NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

2. MODEL CHECKING

Jan Kofron

FACULTY Department of
OF MATHEMATICS Distributed and
=% AND PHYSICS Dependable
© Charles University

TODAY

@ Model checking
@ Linear Temporal Logic (LTL)
@ Biichiautomata

Jan Kofrori: Behaviour Models and Verification

Part I: Model Checking

Jan Kofrori: Behaviour Models and Verification 3

MODEL CHECKING

Model checking is process of determining whether given model M satisfies given
property ¢ (M |= ¢)
@ Inits basic form realized as traversal of finite graph

@ Evaluates validity of property at given (initial) state

@ Linearin size of graph (system model) and varying complexity in size of property
(usually negligible)

Jan Kofrori: Behaviour Models and Verification 4

MODEL CHECKING

System model

Jan Kofrori: Behaviour Models and Verification

MODEL CHECKING

*

(=)()
@@

System model

8

AG (start — AF heat)

Property specification

Jan Kofrori: Behaviour Models and Verification

MODEL CHECKING

System model ﬁ (J

Model Checker

AG (start — AF heat)

Property specification

Jan Kofrori: Behaviour Models and Verification

MODEL CHECKING

System model ﬁ

AG (start — AF heat)

Property specification

Jan Kofrori: Behaviour Models and Verification

Property satisfied

Model Checker

Property violated

MODEL CHECKING — PRACTICAL CHALLENGES

| Property satisfied
System model ﬁ (J
Model Checker | Property violated
| AG (start — AF heat) |
Property specification
@ Model construction @ State space explosion

@ Property expression @ Error trace interpretation

Jan Kofrori: Behaviour Models and Verification

STATE SPACE EXPLOSION

The most serious issue of (explicit) model checking

@ Model induces state space — combination of states of particular parts (behaviour
of involved processes)

@ potentially exponential in size of model
@ State space explosion = problem of too many states induced by the model

@ Moore’s law and algorithm advances can help to some extent:
@ 7daysin1980 — 10 minutes in 1990 — 0.6 seconds in 2000 — ...

@ However - explosive state growth in software inherently limits scalability

Jan Kofrori: Behaviour Models and Verification

MODELLING BEHAVIOUR

Behaviour of system (program, hardware, computer system in general) can be

captured in several ways:
@ Labelled transition system
@ Kripke structure
@ Markov chain
@ Timed automata
[+

... and others

Jan Kofrori: Behaviour Models and Verification

REMINDER: LABELLED TRANSITION SYSTEM

; C X=0 O y=0 X:X+1c>y=y+1

for i:=1 to 3 { X=X+1
X:=Xx+1;
yi=y+1;

Y=Y T~ x=x+1,~ YY1
} O+—0O+0+~—0

Jan Kofrori: Behaviour Models and Verification

STATE TRANSITION SYSTEM

f **

for i:=1 to 3 {
X:i=x+1;

yi=y+1;
} E-G-G(R)

Jan Kofrori: Behaviour Models and Verification

KRIPKE STRUCTURE

@ State transition system encoding only infinite paths
@ No finite paths allowed

@ Suitable for systematic exploration
@ Finite paths can be encoded, too, if desired

Jan Kofrori: Behaviour Models and Verification

KRIPKE STRUCTURE — DEFINITION

For AP - set of atomic propositions (Boolean variables, constants, predicates),
Kripke structure M = (S, I, R, L) over AP is four-tuple:

@ S -finite set of states
@ | C S-setofinitial states

@ R C S x S—transition relation such that R is left-total (for each state s there is a
transition originating in it)
@ L:S — 2P —labelling function

Jan Kofrori: Behaviour Models and Verification

CREATING KRIPKE STRUCTURE OF PROGRAM

Each state of Kripke structure encodes a state of program, which includes:
@ Program counters for all threads

Values of all local variables for each thread

Values of all global variables if present

State (content) of heap memory

© 6 6 ¢

System resources (opened files, database and network connections, ...)

There is transition (s — t) € Rif there is transition in program state corresponding to s
transforming program state to one corresponding to t.

For final states add a self-loop to satisfy the left-total requirement from definition.

Jan Kofrori: Behaviour Models and Verification

EXAMPLE — DEKKER’S ALGORITHM

bool wants_to_enter[o] = false;
bool wants_to_enter[1] = false;
int turn = 2;

void process (int: id) {
wants_to_enter[id] = true
while (wants_to_enter[1-id]) {
if (turn <> id) {
wants_to_enter[id] = false
while (turn <> id) ;
wants_to_enter[id] = true

}
/] critical section

turn = 1-id;
wants_to_enter[id] = false;

Jan Kofrori: Behaviour Models and Verification

EXAMPLE — DEKKER’S ALGORITHM

bool wants_to_enter[o] = false;
bool wants_to_enter[1] = false;
int turn = 2;

void process (int: id) {
wants_to_enter[id] = true
while (wants_to_enter[1-id]) {
if (turn <> id) {
wants_to_enter[id] = false
while (turn <> id)
wants_to_enter[id] = true

}

/] critical section

turn = 1-id;
wants_to_enter[id] = false;

Jan Kofrori: Behaviour Models and Verification

we[o]=t
we[1]=f
turn=?

EXAMPLE — DEKKER’S ALGORITHM

Composition of KS for two processes:

Jan Kofrori: Behaviour Models and Verification

EXAMPLE — DEKKER’S ALGORITHM

Composition of KS for two processes:
Does the algorithm work correctly?

How to find out? l.e., how to formulate
the property?

Jan Kofrori: Behaviour Models and Verification

EXAMPLE — DEKKER’S ALGORITHM

Composition of KS for two processes:

Does the algorithm work correctly?
How to find out? l.e., how to formulate
the property?

Can both processes get into critical
section at the same time?

Jan Kofrori: Behaviour Models and Verification

EXAMPLE — DEKKER’S ALGORITHM

Composition of KS for two processes:

Does the algorithm work correctly?
How to find out? l.e., how to formulate
the property?

Can both processes get into critical
section at the same time?

Artificial model variable can help.

Jan Kofrori: Behaviour Models and Verification

EXAMPLE — DEKKER’S ALGORITHM

Composition of KS for two processes:

Does the algorithm work correctly?
How to find out? l.e., how to formulate
the property?

Can both processes get into critical
section at the same time?

Artificial model variable can help.

Correctness property:
“nis always less than 2.”

Jan Kofrori: Behaviour Models and Verification

Part II: Linear Temporal Logic

Jan Kofrori: Behaviour Models and Verification 24

PROPERTY SPECIFICATION

For property specification, temporal logics are usually used:

@ Linear Time Logic (LTL)

@ Computational Tree Logic (CTL)

@ Probabilistic CTL (PCTL)

@ Timed CTL - support for real-time properties
Qo

Formal capturing of desired properties
“Temporal” - over time [along particular paths in model

Jan Kofrori: Behaviour Models and Verification

LINEAR TEMPORAL LOGIC

Allows for expressing properties for any execution
Particular paths in model considered one by one - details later
Expressive enough for most common properties

Efficient model checking algorithm linear in size of model and exponential in
formula size

© 6 06 ¢

Jan Kofrori: Behaviour Models and Verification

LTL SYNTAX

LTL syntax defined inductively, similarly to propositional logic:

Let AP be a finite set of Boolean variables (atomic propositions).
The set of LTL formulae over AP is defined as:

@ If p € AP thenpis LTL formula.

@ If ¢ and ¢ are LTL formulae then
=, 0 Vb, o A, X, o U, F o, 0 R, and G p are LTL formulae.

Negation, disjunction, X, and U are fundamental operators, others can be derived.

Jan Kofrori: Behaviour Models and Verification

LTL SEMANTICS

Path in Kripke structure is infinite sequence © = mq, 1y, T3, ... where for all
Vi > O.(7T,',Tl','+1) €R

LetM = (S, 1, R, L) be Kripke structure and © = 7, 7y, 73, ... be an infinite path in M.
For anintegeri > o, 7' stands for i-th suffix of 7: 7' = 7, T4y, Tita, ..
Let M be Kripke structure, ¢ be LTL formula, 7 be path in M and s be state of M.

M, 7 |= ¢: Path 7 from M satisfies ¢
M,s = : State s from M satisfies ¢

Q@ MiskE oo Vram=s: M7y

Jan Kofrori: Behaviour Models and Verification

LTL SEMANTICS

M, =p

M, 7 = —¢
M, = @1V o
M, 7 = @1 A @
M, = Xp
M, 7T =Fo
M, =Gy
M, 7 = o1 U,
M, 7 = o1 R,

r+r+r T2

Jan Kofrori: Behaviour Models and Verification

p € L(mo)

(M7 E)

M, =@ VM, T = ¢

M, = o AM, T = @,

M, 7" = ¢

Ji> oM, 7 =

Vi> oM, =@

Jdi>oM7 Ep, AVjo<j<i = M7
(Ga2) V(02U (01 A p2))

EXPLICIT MODEL CHECKING OF LTL

Employing Biichi automata — accepting regular languages of infinite words (w-regular
languages)
@ No finite words allowed

Procedure:
1. Property formula F negated
2. Creating Biichi automaton A_r accepting exactly language of —F
3. Converting Kripke structure to Blichi automaton Ay
4. Creating product automaton A = A_r x Ay accepting intersection of languages
5

. Checking for emptiness of language accepted by A

Jan Kofrori: Behaviour Models and Verification

BUCHI AUTOMATON

Blichi automaton A is tuple (¥, S, So, A, F):
@ Y isfinite alphabet

S is finite set of states

So C Sis set of initial states

A C S x ¥ x Sistransition relation

© © 6 ¢

F C Sis set of accepting states

Biichi automaton similar to finite automaton, differs in accepting conditions:

@ Biichi automaton A accepts infinite word w iff there exists run of A visiting
infinitely often state in F.

Jan Kofrori: Behaviour Models and Verification

GENERALIZED BUCHI AUTOMATON

GBA differs from BA in definition of accepting states and accepting condition:
@ Fis set of sets of accepting states

@ GBA accepts infite word iff there exists run visiting infitely often state from each
setinF

Jan Kofrori: Behaviour Models and Verification

W

BUCHI AUTOMATA — CLOSURE PROPERTIES

@ Finite union: (QA U QB, Z, AA U AB, [5 U ’B, Fa U FB).
@ Assuming w.l.o.g. Qa N Qg empty

@ Intersection: A" = (Q/, X, A, UA,,I',F)

@ Q' =QaxQsx{12}

@ A, ={((9a,9s,1),9, (94, 95, 1))(qa. a4, G4) € Da A (gs,a,95) € Agand
ifga € Fatheni=2elsei=1}

o AZ = {((qA,qB,z),a, (ql/q7q/B7i))|(qA7a7q//A) € AA A (qB7a7q/B) € AB and
if gg € Fgtheni=1elsei =2}

o ’/:’AX’BX{‘I}

° F = {(qA7qB72)|QB S FB}

Jan Kofrori: Behaviour Models and Verification

BUCHI AUTOMATA — CLOSURE PROPERTIES

@ Concatenation La.Lg: A’ = (Qa U Qg, X, A, I Fp)
0 A=A UNgU{(q,a,q)|q €lgand3f € Fa.(q,a,f) € An}
@ ifla NFaisempty then !’ = I, otherwise I’ =I5 Ul

@ Complementation: VA : 3A".L(A") = T“\L(A)
@ Doubly exponential construction

Jan Kofrori: Behaviour Models and Verification

CREATING BUCHI AUTOMATON FOR LTL FORMULA

Property formula is negated and transformed into negation normal form:
@ Only atomic propositions, Boolean connectives, and X, R, and U operators
@ Negation at atomic propositions only

Application of rewrite rules:
@ Fp=TUp —Xp=X-p

~(pUq) =-pR—q

~(pRg) =-pU—q

De Morgan Boolean equivalences

@ Gp =falseRp
® ~(pUg)=-pR—q
® ~(pRg)=-pU—q

© © 06 ¢

Jan Kofrori: Behaviour Models and Verification

CREATING BUCHI AUTOMATON FOR LTL FORMULA

Various algorithms exist — we show declarative construction
@ Not optimal in terms of Biichi automata size

@ Easy to describe and understand

For LTL formula f in NNF, cl(f) is smallest set of formulas satisfying all following:

@ T edf) @ finfy ed(f) = fi.f, € d(f)
@ fedf) @ fivhhed(f) = fi,fo € d(f)
@ fied(f) = —fi €cdlf) @ fiUf, ed(f) = fi,f € d(f)
@ Xf GCl(f) = f Ecl(f) @ fiRf, ECl(f) = fi,f Ecl(f)

cl(f) is closure of sub-formulas of f under negation

Jan Kofrori: Behaviour Models and Verification

CREATING BUCHI AUTOMATON FOR LTL FORMULA

Set M C cl(f) is maximally consistent if it satisfies following:
@ T &M
@ fieMs ~fi¢gM
Q@ finfLeMsfie MAf, eM
@ ivheMsfe MV, eM

Let ¢s(f) be set of maximally consistent subsets of cl(f) - forming states of GBA

Jan Kofrori: Behaviour Models and Verification

CREATING BUCHI AUTOMATON FOR LTL FORMULA

GBA corresponding to LTL formula f is A = ({init} U cs(f), 27, A, U A2, {init}, F)
@ Mya,M) e A< (MNAP) CaC {p e AP.-p ¢ M'}and:
@ XfieMsfieM

@ fiUfLeMef,e MV (fie MAfUf, e M)
@ fiRheMefiAf,e MV (f, e MAS,Rf, €M)

@ A, ={(init,a,M"). (M NAP) CaC {pecAP..p¢ M} ANf e M}
@ VfiUf, € cd(f)AM € cs(f).f, e MV —=(fUf,) e M} € F

Jan Kofrori: Behaviour Models and Verification

CREATING BUCHI AUTOMATON FOR LTL FORMULA — EXAMPLE

Assume LTLformulaf =pUq
Cl(f) = {Tapv_'pvqa _‘q7PUq}

cs(f) ={
{T,p,a,pVUq},
{Tv p,q, _'(p u q)}Za
{T, p,—q,p U q}37
{T,p,~q,~(pUQq)}s,
{T,=p,q,pVUq}s,
{T,=p,q,~(pUq)}e,
{T7 -p,—q,p U q}7,
{T,=p,—q,~(pUq)}s}

The sets in ¢s(f) U init form states of GBA

Jan Kofrori: Behaviour Models and Verification

CREATING BUCHI AUTOMATON FOR LTL FORMULA — EXAMPLE

Assume LTL formulaf =pUq

Labels contain exactly atomic
propositions valid in target states:

@ 1—1:p,q
1—>3:p
1—4:p
1—5:q

1—8: T

© 6 06 0 0

etc.

Jan Kofrori: Behaviour Models and Verification

CREATING BUCHI AUTOMATON FOR LTL FORMULA — EXAMPLE

Simplified Biichi automaton forf =pUq

p T

() ——()

@ Label p denotes set of all subsets that contain p: {{p},{p,q}}
@ Label T denotes set of all subsets of AP: {{},{p},{q},{p,q}}
@ Transition can be taken if there is exactly matching subset of atomic propositions.

Jan Kofrori: Behaviour Models and Verification

LTL MODEL CHECKING EXAMPLE

Assume process sending data over possibly failing network

Kripke structure:
o Kﬁ
()

Jan Kofrori: Behaviour Models and Verification

LTL MODEL CHECKING EXAMPLE

Assume process sending data over possibly failing network

Kripke structure: Corresponding Biichi automaton:

Jan Kofrori: Behaviour Models and Verification

LTL MODEL CHECKING EXAMPLE

Assume property that each generated message gets delivered (is sent) eventually:

fG(t = (tUs))

Biichi automaton corresponding to negated property formula —f:

Jan Kofrori: Behaviour Models and Verification

LTL MODEL CHECKING EXAMPLE

Product automaton of Blichi automata — what does it say?

Jan Kofrori: Behaviour Models and Verification

LTL MODEL CHECKING EXAMPLE

Conclusion: The language of the product automaton is clearly not empty (accepting
runs exist), so there exists a sequence of states in the original Kripke structure
satisfying the negated property formula, hence violating the original property formula.

Jan Kofrori: Behaviour Models and Verification

	Model checking
	Linear temporal logic

