
NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

4. COMPUTATIONAL TREE LOGIC

Jan Kofroň



TODAY

Computational Tree Logic (CTL)

CTL model checking

Comparison of CTL and LTL

Jan Kofroň: Behaviour Models and Verification 2



MODEL CHECKING

open

start

empty close heat

close

empty
start

close

start

heat

Systemmodel

AG (start→ AF heat)

Property specification

Model Checker

Property satisfied

Property violated

Model Checking

CTL

Jan Kofroň: Behaviour Models and Verification 3



MODEL CHECKING

open

start

empty close heat

close

empty
start

close

start

heat

Systemmodel

AG (start→ AF heat)

Property specification

Model Checker

Property satisfied

Property violated

Model Checking

CTL

Jan Kofroň: Behaviour Models and Verification 4



COMPUTATIONAL TREE LOGIC – CTL

Another temporal logic, differing from LTL in expressive power

Computational tree refers to ability to properties of computational subtrees

(branching)

as opposed to LTL that considers particular paths in isolation

The semantic model similar to LTL – also defined upon infinite paths of Kripke structure

Jan Kofroň: Behaviour Models and Verification 5



CTL SYNTAX

Let AP be set of atomic propositions (Boolean variables).

CTL formulae are finite expressions created by following rules:

>,⊥, p ∈ AP are CTL formulae

If ϕ,ψ are CTL formulae, then the following are also CTL formulae:

AXϕ

AFϕ

AGϕ

A[ϕUψ]

EXϕ

EFϕ

EGϕ

E[ϕUψ]

Operators X, F, G, U have similar meaning as in LTL

Quantifiers A, E refer to paths – “all paths” vs. “exists a path”

Jan Kofroň: Behaviour Models and Verification 6



CTL SEMANTICS

LetM = (S, R, L) be Kripke structure

〈s → t〉 denotes transition from state s to state t

〈s0 −→〉 denotes infinite path 〈s0 → s1 → s2 → ...〉 starting at state s0

Jan Kofroň: Behaviour Models and Verification 7



CTL SEMANTICS

(M, s |= >) ∧ (M, s 6|= ⊥)

(M, s |= p) ⇔ (p ∈ L(s))

(M, s |= ¬ϕ) ⇔ (M, s 6|= ϕ)

(M, s |= ϕ1 ∨ ϕ2) ⇔ ((M, s |= ϕ1) ∨ (M, s |= ϕ2))

(M, s |= AXϕ) ⇔ (∀〈s → t〉(M, t |= ϕ))

(M, s |= EXϕ) ⇔ (∃〈s → t〉(M, t |= ϕ))

(M, s |= AGϕ) ⇔ (∀〈s0 −→〉∀i ≥ 0 : M, si |= ϕ)

(M, s |= EGϕ) ⇔ (∃〈s0 −→〉∀i ≥ 0 : M, si |= ϕ)

(M, s |= AFϕ) ⇔ (∀〈s0 −→〉∃i ≥ 0 : M, si |= ϕ)

(M, s |= EFϕ) ⇔ (∃〈s0 −→〉∃i ≥ 0 : M, si |= ϕ)

(M, s |= A[ϕ1 Uϕ2]) ⇔ (∀〈s0 −→〉∃i ≥ 0 : (M, si |= ϕ2) ∧ (∀(j < i)(M, sj) |= ϕ1))

(M, s |= E[ϕ1 Uϕ2]) ⇔ (∃〈s0 −→〉∃i ≥ 0 : (M, si |= ϕ2) ∧ (∀(j < i)(M, sj) |= ϕ1))

Jan Kofroň: Behaviour Models and Verification 8



CTL MODEL CHECKING

Based on identifying states of model satisfying sub-formulae of property formula:

1. Create derivation tree of property formula.

2. In bottom-up manner identify all states of model satisfying sub-formula

associated with each node of derivation tree.

EG (E[pU q]) ∧ ¬(EX r)

EG (E[pU q])

E[pU q]

¬(EX r)

EX r

p q r

Jan Kofroň: Behaviour Models and Verification 9



CTL MODEL CHECKING

Based on identifying states of model satisfying sub-formulae of property formula:

1. Create derivation tree of property formula.

2. In bottom-up manner identify all states of model satisfying sub-formula

associated with each node of derivation tree.

EG (E[pU q]) ∧ ¬(EX r)

EG (E[pU q])

E[pU q]

¬(EX r)

EX r

p q r

Jan Kofroň: Behaviour Models and Verification 10



CTL MODEL CHECKING

CTL formula can be transformed to contain just ¬, ∧, EG, EX, and EU operators

Various algorithms for identification of states satisfying particular sub-formulae exist

explicit model checking – explicit representation of each state in memory

symbolic model checking – representing sets of states by Boolean formulae

Jan Kofroň: Behaviour Models and Verification 11



EXPLICIT CTL MODEL CHECKING

Identification of states satisfying particular sub-formulae:

operators ¬, ∧, and EX are trivial

operators EG and EU require more complex algorithms

Jan Kofroň: Behaviour Models and Verification 12



EXPLICIT CTL MODEL CHECKING: EU OPERATOR

function CHECKEU(ϕ1, ϕ2)

T := {s : ϕ2 ∈ label(s)}
for all s ∈ T do

label(s) := label(s) ∪ {E[ϕ1 Uϕ2]}
end for

while T 6= {} do
choose s ∈ T; T := T \ {s}
for all t : R(t, s) do

if E[ϕ1 Uϕ2] /∈ label(t) ∧ ϕ1 ∈ label(t) then
label(t) := label(t) ∪ {E[ϕ1 Uϕ2]}
T := T ∪ {t}

end if

end for

end while

end function

Jan Kofroň: Behaviour Models and Verification 13



EXPLICIT CTL MODEL CHECKING: EG OPERATOR

function CHECKEG(ϕ1)

S′ := {s : ϕ1 ∈ label(s)}
SCC = {C : C is non-trivial SCC of S′}
T :=

⋃
C∈SCC{s : s ∈ C}

for all s ∈ T do

label(s) := label(s) ∪ {EGϕ1}
end for

while T 6= {} do
choose s ∈ T; T := T \ {s}
for all t : t ∈ S′ ∧ R(t, s) do

if EGϕ1 /∈ label(t) then
label(t) := label(t) ∪ {EGϕ1}
T := T ∪ {t}

end if

end for

end while

end function

Jan Kofroň: Behaviour Models and Verification 14



EXPLICIT CTL MODEL CHECKING: COMPLEXITY

Computing states satisfying particular sub-formulae:

CheckEU: O(|S|+ |R|)
CheckEG: O(|S|+ |R|)

Finding strongly connected components using Tarjan algorithm: O(|S′|+ |R′|)
EX: O(|S|+ |R|)
negation and conjunction: O(|S|)
ϕ contains at most |ϕ| different sub-formulae

Total time complexity: O(|ϕ| ∗ (|S|+ |R|))

Jan Kofroň: Behaviour Models and Verification 15



DIFFERENCE BETWEEN CTL AND LTL

CTL and LTL are incomparable

there are properties of one logic not expressible in the other one

difference stems from their different semantics – while CTL captures sub-trees of

computational tree, LTL considers each path in isolation

both are useful, each in different settings

Jan Kofroň: Behaviour Models and Verification 16



CTL 6⊆ LTL

Theorem: There is no LTL formula equivalent to CTL formula AG (EF p).

Proof:

1. For contradiction assume there exists LTL formula ϕ equivalent to AG (EF p).

2. State s0 of KS(1) satisfies AG (EF p). Therefore, s0 satisfies ϕ.

3. Since ϕ is satisfied in s0, path looping in s0 also satisfies it.

4. Therefore, state s0 of KS(2) also satisfies ϕ.

5. Since AG (EF p) and ϕ are equivalent, state s0 of KS(2) also satisfies AG (EF p),
which is contradiction.

p

s0 s1 s0

KS(1) KS(2)

Jan Kofroň: Behaviour Models and Verification 17



CTL 6⊆ LTL

Theorem: There is no LTL formula equivalent to CTL formula AG (EF p).

Proof:

1. For contradiction assume there exists LTL formula ϕ equivalent to AG (EF p).

2. State s0 of KS(1) satisfies AG (EF p). Therefore, s0 satisfies ϕ.

3. Since ϕ is satisfied in s0, path looping in s0 also satisfies it.

4. Therefore, state s0 of KS(2) also satisfies ϕ.

5. Since AG (EF p) and ϕ are equivalent, state s0 of KS(2) also satisfies AG (EF p),
which is contradiction.

p

s0 s1 s0

KS(1) KS(2)

Jan Kofroň: Behaviour Models and Verification 18



LTL 6⊆ CTL

Theorem: There is no CTL formula equivalent to LTL formula F (G p).

in particular it is not equivalent to AF (AG p)

Proof:

Consider Kripke structure below whose state s0 satisfies F (G p), but does not
satisfy AF (AG p).

p p

s0 s1 s2

Jan Kofroň: Behaviour Models and Verification 19



LTL 6⊆ CTL

Theorem: There is no CTL formula equivalent to LTL formula F (G p).

in particular it is not equivalent to AF (AG p)

Proof:

Consider Kripke structure below whose state s0 satisfies F (G p), but does not
satisfy AF (AG p).

p p

s0 s1 s2

Jan Kofroň: Behaviour Models and Verification 20



COMPUTATIONAL-TREE PERSPECTIVE

p p p p

p p p p

p p p p

p p p p

s0

M, s0 |= F (G p)

M, s0 6|= AF (AG p)

Jan Kofroň: Behaviour Models and Verification 21



FAIRNESS CONSTRAINTS

Consider producer and consumer communicating over reliable network:

OK

Sent

produce-data

send-data receive-data

process-data

send-ackrecv-ack

wait

wait

Is this CTL formula

satisfied in “OK” state?

AG (Sent =⇒ AF (OK))

No! Paths infinitely

looping in “waiting”

states violate it.

Jan Kofroň: Behaviour Models and Verification 22



FAIRNESS CONSTRAINTS

Consider producer and consumer communicating over reliable network:

OK

Sent

produce-data

send-data receive-data

process-data

send-ackrecv-ack

wait

wait

Is this CTL formula

satisfied in “OK” state?

AG (Sent =⇒ AF (OK))

No! Paths infinitely

looping in “waiting”

states violate it.

Jan Kofroň: Behaviour Models and Verification 23



FAIRNESS CONSTRAINTS

Consider producer and consumer communicating over reliable network:

OK

Sent

produce-data

send-data receive-data

process-data

send-ackrecv-ack

wait

wait

Is this CTL formula

satisfied in “OK” state?

AG (Sent =⇒ AF (OK))

No! Paths infinitely

looping in “waiting”

states violate it.

Jan Kofroň: Behaviour Models and Verification 24



FAIRNESS CONSTRAINTS

We can define fairness constraint to avoid this types of failures:

OK

Sent

Idle

Idle

produce-data

send-data receive-data

process-data

send-ackrecv-ack

wait

wait

Introducing new AP Idle

Specifying fairness

contraint as ¬Idle

When model checking,

only fair paths

considered – those

containing infinitely

many fair states.

Jan Kofroň: Behaviour Models and Verification 25



FAIRNESS CONSTRAINTS

We can define fairness constraint to avoid this types of failures:

OK

Sent

Idle

Idle

produce-data

send-data receive-data

process-data

send-ackrecv-ack

wait

wait

Introducing new AP Idle

Specifying fairness

contraint as ¬Idle

When model checking,

only fair paths

considered – those

containing infinitely

many fair states.

Jan Kofroň: Behaviour Models and Verification 26



FAIRNESS CONSTRAINTS

Fair paths: introducing new atomic proposition fair:

fair is true in state s↔ there exists fair path starting in s

M, s |=F EG true

Determining fair paths and deciding upon EG p formulae

M, s |=F p ↔ M, s |= p ∧ fair

M, s |=F EXϕ↔ M, s |= EX (ϕ ∧ fair)

M, s |=F E[ϕUψ] ↔ M, s |= E[ϕU (ψ ∧ fair)]

Jan Kofroň: Behaviour Models and Verification 27



COMPLEXITY OF ALGORITHMS

Complexity of CTL and LTL explicit model checking differs a bit:

CTL: O(|M| ∗ |ϕ|)
LTL: O(|M| ∗ 2|ϕ|)

Both linear in size of model, LTL exponential in size of formula

practically negligible difference as formula is usually much smaller than model

Jan Kofroň: Behaviour Models and Verification 28


	Computational Tree Logic
	CTL model checking
	Difference between CTL and LTL
	Fairness constraints

