NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

1. MODELLING BASICS

Jan Kofroň
Mathematical structures for behaviour modelling:
 - Labelled transition systems, Kripke structures, Timed automata, Markov chains

Specification of system properties
 - Temporal logics: LTL, CTL, TCTL, PCTL

Basic verification tasks
 - Equivalence checking and model checking
Decidability and complexity
 ... of equivalence checking and model checking with respect to model type
Software tools for model checking
Hard issues in formal verification
 Infinite-state systems
 State explosion problem
 Strategies to fight it
Final grades will be determined by the quality of homework and the result of the final exam in the following ratio:

- 55% Assignments (several home works)
- 45% Final exam (max. 100 points)
 - >= 80 → 1
 - >= 71 → 2
 - >= 62 → 3

Final exam – written test
All information available at the course web page:

https://d3s.mff.cuni.cz/teaching/nswi101/
Part I: Introduction
Ariane 5, 1996

- False angle of attack caused by incorrect altitude data following software exception
- The rocket self-destructed in 37 seconds after launch
- Software exception – overflow in conversion of 64-bit floating-point number to 16-bit signed integer value caused operand error
- The error occurred because of unexpectedly high value of sensed horizontal velocity
- The value was much higher than expected because early part of Ariane 5 trajectory differed from that of Ariane 4 – higher velocity values
- Direct cost 500 mio EUR, indirect cost 2,000 mio EUR
NEED FOR FORMAL METHODS: STRIKING STORIES

Intel: Pentium FDIV bug, 1994
- “Imprecission” of FDIV operation firstly not admitted
- CPUs called off after publishing proof
- Cost 500 mio USD
NEED FOR FORMAL METHODS: STRIKING STORIES

NASA Mars Climate Orbiter

- September 30, 1999
- Peer review preliminary findings indicate that one team used English units while the other used metric units for key spacecraft operations

NASA Mars Polar Lander

- December, 1999
- The leading theory is that surface contact detector located on landing struts mistakenly interpreted the force of landing struts deployment as contact with the surface, causing landing rockets to shut down prematurely and probe to impact at a too-high velocity
NEED FOR FORMAL METHODS: STRIKING STORIES

Nissan, 2015

- Sensor failure caused not detecting human in the seat
- Airbag malfunction (failing in car crash) appeared
- In 2015, Nissan recalled 3.5 millions of cars to fix this
- Airbag problems reported by other car manufacturers in 2016:
 General Motors – GMC, Chevrolet, Buick, Cadillac
NEED FOR FORMAL METHODS: STRIKING STORIES

Boeing 737 MAX, 2018

- New device introduced into Boeing 737 MAX (MCAS) to compensate too steep take-off
- MCAS relies on single sensor
- MCAS can reset itself after a pilot intervention
- Info on MCAS was not put into manuals!
- Two aircrafts with passengers crashed (2018 and 2019)
- The aircrafts were grounded
Experimental methods

- Testing – applied to the system itself
- Simulation – experimenting with a model of a system
Achieving System Reliability

- **Experimental methods**
 - Testing – applied to the system itself
 - Simulation – experimenting with a model of a system

- **Formal methods**
 - Deductive verification – theorem proving
 - **Equivalence checking** – comparing two specifications (models)
 - **Model checking** – checking a particular property of a model (even code)
Program execution vs. verification

Program execution:
- State s_0 with input coffee
- Transition to s_1 with input coin
- Transition to s_2 with output coffee
- Transition to s_3 with input coin
- Transition to s_4 with output tea

Program verification:
- State s_0 with input coin
- Transition to s_1 with input coin
- Transition to s_2 with output coffee
- Transition to s_3 with input coin
- Transition to s_4 with output tea
Part II: Labelled Transition System
\begin{align*}
x &:= 0; \\
y &:= 0; \\
&\text{for } i := 1 \text{ to } 3 \{ \\
&\quad x := x + 1; \\
&\quad y := y + 1; \\
&\}\end{align*}
Labeled Transition System is a triple \((S, \text{Act} \rightarrow)\):

- \(S\) is set of states (domain)
- \(\text{Act}\) is set of labels (actions)
- \(\rightarrow\) is transition relation: \(\rightarrow \subseteq S \times \text{Act} \times S\)
LTS vs. Finite Automaton

LTS:
- \((S, \text{Act}, \rightarrow)\)
- Trace – sequence of labels following one path in LTS
- LTS corresponds to set of traces reachable in the LTS

Finite Automaton:
- \((S, \text{Act}, \rightarrow, I, A)\)
- Additionally sets of initial and accepting states
- Notion of word and language accepted by automaton
LTS – EXAMPLE

\[\text{traces}(s) = \{ \sigma \in L^* \mid s \xrightarrow{\sigma} \} \]

\[\text{traces}(s_0) = \{ \epsilon, \text{coin}, \text{coin.coffee}, \text{coin.tea} \} \]

Note that due to absence of initial and accepting states, trace can terminate at any state.
Comparing LTSs

Many relations to compare LTSs between each other:
- Trace preorder/equivalence
- Simulation preorder/equivalence
- Bisimilarity
- Readiness equivalence
- Failure equivalence
- ...

Diagram:
- strong bisimilarity
 - 2-nested simulation equivalence
 - ready simulation equivalence
 - possible-futures equivalence
 - ready trace equivalence
 - readiness equivalence
 - failure trace equivalence
 - simulation equivalence
 - failure equivalence
 - completed trace equivalence
 - trace equivalence
Trace preorder and equivalence

States s and t are in **trace preorder relation** $(s \preceq t)$ iff

$$\text{traces}(s) \subseteq \text{traces}(t)$$

States s and t are **trace equivalent** $(s \equiv_t t)$ iff

$$\text{traces}(s) \subseteq \text{traces}(t) \land \text{traces}(t) \subseteq \text{traces}(s)$$

This corresponds to equivalence of languages in the automata world.
Relation $R \subseteq S \times S$ is **simulation** iff $(s, t) \in R \iff \forall s'. s \xrightarrow{a} s' \exists t'. t \xrightarrow{a} t' \land (s', t') \in R$

States s and t are in **simulation preorder** $(s \preceq_s t)$ iff

there exists simulation R and $(s, t) \in R$.

States s and t are **equivalent under simulation** $(s \equiv_s t)$ iff

$\exists R, Q. (s, t) \in R \land (t, s) \in Q$, and

R and Q are simulations.

Note that R and Q can be the same relation or not.
Trace equivalence:

\[\text{traces}(s_0) = \text{traces}(s_1) = \text{traces}(s_2) = \{\epsilon, \text{coin}, \text{coin.coffee}, \text{coin.tea}\} \]

\[s_0 \models t s_1 \models t s_2 \]
Simulation preorder and equivalence:

\[s_0 \leq_s s_1 \land \neg (s_1 \leq_s s_0) \implies s_0 \not= s s_1 \]

\[s_1 \leq_s s_2 \land s_2 \leq_s s_1 \implies s_1 =_s s_2 \]
Relation R is **bisimulation** iff $\forall s, t. (s, t) \in R \iff$

$\forall s'. s \xrightarrow{a} s' \exists t'. t \xrightarrow{a} t' \land (s', t') \in R \land$

$\forall t'. t \xrightarrow{a} t' \exists s'. s \xrightarrow{a} s' \land (s', t') \in R$

States s and t are **bisimilar** (equivalent under bisimulation) $(s \sim t)$ iff $(s, t) \in R$ and R is bisimulation.
BISIMILARITY – EXAMPLE

\[s_0 \sim s_1 \]
\[s_1 \sim s_2 \]
\[s_0 \sim s_2 \]

Jan Kofroň: Behaviour Models and Verification 26
BISIMILARITY – EXAMPLE

\[s_0 \sim s_1 \]

Jan Kofroň: Behaviour Models and Verification
For deterministic LTSs, all the relations are equivalent: $=_t \iff =_s \iff \sim$.

Therefore, non-deterministic LTS cannot be transformed into equivalent deterministic LTS as in automata world.

- It can, actually, but its semantics changes!
Textual way for capturing LTS

Various process algebras exist: CCS, CSP, ACP, π-calculus, μ-calculus, ...

Equational reasoning – transformations of expressions usually to simplify them or to proof certain property

Modelling in many areas: concurrent systems, communication protocols, electronic circuits, biochemical processes, ...
Simple process algebra by Jan Bergstra and Jan Willem Klop (1982)

Just few syntactical constructs:
- Choice (+)
- Sequencing (.)
- Concurrency (||)
- Process communication (γ)
- Abstraction (τ)

Example of processes:
- \(p : (gen_1 + gen_2).send \)
- \(q : recv.proc \)
- Defining communication: \(γ(send, recv) = \text{trans} \)
- Composition of processes: \(p||q = (gen_1 + gen_2).trans.proc \)
- Hiding internal computation (abstraction): \(τ\{gen_1, gen_2, proc\} (p||q) = τ\text{.trans.τ} \)
ACP SEMANTICS

For process variables x, y

- $x + y = y + x$
- $(x + y) + z = x + (y + z)$
- $x + x = x$
- $(x + y).z = x.z + y.z$
- $(x.y).z = x.(y.z)$
- $x + \delta = x$
- $\delta.x = \delta$

Note that $z.(x + y) = z.x + z.y$ is not included (non-deterministic choice)!
PARALLEL COMPOSITION IN ACP

Let $A = a.b.\epsilon$ and $B = b.c.\epsilon$

Parallel composition just “syntax sugar”:

$$A \parallel B = a.(b.b.c.\epsilon + b.(b.c.\epsilon + c.b.\epsilon)) + b.(a.(b.c.\epsilon + c.b.\epsilon) + c.a.b.\epsilon)$$
Let $A = a.b.\epsilon$ and $B = b.c.\epsilon$
Let $\gamma(b, b) = d$

Processes can perform the actions synchronously.
PARALLEL COMPOSITION IN ACP WITH ENFORCED COMMUNICATION

Let $A = a.b.\epsilon$ and $B = b.c.\epsilon$

Let $\gamma(b, b) = d$

Disabling (encapsulation) operator:

$\delta_{\{b\}}(A || B) = a.d.c.\epsilon$

Processes *must* perform actions synchronously.
BUILDING CONCURRENT SYSTEMS

1. Specify particular components
2. Specify communication actions
3. Construct parallel compositions
4. Disable certain actions to enforce communication
LTS relations useful for verifying design of communication protocols, cryptography protocols, and algorithms in general. They are also applicable for checking correspondence between code (implementation) and LTS (specification).

- Inherently hard (undecidable) problem – models made of finite number of states while code usually induces infinite state space.
- Preorder relation usually applied – specification to be implemented (can implement more).