
NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

1. MODELLING BASICS

Jan Kofroň

SYLLABUS I.

Mathematical structures for behaviour modelling:

Labelled transition systems, Kripke structures, Timed automata, Markov chains

Specification of system properties

Temporal logics: LTL, CTL, TCTL, PCTL

Basic verification tasks

Equivalence checking and model checking

Jan Kofroň: Behaviour Models and Verification 2

SYLLABUS II.

Decidability and complexity

... of equivalence checking and model checking with respect to model type

Software tools for model checking

Hard issues in formal verification

Infinite-state systems

State explosion problem

Strategies to fight it

Jan Kofroň: Behaviour Models and Verification 3

GRADING

Final grades will be determined by the quality of homework and the result of the
final exam in the following ratio:

55% Assignments (several home works)
45% Final exam (max. 100 points)

>= 80→ 1

>= 71 → 2

>= 62→ 3

Final exam—written test

Jan Kofroň: Behaviour Models and Verification 4

INFORMATION

All information available at the course web page:

https://d3s.mff.cuni.cz/teaching/nswi101/

Jan Kofroň: Behaviour Models and Verification 5

https://d3s.mff.cuni.cz/teaching/nswi101/

Part I: Introduction

Jan Kofroň: Behaviour Models and Verification 6

NEED FOR FORMAL METHODS: STRIKING STORIES

Ariane 5, 1996

False angle of attack caused by incorrect altitude data

following software exception

The rocket self-destructed in 37 seconds after launch

Software exception—overflow in conversion of 64-bit

floating-point number to 16-bit signed integer value

caused operand error

The error occurred because of unexpectedly high value

of sensed horizontal velocity

The value was much higher than expected because

early part of Ariane 5 trajectory differed from that of

Ariane 4—higher velocity values

Direct cost €500M, indirect cost €2,000M

Jan Kofroň: Behaviour Models and Verification 7

NEED FOR FORMAL METHODS: STRIKING STORIES

Intel: Pentium FDIV bug, 1994

“Imprecision” of FDIV operation firstly not admitted

CPUs called off after publishing proof

Cost $500M

Jan Kofroň: Behaviour Models and Verification 8

NEED FOR FORMAL METHODS: STRIKING STORIES

NASAMars Climate Orbiter

September 30, 1999

Peer review preliminary findings indicate that one team

used English units while the other used metric units for

key spacecraft operations

NASAMars Polar Lander

December, 1999

The leading theory is that surface contact detector

located on landing struts mistakenly interpreted the

force of landing struts deployment as contact with the

surface, causing landing rockets to shut down

prematurely and probe to impact at a too-high velocity

Jan Kofroň: Behaviour Models and Verification 9

NEED FOR FORMAL METHODS: STRIKING STORIES

Nissan, 2015

Sensor failure caused not detecting human in the seat

Airbag malfunction (failing in car crash) appeared

In 2015, Nissan recalled 3.5 millions of cars to fix this

Airbag problems reported by other car manufacturers in 2016:

General Motors—GMC, Chevrolet, Buick, Cadillac

Jan Kofroň: Behaviour Models and Verification 10

NEED FOR FORMAL METHODS: STRIKING STORIES

Boeing 737 MAX, 2018

New device introduced into Boeing 737 MAX

(MCAS) to compensate too steep take-off

MCAS relies on single sensor

MCAS can reset itself after a pilot intervention

Info on MCAS was not put into manuals!

Two air crafts with passengers crashed

(2018 and 2019)

The air crafts were grounded

Jan Kofroň: Behaviour Models and Verification 11

ACHIEVING SYSTEM RELIABILITY

Experimental methods

Testing—applied to the system itself

Simulation—experimenting with a model of a system

Formal methods

Deductive verification—theorem proving

Equivalence checking—comparing two specifications (models)

Model checking—checking a particular property of a model (even code)

Jan Kofroň: Behaviour Models and Verification 12

ACHIEVING SYSTEM RELIABILITY

Experimental methods

Testing—applied to the system itself

Simulation—experimenting with a model of a system

Formal methods

Deductive verification—theorem proving

Equivalence checking—comparing two specifications (models)

Model checking—checking a particular property of a model (even code)

Jan Kofroň: Behaviour Models and Verification 13

PROGRAM EXECUTION VS. VERIFICATION

Program execution

s0

s1

s2

s3

s4

coin

coffee

coin

tea

Program verification

s0

s1

s2

s3

s4

coin

coffee

coin

tea

Jan Kofroň: Behaviour Models and Verification 14

Part II: Labelled Transition Systems

Jan Kofroň: Behaviour Models and Verification 15

LABELLED TRANSITION SYSTEM—LTS

x:=0;
y:=0;

for i:=1 to 3 {
x:=x+1;
y:=y+1;

}

x = 0 y = 0 x = x + 1 y = y + 1

x = x + 1

y = y + 1x = x + 1y = y + 1

Jan Kofroň: Behaviour Models and Verification 16

LTS DEFINITION

Labelled Transition System is a triple (S,Act →):

S is set of states (domain)

Act is set of labels (actions)

→ is transition relation:→⊆ S× Act× S

Jan Kofroň: Behaviour Models and Verification 17

LTS VS. FINITE AUTOMATON

LTS:

(S,Act,→)

Trace—sequence of labels following one path in LTS

LTS corresponds to set of traces reachable in the LTS

Finite Automaton:

(S,Act,→, I,A)

Additionally sets of initial and accepting states

Notion ofword and language accepted by automaton

Jan Kofroň: Behaviour Models and Verification 18

LTS—EXAMPLE

s0

s1

s2

s3

s4

coin

coffee

coin

tea

traces(s) = {σ ∈ Act∗|s σ
==⇒}

traces(s0) = {ε, coin, coin.coffee, coin.tea}

Note that due to absence of initial and accepting

states, trace can terminate at any state.

Jan Kofroň: Behaviour Models and Verification 19

COMPARING LTSS

Many relations to compare LTSs

between each other:

Trace preorder/equivalence

Simulation

preorder/equivalence

Bisimilarity

Readiness equivalence

Failure equivalence

...

strong bisimilarity

2-nested simulation equivalence

ready simulation equivalence

possible-futures equivalence ready trace equivalence

readiness equivalence

failure trace equivalence

simulation equivalence

failure equivalence

completed trace equivalence

trace equivalence

Jan Kofroň: Behaviour Models and Verification 20

TRACE PREORDER AND EQUIVALENCE

States s and t are in trace preorder relation (s ≤t t) iff

traces(s) ⊆ traces(t)

States s and t are trace equivalent (s =t t) iff

traces(s) ⊆ traces(t) ∧ traces(t) ⊆ traces(s)

This corresponds to equivalence of languages in the automata world.

Jan Kofroň: Behaviour Models and Verification 21

SIMULATION PREORDER AND EQUIVALENCE

Relation R ⊆ S× S is simulation iff (s, t) ∈ R =⇒ ∀s′.s a−→ s′ ∃t′.t a−→ t′ ∧ (s′, t′) ∈ R

States s and t are in simulation preorder (s ≤s t) iff

there exists simulation R and (s, t) ∈ R.

States s and t are equivalent under simulation (s =s t) iff

∃R,Q.(s, t) ∈ R ∧ (t, s) ∈ Q, and

R and Q are simulations.

R and Q can be the same relation or not.

Jan Kofroň: Behaviour Models and Verification 22

LTS RELATIONS—EXAMPLES

Trace equivalence:

traces(s0) = traces(s1) = traces(s2) = {ε, coin, coin.coffee, coin.tea}
s0 =t s1 =t s2

s0

coin

coffee

coin

tea

s1

coin

coffee

coin

tea

coin

coffee tea

s2

coin

coffee tea

Jan Kofroň: Behaviour Models and Verification 23

LTS RELATIONS—EXAMPLES

Simulation preorder and equivalence:

s0 ≤s s1 ∧ ¬(s1 ≤s s0) =⇒ s0 6=s s1

s1 ≤s s2 ∧ s2 ≤s s1 =⇒ s1 =s s2

s0

coin

coffee

coin

tea

s1

coin

coffee

coin

tea

coin

coffee tea

s2

coin

coffee tea

Jan Kofroň: Behaviour Models and Verification 24

(STRONG) BISIMILARITY

Relation R is bisimulation iff ∀s, t.(s, t) ∈ R =⇒
∀s′.s a−→ s′ ∃t′.t a−→ t′ ∧ (s′, t′) ∈ R∧
∀t′.t a−→ t′ ∃s′.s a−→ s′ ∧ (s′, t′) ∈ R

States s and t are bisimilar (equivalent under bisimulation) (s ∼ t) iff

(s, t) ∈ R and R is bisimulation.

Jan Kofroň: Behaviour Models and Verification 25

BISIMILARITY—EXAMPLE

s0 � s1
s1 � s2
s0 � s2

s0

coin

coffee

coin

tea

s1

coin

coffee

coin

tea

coin

coffee tea

s2

coin

coffee tea

Jan Kofroň: Behaviour Models and Verification 26

BISIMILARITY—EXAMPLE

s0 ∼ s1

s0

coin

tea

coin

tea

s1

coin

tea tea

Jan Kofroň: Behaviour Models and Verification 27

DETERMINISTIC VS. NON-DETERMINISTIC LTSS

For deterministic LTS, all the relations are equivalent: a =t b ↔ a =s b ↔ a ∼ b.

Non-deterministic LTS cannot be transformed into equivalent deterministic LTS as in

automata world.

It can, of course, but its semantics changes!

Jan Kofroň: Behaviour Models and Verification 28

PROCESS ALGEBRAS (PA)

Textual way for capturing LTS

Various process algebras exist: CCS, CSP, ACP, π-calculus, µ-calculus, ...

Equational reasoning—transformations of expressions usually to simplify them or

to proof certain property

Modelling in many areas: concurrent systems, communication protocols,

electronic circuits, biochemical processes, ...

Jan Kofroň: Behaviour Models and Verification 29

ALGEBRA OF COMMUNICATING PROCESSES (ACP)

Simple process algebra by Jan Bergstra and Jan Willem Klop (1982)

Just few syntactical constructs:

Choice (+)

Sequencing (.)

Concurrency (||)

Process communication (γ)
Abstraction (τ)

Example of processes:

p : (gen1 + gen2).send
q : recv.proc
Defining communication: γ(send, recv) = trans

Composition of processes: p||q = (gen1 + gen2).trans.proc
Hiding internal computation (abstraction): τ{gen1,gen2,proc}(p||q) = τ.trans.τ

Jan Kofroň: Behaviour Models and Verification 30

ACP SEMANTICS

For process variables x, y

x+ y = y+ x

(x+ y) + z = x+ (y+ z)

x+ x = x

(x+ y).z = x.z+ y.z

(x.y).z = x.(y.z)

x+ δ = x

δ.x = δ

Note that z.(x+ y) = z.x+ z.y is not included (non-deterministic choice)!

Jan Kofroň: Behaviour Models and Verification 31

PARALLEL COMPOSITION IN ACP

Let A = a.b.ε and B = b.c.ε

Parallel composition just “syntax sugar”:

A||B = a.(b.b.c.ε+ b.(b.c.ε+ c.b.ε))+
b.(a.(b.c.ε+ c.b.ε) + c.a.b.ε)

B A||B

A
a b

b

c

a

b

b

b b

a

c

b

c c

a b

Jan Kofroň: Behaviour Models and Verification 32

PARALLEL COMPOSITION IN ACP WITH COMMUNICATION

Let A = a.b.ε and B = b.c.ε
Let γ(b, b) = d

Processes can perform the actions

synchronously.

B A||B

A
a b

b

c

a

b

b

b b

a

c

b

c c

a b

d

Jan Kofroň: Behaviour Models and Verification 33

PARALLEL COMPOSITION IN ACP WITH ENFORCED COMMUNICATION

Let A = a.b.ε and B = b.c.ε
Let γ(b, b) = d

Disabling (encapsulation) operator:

δ{b}(A||B) = a.d.c.ε

Processesmust perform actions

synchronously.

B A||B

A
a b

b

c

a

c

d

Jan Kofroň: Behaviour Models and Verification 34

BUILDING CONCURRENT SYSTEMS

1. Specify particular components

2. Specify communication actions

3. Construct parallel compositions

4. Disable certain actions to enforce communication

Jan Kofroň: Behaviour Models and Verification 35

MODEL-TO-CODE CORRESPONDENCE

LTS relations useful for verifying design of communication protocols,

cryptography protocols, and algorithms in general

They are also applicable for checking correspondence between code
(implementation) and LTS (specification)

Inherently hard (undecidable) problem—models made of finite number of states

while code usually induces infinite state space

Manual maintenance of model-to-code correspondence difficult—scalability issues

Preorder relation usually applied—specification to be implemented (can implement

more)

Jan Kofroň: Behaviour Models and Verification 36

Part III: Thesis topics

Jan Kofroň: Behaviour Models and Verification 37

THESIS TOPICS

If you are interested in model checking (or verification in general), contact me for

supervising bachelor or master thesis, software project, research project, or just

contributing to one of our verification projects!

For a (non-exhaustive) topic list, please visit

https://d3s.mff.cuni.cz/students/topics/

Surely we can devise a topic suiting your expectations!

Jan Kofroň: Behaviour Models and Verification 38

https://d3s.mff.cuni.cz/students/topics/

	Course organization
	Motivation
	Labelled transition systems
	Thesis assignments

