NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

3. SPIN
Jan Kofron
FACULTY Department of
OF MATHEMATICS Distributed and
AND PHYSICS Dependable

Charles University



TODAY

@ Spin model checker

Jan Kofrori: Behaviour Models and Verification



MODEL CHECKING

System model ﬁ

AG (start — AF heat)

Property specification

Jan Kofrori: Behaviour Models and Verification

Property satisfied

Model Checker

Property violated




MODEL CHECKING

Spin
Property satisfied
System model ﬁ %
Model Checker Property violated

AG (start — AF heat)

Property specification

Jan Kofrori: Behaviour Models and Verification



SPIN OVERVIEW

Complete set of original slides used in this presentation available at:
@ http://spinroot.com/spin/Doc/SpinTutorial.pdf
@ http://spinroot.com/spin/Doc/Spin_tutorial_2004.pdf

Jan Kofrori: Behaviour Models and Verification 5


http://spinroot.com/spin/Doc/SpinTutorial.pdf
http://spinroot.com/spin/Doc/Spin_tutorial_2004.pdf

SPIN - Introduction @)

* SPIN (= Simple Promela Interpreter)
= is a tool for analysing the logical conisistency of concurrent
systems, specifically of data communication protocols.
= state-of-the-art model checker, used by >2000 users
— Concurrent systems are described in the modelling
language called Promela.

* Promela (= Protocol/Process Meta Language)
— allows for the dynamic creation of concurrent processes.

— communication via message channels can be defined to be
« synchronous (i.e. rendezvous), or
« asynchronous (i.e. buffered).

— resembles the programming language C
— specification language to model finite-state systems

+ features
from CSP

@: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 12 s

University of Twents



Promela Model

* Promela model consist of:
— type declarations
channel declarations
variable declarations
process declarations

[init process] process body

* A Promela model corresponds
with a (usually very large, but)
finite transition system, so

no unbounded data

no unbounded channels

no unbounded processes

no unbounded process creation

@éﬁe Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 15 s

University of Tuwente



Processes ()

* A process type (proctype) consist of
— aname

a list of formal parameters

local variable declarations

body

/— formal parameters
e

name

bo

The body consist of a
sequence of statements.

@%ﬂ: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 16 s

Universigy of Twente



Processes (2)

* A process
— is defined by a proctype definition
— executes concurrently with all other processes,
independent of speed of behaviour
— communicate with other processes
* using global (shared) variables
* using channels

+ There may be several processes of the same type.

Each process has its own local state:
— process counter (location within the proctype)
— contents of the local variables

§§P\c Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 17 s

University of Tuente



Processes (3)

= Process are created using
the run statement (which
returns the process id).

= Processes can be created
at any point in the execution
(within any process).

= Processes start executing
after the run statement.

= Processes can also be
created by adding active
in front of the proctype
declaration.

éév\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial

number of procs. (opt.)

parameters will be
initialised to O

18 &

University of Twente



DEMO Hello World!

/* A "Hello World" Promela model for SPIN. */

active proctype Hello() {
printf("Hello process, my pid is: %d\n", _pid);
}
init {
int lastpid;
printf("init process, my pid is: %d\n", _pid);
lastpid = run Hello() ;
printf("last pid was: %d\n", lastpid):

random seed

running SPIN in
random simulation mode

éév\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial



Variables and Types )

+ Five different (integer)
basic types.

+ Arrays
+ Records (structs)

* Type conflicts are detected
at runtime.

« Default initial value of basic
variables (local and global)
is 0.

array
indicing
start at O

variable
declaration




Statements @)

The body of a process consists of a sequence of
statements. A statement is either executable/blocked

— executable: the statement can d;';‘f;gdosﬁ';‘:h: gl‘;tr’n“'
be executed immediately. e

— blocked: the statement cannot be executed.

An assignment is always executable.

An expression is also a statement; it is executable if it
evaluates to non-zero.

2 <3 always executable
x < 27 only executable if value of x is smaller 27
3+ x executable if x is not equal to =3
‘@: R &
P‘ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 22 W

University of Temats



Statements are

STGTemenTS 2) separated by a

semi-colon: ",

* The skip statement is always executable.
— “does nothing”, only changes process’ process counter

* A run statement is only executable if a new process can he
created (remember: the number of processes is bounded).

« Aprintf statementis always executable (but is not
evaluated during verification, of course).

Executable if Noot can
be created..

Can only become executable
if a some other process
makes x greater than 2.

gég\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 23 s

University of Tuwente



Statements (3)

* assert (<expr>);
— The assert-statement is always executable.
— If <expr> evaluates to zero, SPIN will exit with an error, as
the <expr> “has been violated”.
— The assert-statement is often used within Promela models,
to check whether certain properties are valid in a state.

\@éﬁc Thursday 11-Apr-2002 Theo €. Ruys - SPIN Beginners' Tutorial 24 s

University of Tusats



Mutual Exclusion @)

models:
while (flag == 1) /* wait */;

Problem: assertion violation!
Both processes can pass the
flag != 1 "at the same time",
i.e. before £lag is set to 1.

"‘459_:-,;\ starts two instances of process P
s
" Thursday 11-Apr-2002 Theo €. Ruys - SPIN Beginners' Tutorial 28



Mutual Exclusion (2

Process A waits for
process B to end.

Problem: invalid-end-statel

Both processes can pass execute

x = 1landy = 1 "“at the same time",
and will then be waiting for each other.

éév\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 29 s

University of Tuwente



- inspil:'ed by:
if-statement () A

+ |fthere is at least one choice; (guard) executable, the i£-
statement is executable and SPIN non-deterministically
chooses one of the executable choices.

* If no choice; is executable, the i £-statement is blocked.
* The operator “=>" is equivalent to “;”. By convention, it is used

within i£-statements to separate the guards from the
statements that follow the guards.

§§P\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 32 s

University of Twsnte



if-statement (2

skips are redundant, because assignments
are themselves always executable...

* The else guard becomes
executable if none of the
other guards is executable.

non-deterministic branching

P\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 33 s
University of Pwente



do-statement ()

* With respect to the choices, a do-statement behaves in the
same way as an if-statement.

* However, instead of ending the statement at the end of the
choosen list of statements, a do-statement repeats the choice
selection.

* The (always executable) break statement exits a do-loop
statement and transfers control to the end of the loop.

§§ '\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 34 s
P University of Reente



Communication @

1525 N o
Sender Receiver
- ———————— =
r2s
MSG
s2r!MSG
s2r?MSG
ACK r2s!ACK
r2s?ACK
& R .
% Thursday 11-Apr-2002 Theo €. Ruys - SPIN Beginners' Tutorial 36
P University of Twente



Communication (2

« Communication between processes is via channels:
— message passing

— rendez-vous synchronisation (handshake)

. ~ also called:
+ Both are defined as channels: queue or buffer

"
name of type of the elements that will be
the channel transmitted over the channel

number of elements in the channel
dim==0 is special case: rendez-vous

" array of
channels
73 o
% Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 37 A
P University of Twente



Communication @3)

« channel = FIFO-buffer (for dim>0)

I Sending - putting a message into a channel
ch ! <expr,>, <expr,>, .. <expr,>;
* The values of <expr,> should correspond with the types of the
channel declaration.
+ A send-statement is executable if the channel is not full.

? Receiving - getting a message out of a channel

war> + ¢ch ? <var;>, <var,>, .. <var,>; message passing
<const> + If the channel is not empty, the message is fetched from the channel
can bc? and the individual parts of the message are stored into the <var,>s.
mixe ch ? <const,>, <const,>, .. <const,>; message fesfing

+ If the channel is not empty and the message at the front of the
channel evaluates to the individual <const,>, the statement is
executable and the message is removed from the channel.

4
@'\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 38 s
P University of Twente



DEMO . .
Communication @)

* Rendez-vous communication
<dim> ==
The number of elements in the channel is now zero.

— If send eh'! is enabled and if there is a corresponding
receive ch? that can be executed simultaneously and the
constants match, then both statements are enabled.

— Both statements will “handshake” and together
take the transition.

« Example:
chan ch = [0] of {bit, byte};
— P wants to do ch ! 1, 3+7
— Qwantstodo ch ? 1, x
— Then after the communication, x will have the value 10.

=Y
@": Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 39 s
P University of Twente



INTERLEAVING OF PROCESSES

Interleaving semantics:
@ Eachtime, process is selected, and its current statement is executed
@ Selected process has to be enabled
@ Thisis repeated
o

Number of all possible interleavings may be very high
— state space explosion = not verifiable models

©

Mechanism to control the interleavings would be handy

Jan Kofrori: Behaviour Models and Verification



Not completely correct as each

& process has an implicit end-transition...
P’\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 49\



e

atomic

It is as if P1 has only one transition..

If one of P1's transitions
blocks, these transitions
may get executed

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 50 s



It is as if P1 has only one transition...

@éﬁg Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 51 s

University of Tweste



Checking for pure atomicity

* Suppose we want to check that none of the atomic clauses
in our model are ever blocked (i.e. pure atomicity).

1. Add aglobal bit varible: [y 2. Change all atomic clauses to:

bit aflag;

aflag=l;

[I'aflag

Thur'sduy 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 52 s




timeout 1)

* Promela does not have real-time features.
— In Promela we can only specify functional behaviour.

— Most protocols, however, use timers or a timeout
mechanism to resend messages or acknowledgements.

¢ timeout
— SPIN’s timeout becomes executable if there is no
other process in the system which is executable
— s0, timeout models a global timeout
— timeout provides an escape from deadlock states
— beware of statements that are always executable...

=S
‘fs: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 53 s
University of Twente



timeout (2

+ Example to recover from message loss:

* Premature timeouts can be modelled by replacing the
timeout by skip (which is always executable).

One might want fo limit the number of premature
timeouts (see [Ruys & Langerak 1997]).

\@éﬁc Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 54 s

University of Tusats



goto

— transfers execution to 1abel
— each Promela statement might be labelled
— quite useful in modelling communication protocols

Timeout modelled by a channel.

\@éﬁc Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 56 s



unless

— Statements in <stfats> are executed until the first
statement (guard) in the escape sequence becomes
executable.

— resembles exception handling in languages like Java

— Example:

§:§P\: Thursday 11-Apr-2002 Theo €. Ruys - SPIN Beginners' Tutorial 57 s

University of Tweste



macros - cpp preprocessor

* Promela uses c¢pp, the C preprocessor to preprocess
Promela models. This is useful to define:

— constants All ecpp commands start with a hash:

#define, #ifdef, #include, etc.
— Mmacros

— conditional Promela model fragments

@éﬁc Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 58 @

University of Tamnte



inline - poor man's procedures

* Promela also has its own macro-expansion feature using
the inline-construct.

Should be declared somewhere
else (probably as a local variable).

Be sure to reset temporary variables.

— error messages are more useful than when using #define
— cannot be used as expression

— all variables should be declared somewhere else

@éﬁg Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 59 s



(random) Simulation Algorithm

deadlock = allBlocked

interactive simulation:
act is chosen by the user
act is executed and the

system enters a new state Visit all processes and collect
all executable actions .

@%\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 66 s
P University of Twente



Verification Algorithm ()

SPIN uses a depth first search algorithm (DFS) to
generate and explore the complete state space.

states are stored
in a hash table

Only works
for state
properties.

requires state matching

the old states s are stored on a stack, which
corresponds with a complete execution path

Note that the construction and error checking happens at
the same time: SPIN is an on-the-fly model checker.

@%ﬂ Thursday 11-Apr-2002 Theo €. Ruys - SPIN Beginners' Tutorial 67 s
P Uniegrsity of Twente



Properties ()

« Model checking tools automatically verify whether
holds, where M is a (finite-state) model of a system and
property ¢is stated in some formal notation.

« With SPIN one may check the following type of properties:
— deadlocks (invalid endstates)
— assertions
— unreachable code
— LTL formulae

— liveness properties
« non-progress cycles (livelocks)
 acceptance cycles

"c Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 60 s
P University of Twewte



PROPERTY SPECIFICATION

LTL_x is used in Spin
@ LTL without X operator
@ More efficient model checking algorithm
@ Still expressive enough

Describing properties of states (or runs), not of transitions between states

Jan Kofrori: Behaviour Models and Verification



EXAMPLE: ALTERNATING BIT PROTOCOL — ABP

Four versions with various properties:
1. Perfect lines

Loosing messages

Fixing deadlock

oW

Checking for progress

Jan Kofrori: Behaviour Models and Verification



ABP VERSION 1

#define MAX 4;
mtype {MSG, ACK}; . .
chan toR = [1] of {mtype, byte, bit}; ?ctlve proctype Receiver()

chan toS = [1] of {mtype, bit}; byte data, exp data;

bit ab, exp_ab;

active proctype Sender() exp_ab = o

{ 2o
byte data; j:)(p_data =0
bit sendb, recvb; :: toR ? MSG(data,ab) ->
sendb = o0; if !
gjta = 0 it (ab == exp_ab) ->
assert(data == exp_data);

toR ! MSG(data,sendb) ->

toS ? ACK(recvb); exp_ab = 1-exp_ab;

exp_data = (exp_data+1)%MAX;

if =
recvb == sendb -> sendb = 1-sendb; fi'.. else -> skip;
data = (data+1)%MAX; P
else -> skip; /% resend old data =%/ odtos ! ACK(ab)

fi }

od
}

Jan Kofrori: Behaviour Models and Verification



ABP VERSION 2

Adding special stealing daemon process:

active proctype Daemon()
{
do
toR ? , ,
toS ? _,
od

Jan Kofrori: Behaviour Models and Verification



ABP VERSION 3

Fixing sender model to escape from deadlock:

do
toR ! MSG(data,sendb) ->
if
::toS ? ACK(recvb) ->
if
recvb == sendb -> sendb = 1-sendb;
data = (data+1)%MAX;
else /% resend old data %/
fi
::timeout /* message lost =%/
fi

od

Jan Kofrori: Behaviour Models and Verification



ABP VERSION 4

Augmenting receiver process to detect livelock:

do
toR ? MSG(data,ab) ->
if
(ab == exp_ab) -> assert(data == exp_data);
exp_ab = 1-exp_ab;
progress:
exp_data = (exp_data+1)%ZMAX;
else -> skip;
fi;
toS ! ACK(ab)
od

Jan Kofrori: Behaviour Models and Verification



ALTERNATING BIT PROTOCOL — SUMMARY

We should be aware of all possible executions and issues in the model

If there is error due to simplification (abstraction), it can still be ok
@ In our example we may know that messages can get lost but are usually delivered

@ Consider possible errors beyond the ignored ones!

Model is not implementation!

Jan Kofrori: Behaviour Models and Verification



	Spin

