NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION 4. COMPUTATIONAL TREE LOGIC

Jan Kofroň

FACULTY OF MATHEMATICS AND PHYSICS Charles University

- Computational Tree Logic (CTL)
- CTL model checking
- Comparison of CTL and LTL

MODEL CHECKING

Property specification

MODEL CHECKING

Another temporal logic, differing from LTL in expressive power *Computational tree* refers to ability to properties of computational subtrees (branching)

• as opposed to LTL that considers particular paths in isolation

The semantic model similar to LTL – also defined upon infinite paths of Kripke structure

CTL SYNTAX

Let AP be set of atomic propositions (Boolean variables).

CTL formulae are finite expressions created by following rules:

• \top , \bot , $p \in AP$ are CTL formulae

If φ,ψ are CTL formulae, then the following are also CTL formulae:

٠	AX φ	۲	$EX\varphi$
٠	$AF\varphi$	٠	$EF\varphi$
٠	AG φ	٠	$EG\varphi$
٠	$A[\varphi U\psi]$	٩	$E[\varphi U \psi]$

Operators X, F, G, U have similar meaning as in LTL Quantifiers A, E refer to paths – "all paths" vs. "exists a path"

Let M = (S, R, L) be Kripke structure

- $\langle s \rightarrow t \rangle$ denotes transition from state s to state t
- $\langle s_0 \longrightarrow \rangle$ denotes infinite path $\langle s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ... \rangle$ starting at state s_0

CTL SEMANTICS

$$\begin{array}{l} (\mathsf{M},\mathsf{s}\models\top)\wedge(\mathsf{M},\mathsf{s}\not\models\bot)\\ (\mathsf{M},\mathsf{s}\models\mathsf{p})\Leftrightarrow(\mathsf{p}\in\mathsf{L}(\mathsf{s}))\\ (\mathsf{M},\mathsf{s}\models\mathsf{p})\Leftrightarrow(\mathsf{p}\in\mathsf{L}(\mathsf{s}))\\ (\mathsf{M},\mathsf{s}\models\mathsf{p})\Leftrightarrow(\mathsf{M},\mathsf{s}\not\models\varphi)\\ (\mathsf{M},\mathsf{s}\models\mathsf{q})\Leftrightarrow(\mathsf{M},\mathsf{s}\not\models\varphi)\\ (\mathsf{M},\mathsf{s}\models\mathsf{A}X\varphi)\Leftrightarrow((\mathsf{M},\mathsf{s}\models\varphi_1)\vee(\mathsf{M},\mathsf{s}\models\varphi_2))\\ (\mathsf{M},\mathsf{s}\models\mathsf{A}X\varphi)\Leftrightarrow((\mathsf{V}(\mathsf{s}\to\mathsf{t})(\mathsf{M},\mathsf{t}\models\varphi))\\ (\mathsf{M},\mathsf{s}\models\mathsf{E}X\varphi)\Leftrightarrow((\mathsf{d}(\mathsf{s}\to\mathsf{t})(\mathsf{M},\mathsf{t}\models\varphi))\\ (\mathsf{M},\mathsf{s}\models\mathsf{E}X\varphi)\Leftrightarrow((\mathsf{d}(\mathsf{s}\to\mathsf{t})(\mathsf{M},\mathsf{t}\models\varphi))\\ (\mathsf{M},\mathsf{s}\models\mathsf{E}\mathsf{G}\varphi)\Leftrightarrow((\mathsf{d}(\mathsf{s}_0\longrightarrow)\forall\mathsf{i}\geq\mathsf{o}:\mathsf{M},\mathsf{s}_i\models\varphi)\\ (\mathsf{M},\mathsf{s}\models\mathsf{E}\mathsf{G}\varphi)\Leftrightarrow((\mathsf{d}(\mathsf{s}_0\longrightarrow)\forall\mathsf{i}\geq\mathsf{o}:\mathsf{M},\mathsf{s}_i\models\varphi)\\ (\mathsf{M},\mathsf{s}\models\mathsf{E}\mathsf{F}\varphi)\Leftrightarrow((\mathsf{d}(\mathsf{s}_0\longrightarrow)\mathsf{d}\mathsf{i}\geq\mathsf{o}:\mathsf{M},\mathsf{s}_i\models\varphi)\\ (\mathsf{M},\mathsf{s}\models\mathsf{E}\mathsf{F}\varphi)\Leftrightarrow((\mathsf{d}(\mathsf{s}_0\longrightarrow)\mathsf{d}\mathsf{i}\geq\mathsf{o}:\mathsf{M},\mathsf{s}_i\models\varphi)\\ (\mathsf{M},\mathsf{s}\models\mathsf{E}\mathsf{F}\varphi)\Leftrightarrow((\mathsf{d}(\mathsf{s}_0\longrightarrow)\mathsf{d}\mathsf{i}\geq\mathsf{o}:\mathsf{M},\mathsf{s}_i\models\varphi))\\ (\mathsf{M},\mathsf{s}\models\mathsf{E}\mathsf{F}(\varphi_1\mathsf{U}\varphi_2\mathsf{I}))\Leftrightarrow((\mathsf{d}(\mathsf{s}_0\longrightarrow)\mathsf{d}\mathsf{i}\geq\mathsf{o}:\mathsf{(M},\mathsf{s}_i\models\varphi_2)\wedge((\mathsf{d}(j<\mathsf{i})(\mathsf{M},\mathsf{s}_j)\models\varphi_1))\\ (\mathsf{M},\mathsf{s}\models\mathsf{E}\mathsf{E}[\varphi_1\mathsf{U}\varphi_2\mathsf{I}))\Leftrightarrow((\mathsf{d}(\mathsf{s}_0\longrightarrow)\mathsf{d}\mathsf{i}\geq\mathsf{o}:\mathsf{(M},\mathsf{s}_i\models\varphi_2)\wedge((\mathsf{d}(\mathsf{j}<\mathsf{i})(\mathsf{M},\mathsf{s}_j)\models\varphi_1))\\ (\mathsf{M},\mathsf{s}\models\mathsf{E}\mathsf{E}[\varphi_1\mathsf{U}\varphi_2\mathsf{I}))\Leftrightarrow(\mathsf{d}(\mathsf{d}(\mathsf{s}_0\longrightarrow)\mathsf{d}\mathsf{i}\geq\mathsf{o}:\mathsf{(M},\mathsf{s}_i\models\varphi_2)\wedge(\mathsf{d}(\mathsf{j}<\mathsf{i})(\mathsf{M},\mathsf{s}_j)\models\varphi_1))\\ (\mathsf{M},\mathsf{s}\models\mathsf{E}\mathsf{E}[\varphi_1\mathsf{U}\varphi_2\mathsf{I}))\Leftrightarrow(\mathsf{d}(\mathsf{d}(\mathsf{s}_0\longrightarrow)\mathsf{d}\mathsf{i}\geq\mathsf{o}:\mathsf{M},\mathsf{s}\models\varphi_2)\wedge(\mathsf{d}(\mathsf{j}<\mathsf{i})(\mathsf{M},\mathsf{s}_j)\models\varphi_1))\\ (\mathsf{M},\mathsf{s}\models\mathsf{E}\mathsf{E}[\varphi_1\mathsf{U}\varphi_2\mathsf{I}))\Leftrightarrow(\mathsf{d}(\mathsf{d}(\mathsf{s}_0\to)\otimes\mathsf{d}\mathsf{i}\geq\mathsf{o}:\mathsf{(M},\mathsf{s}\models\varphi_2)\wedge(\mathsf{d}(\mathsf{j}<\mathsf{i})(\mathsf{M},\mathsf{s}_j)\models\varphi_1))\\ (\mathsf{M},\mathsf{s}\models\mathsf{E}\mathsf{M}) \land\mathsf{M})$$

CTL MODEL CHECKING

Based on identifying states of model satisfying sub-formulae of property formula:

- 1. Create derivation tree of property formula.
- 2. In bottom-up manner identify all states of model satisfying sub-formula associated with each node of derivation tree.

CTL MODEL CHECKING

Based on identifying states of model satisfying sub-formulae of property formula:

- 1. Create derivation tree of property formula.
- 2. In bottom-up manner identify all states of model satisfying sub-formula associated with each node of derivation tree.

CTL formula can be transformed to contain just \neg , \land , EG, EX, and EU operators

Various algorithms for identification of states satisfying particular sub-formulae exist

- explicit model checking explicit representation of each state in memory
- symbolic model checking representing sets of states by Boolean formulae

Identification of states satisfying particular sub-formulae:

- operators \neg , \land , and EX are trivial
- operators EG and EU require more complex algorithms

```
function CHECKEU(\varphi_1, \varphi_2)
     T := \{s : \varphi_2 \in label(s)\}
     for all s \in T do
          label(s) := label(s) \cup \{ E[\varphi_1 \cup \varphi_2] \}
     end for
     while T \neq \{\} do
          choose s \in T: T := T \setminus \{s\}
          for all t : R(t, s) do
               if E[\varphi_1 \cup \varphi_2] \notin label(t) \land \varphi_1 \in label(t) then
                     label(t) := label(t) \cup \{ E[\varphi_1 \cup \varphi_2] \}
                    T := T \cup \{t\}
               end if
          end for
     end while
end function
```

```
function CHECKEG(\varphi_1)
     S' := \{s : \varphi_1 \in label(s)\}
     SCC = \{C : C \text{ is non-trivial SCC of } S'\}
     T := \bigcup_{c \in scc} \{ s : s \in C \}
     for all s \in T do
          label(s) := label(s) \cup \{ EG \varphi_1 \}
     end for
     while T \neq \{\} do
          choose s \in T: T := T \setminus \{s\}
         for all t : t \in S' \land R(t, s) do
               if EG \varphi_1 \notin label(t) then
                   label(t) := label(t) \cup \{ EG \varphi_1 \}
                   T := T \cup \{t\}
               end if
          end for
     end while
end function
```


Computing states satisfying particular sub-formulae:

- CheckEU: O(|S| + |R|)
- CheckEG: O(|S| + |R|)
 - Finding strongly connected components using Tarjan algorithm: O(|S'| + |R'|)
- EX: O(|S| + |R|)
- negation and conjunction: O(|S|)
- φ contains at most $|\varphi|$ different sub-formulae

Total time complexity: $O(|\varphi|*(|S|+|R|))$

CTL and LTL are incomparable

- there are properties of one logic not expressible in the other one
- difference stems from their different semantics while CTL captures sub-trees of computational tree, LTL considers each path in isolation
- both are useful, each in different settings

$\mathsf{CTL} \not\subseteq \mathsf{LTL}$

Theorem: There is no LTL formula equivalent to CTL formula AG (EF p).

Theorem: There is no LTL formula equivalent to CTL formula AG (EF p).

Proof:

- 1. For contradiction assume there exists LTL formula φ equivalent to AG (EF p).
- 2. State s_0 of KS(1) satisfies AG (EF p). Therefore, s_0 satisfies φ .
- 3. Since φ is satisfied in s_0 , path looping in s_0 also satisfies it.
- 4. Therefore, state s_0 of KS(2) also satisfies φ .
- 5. Since AG (EF p) and φ are equivalent, state s_0 of KS(2) also satisfies AG (EF p), which is contradiction.

Theorem: There is no CTL formula equivalent to LTL formula F(Gp).

• in particular it is not equivalent to AF (AG p)

Theorem: There is no CTL formula equivalent to LTL formula F(Gp).

• in particular it is not equivalent to AF (AG p)

Proof:

Consider Kripke structure below whose state s_o satisfies F (G p), but does not satisfy AF (AG p).

Consider producer and consumer communicating over reliable network:

Consider producer and consumer communicating over reliable network:

Consider producer and consumer communicating over reliable network:

We can define *fairness constraint* to avoid this types of failures:

FAIRNESS CONSTRAINTS

We can define *fairness constraint* to avoid this types of failures:

Introducing new AP Idle Specifying fairness contraint as ¬Idle When model checking, only fair paths considered – those containing infinitely many fair states.

Fair paths: introducing new atomic proposition *fair*:

- fair is true in state $s \leftrightarrow$ there exists fair path starting in s
- $M, s \models_{F} EG true$
- Determining fair paths and deciding upon EG p formulae
- $M, s \models_F p \leftrightarrow M, s \models p \land fair$
- $M, s \models_F \mathsf{EX} \varphi \leftrightarrow M, s \models \mathsf{EX} (\varphi \land fair)$
- $M, s \models_F E[\varphi \cup \psi] \leftrightarrow M, s \models E[\varphi \cup (\psi \land fair)]$

Complexity of CTL and LTL explicit model checking differs a bit:

- CTL: $O(|M| * |\varphi|)$
- LTL: $O(|M| * 2^{|\varphi|})$

Both linear in size of model, LTL exponential in size of formula

• practically negligible difference as formula is usually much smaller than model