík David	NPRG065	Programování v Pythonu	X	28	84	25	50	0					
32-KDSS	Dort Vlastimil	NSWI080	Middleware	X	14	28	13	13	0					
32-KDSS	Hnětynka Petr									1	1			1
32-KDSS	Hnětynka Petr	NPRG021	Pokročilé programování na platformě Java	Р	56	56	52	52	0					
32-KDSS	Hnětynka Petr	NPRG021	Pokročilé programování na platformě Java	X	28	112	20	52	0					
32-KDSS	Hnětynka Petr	NPRG065	Programování v Pythonu	Р	14 / 28	28	24,5 / 49	50	0					
32-KDSS	Hnětynka Petr	NSWI058	Výběrový seminář z distribuovaných a komponentových systémů II	X	37,2 / 56	56	2/3	3	0					
32-KDSS	Horký Vojtěch	NPRG043	Doporučené postupy v programování	X	56	56	26	26	0					
32-KDSS	Horký Vojtěch	NSWI131	Vyhodnocování výkonnosti počítačových systémů	X	7 / 14	14	4/8	8	0					
32-KDSS	Hornáček Adam	NPRG021	Pokročilé programování na platformě Java	X	28	112	23	52	0					
32-KDSS	Houška Petr	NPRG038	Pokročilé programování pro .NET I	X	28	168		107	1					
32-KDSS	Ježek Pavel									6	1			
32-KDSS	Ježek Pavel	NPRG038	Pokročilé programování pro .NET l	Р	28	28	107	107	1					
32-KDSS	Ježek Pavel	NPRG038	Pokročilé programování pro .NET I	X	28	168	52	107	1					
32-KDSS	Ježek Pavel	NPRG057	Pokročilé programování pro .NET II	Р	28	28	36	36	0					
32-KDSS	Ježek Pavel	NPRG064	Programování uživatelských rozhraní v .NET	Х	28	28	50	50	1					

Python protocols

- Protocol ~ structural interface
 - a collection of methods an object has to support to implement something
- Example iteration protocol
 - for works with anything iterable

```
for i in anything_iterable:
    print(i)
```

- iterable ~ has the __iter__() method, which returns an object supporting the iteration protocol, i.e., an object with methods
 - __iter__() returns itself
 - __next__ () returns the next item or raises the StopIteration exception

Protocols

- Many protocols
 - e.g. in collections.abc module

- __amethod__() methods called "special"
 - https://docs.python.org/3/reference/ datamodel.html#special-method-names

ABC	Inherits from	Abstract Methods	Mixin Methods
Container		contains	
Hashable		hash	
Iterable		iter	
Iterator	Iterable	next	iter
Reversible	Iterable	reversed	
Generator	Iterator	send, throw	close,iter,next
Sized		len	
Callable		call	
Collection	Sized, Iterable, Container	contains, iter, len	
Sequence	Reversible, Collection	getitem,len	contains,iter,reversed, index, and count
MutableSequence	Sequence	<pre>getitem,setitem,delitem,len, insert</pre>	Inherited Sequence methods and append, reverse, extend, pop, remove, andiadd
ByteString	Sequence	getitem, len	Inherited Sequence methods
Set	Collection	contains, iter, len	le,lt,eq,ne,gt,ge,and,or,sub,xor, and isdisjoint
MutableSet	Set	contains,iter,len, add, discard	<pre>Inherited Set methods and clear, pop, remove,ior,iand,ixor, andisub</pre>

- __del__(self)
 - finalizer
 - called when the instance is about to be destroyed (by GC)
 - not guaranteed to be called
 - when the interpreter terminates
 - raised exception are ignored
 - only logged to sys.stderr
- Module gc
 - interacting with GC
 - static methods only
 - **gc.collect()** runs collections
 - gc.enable(),gc.disable(),gc.isenabled(),...

See finalizer.py

- __repr__(self)
 - returns the "official" string representation of an object
 - should look like a valid Python expression that could be used to recreate an object with the same value
 - called by the repr() built-in function
- str (self)
 - returns the "informal" or nicely printable string representation of an object
 - called by the built-in functions str(), format() and print()
 - default implementation calls __repr__()

See tostring.py

Special methods: Operators

- Predefined set of operators with defined behavior and syntax.
- Possibility to override behavior by providing custom implementation of the matching special method in the class. Except and, is, and or.
- It is not possible to change the syntax or add new operators.
- For arithmetic operators there are three types of special methods:
 - "Normal" i.e.
 - object.__add__(self, other)
 - Self is left operand, other is right operand.
 - "Reverse" i.e.
 - object. radd (self, other)
 - Self is right operand, other is left operand. If defined takes precedence to "normal"
 - "In-place" i.e.
 - object.__iadd__(self, other)
 - Used by += syntax. If possible modify self object in-place

Operators - arithmetic

Operator	Method	Reverse argument method
+	objectadd(self, other)	object radd (self, other)
-	object sub (self, other)	object rsub (self, other)
*	object mul (self, other)	object rmul (self, other)
@	object matmul (self, other)	object rmatmul (self, other)
/	objecttruediv(self, other)	object rtruediv (self, other)
//	objectfloordiv(self, other)	object rfloordiv (self, other)
%	objectmod(self, other)	object rmod (self, other)
**	objectpow(self, other[, mod])	object rpow (self, other)
<<	object lshift (self, other)	object rlshift (self, other)
>>	object rshift (self, other)	object rrshift (self, other)
&	objectand(self, other)	object rand (self, other)
٨	objectxor(self, other)	object rxor (self, other)
1	objector(self, other)	object ror (self, other)
- (unary)	objectneg(self)	
+ (unary)	objectpos(self)	
~	objectinvert(self)	

Operators – in-place arithmetic

Operato r	Method
+=	objectiadd(self, other)
-=	objectisub(self, other)
*=	objectimul(self, other)
@=	objectimatmul(self, other)
/=	objectitruediv(self, other)
//=	objectifloordiv(self, other)
%=	object imod (self, other)
**=	objectipow(self, other[, mod])
<<=	objectilshift(self, other)
>>=	objectirshift(self, other)
& =	objectiand(self, other)
^=	objectixor(self, other)
=	objectior(self, other)

Operators – comparison

Operator	Method
<	object lt (self, other)
<=	object le (self, other)
==	objecteq(self, other)
!=	objectne(self, other)
>=	objectge(self, other)
>	objectgt(self, other)

Notes:

- negated __eq__ is used when __ne__ is not implemented
- __lt__ on the second argument is used if the first does not implement __gt__ and vice versa similar for __le__ and __ge__

See operators-*.py

0.0.0

- hash_(self)
 - returns a hashcode of the object
 - int
 - called by the builtin function hash ()
 - used in dict, set,...
 - recommended implementation hash from tuple of fields

```
def __hash__(self):
    return hash((self.name, self.nick, self.color))
```

- implement hash () only on immutable objects that have also eq () and will be used as keys in dict and similar
- __bool__(self)
 - conversion to bool value
 - e.g., for usage in conditions

See hashcode.py

- call (self, [arg1,...])
 - called when the instance is "called" as a function
 - if this method is defined, x(arg1, arg2, ...) is a shorthand for x.__call__(arg1, arg2, ...)
- with statement

```
with open('workfile') as f:
    // do something with read data
print(f.closed) // f is closed automatically
```

- a context manager an object that defines the runtime context to be established when executing a with statement
- object.__enter__(self)
 - called at with start
 - with binds the method's return value to the target specified in the as clause
- object.__exit__(self, exc_type, exc_value, traceback)
 - called when with terminates

Special methods: collections.abc

- Iterable
 - iter (self) we already know
- Reversible
 - __reversed__(self)
 - returns iterator iterating in reversed order
 - called by reversed() builtin
- Sized
 - len_(self)
 - returns lens of the object (e.g., number of item in the continer)
 - called by len()
 - plus, an object that doesn't define a __bool__() method and whose __len__() method returns zero is considered to be false in a Boolean context

Special methods: collections.abc

```
Container
```

- __contains__(self, item)
 - returns true if item is in self
- getitem__(self, key)
 - called to implement evaluation of self[key]
- __setitem__(self, key, value)
 - assignment to self[key]
- delitem (self, key)
 - deletion of self[key]

See container.py

