NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

5. OBDD, LATTICES AND FIXPOINTS

Jan Kofron

FACULTY Department of

OF MATHEMATICS Distributed and

=% AND PHYSICS Dependable
2" Charles University

TODAY

@ Ordered Binary Decision Diagrams (OBDDs)
@ Lattices
@ Fixpoints

Jan Kofrori: Behaviour Models and Verification

EXPLICIT VS. SYMBOLIC MODEL CHECKING

Explicit model checking
@ each particular state of model is explicitly represented in memory
@ modelis explored state-by-state

Symbolic model checking
@ based on manipulation with Boolean formulae
@ operates on entire sets of states rather than individual states

@ usually substantial reduction of time and memory consumption

Jan Kofrori: Behaviour Models and Verification 3

EXPLICIT VS. SYMBOLIC MODEL CHECKING

George Boole (1815-1864)
English mathematician,
philosopher and logician

Jan Kofrori: Behaviour Models and Verification 4

ORDERED BINARY DECISION DIAGRAMS (OBDD)

Canonical representation for Boolean formulae

@ often substantially more compact than traditional normal forms (CNF, DNF)
@ variety of applications:

@ symbolic simulation
@ verification of combinatorial logic
@ verification of finite-state concurrent systems

Based on binary decision trees

Jan Kofrori: Behaviour Models and Verification 5

BINARY DECISION TREE

Binary tree with edges directed from root to leaves
@ each node level associated with one particular variable
@ the same variable ordering on each path from root to leaf

@ one edge from each node represent T while the other represent L
@ terminal nodes (leaves) correspond to final decision— T or L

Jan Kofrori: Behaviour Models and Verification

BINARY DECISION TREE

@ Every Boolean formula can be represented by binary decision tree
@ Every binary decision tree represents a Boolean formula

@ To decide upon value of formula upon given variable assignment, proceed from
BDT root to leaf and follow edges according to values assigned to particular
variables

@ BDTs are not very concise representation of Boolean formulae - essentially same
as truth tables, i.e., exponential in number of variables

@ Lots of redundancy present in BDT usually

Jan Kofrori: Behaviour Models and Verification 7

BINARY DECISION DIAGRAM

Redundancies in BDT:
@ Many terminal symbols with just two different values— L and T

@ Usually several sets of isomorphic sub-trees that can be merged
@ Two sub-trees are isomorphic if:

@ their roots represent the same variable
@ edges originating in them lead to states representing the same variables
@ the edges are pair-wise labelled with the same values

@ After removal and merge of nodes from two points above, redundant tests — both
edges from node lead to the same target node - can appear and can be removed

Result is not tree anymore, but directed acyclic graph (DAG)

Jan Kofrori: Behaviour Models and Verification 8

REDUCTION OF BDT INTO OBDD

|A

_I

REDUCTION OF BDT INTO OBDD

VARIABLE ORDERING

Variable ordering — the order variables are checked on each path from root to leaf -
influences size of OBDD substantially:

a, < b, <a, <b, a, < d, < b; < b,

‘L/.\T‘ BOW

Jan Kofrori: Behaviour Models and Verification

VARIABLE ORDERING

@ For our n-bit comparator, OBDD size ranges from linear (3n + 2) in optimal case to
exponential (3 * 2" — 1) in worst case

@ In general finding optimal (w.r.t. OBDD size) ordering is not feasible - even
checking that particular ordering is optimal is NP-complete

@ There are many functions for which every ordering results exponentially large
OBDD

@ Fortunately there are heuristics that help
@ Using OBDD for representation of Boolean functions (and sets of states, in turn)
is usually highly efficient:

@ related variables “close together”
@ depth-first traversal
@ dynamic reordering

Jan Kofrori: Behaviour Models and Verification

LOGICAL OPERATIONS UPON OBDD

@ For practical use (to exploit efficiency) we need to perform logical operations just
upon OBDDs, not using their “textual” form

@ Required operations: restriction, negation, conjunction, and disjunction
@ other operations (e.g., quantification) can be re-written using just these

Jan Kofrori: Behaviour Models and Verification

LOGICAL OPERATIONS — RESTRICTION

Restriction refers to fixing variable to particular value (T or L)

1 TX1V Xy f1‘x1

A A

Jan Kofrori: Behaviour Models and Verification

LOGICAL OPERATIONS — RESTRICTION

Restriction refers to fixing variable to particular value (T or L)

1 TX1V Xy f1‘x1:J_

AR

Jan Kofrori: Behaviour Models and Verification

LOGICAL OPERATIONS — RESTRICTION

Restriction refers to fixing variable to particular value (T or L)

fiixi VX, filx=1

LOGICAL OPERATIONS — NEGATION

Performing negation is straightforward by swapping terminals

fi: XV Xy

Jan Kofrori: Behaviour Models and Verification

LOGICAL OPERATIONS — NEGATION

Performing negation is straightforward by swapping terminals

—fs 0 (X V Xy)

Jan Kofrori: Behaviour Models and Verification

LOGICAL OPERATIONS — GENERAL CASE

Let * be arbitrary binary logical operation, e.g. conjunction

Notation:

@ f,f’ - Boolean functions to be combined by
@ v,V -roots of OBDDs representing f, f/, respectively
@ both OBDDs respect the same variable ordering

@ x, - variable associated with non-terminal vertex v

Jan Kofrori: Behaviour Models and Verification

LOGICAL OPERATIONS — GENERAL CASE

©

If v, v/ are both terminals: f * f = value(v) x value(v')
@ Ifv, Vv are both non-terminals and x, = x,:
f* f, = (_‘XV A (f|Xv:L * f/|xv:J~)) v (XV A (f‘xv:—l— * f/|Xv:T))

@ If vis non-terminal and v’ is either non-terminal and x, < x|, or v’ is terminal:

f * f/ = (_‘Xv A (ﬂxvzj_ * f/)) \ (Xv A (ﬂxV:T * f/))

@ Symmetrically, if v/ is non-terminal and v is either non-terminal and x, > x|, or v is
terminal:

frof = (A *flo=1)) vV (A (F*fl=T))

Split into sub-problems and solved by recursion

©

@ To prevent exponential complexity, dynamic programming to be used yielding
polynomial algorithm

Jan Kofrori: Behaviour Models and Verification

LOGICAL OPERATIONS — CONJUNCTION

Conjunction of two OBDDs: f; A f, = (X1 V X3) A (X1 V —X5)

fi X VX, DXV oTXy fiNfa

AA

LOGICAL OPERATIONS — CONJUNCTION

Conjunction of two OBDDs: f; A f, = (X1 V X3) A (X1 V —X5)

fi X VX, DXV oTXy fiNfa

A AN

LOGICAL OPERATIONS — CONJUNCTION

Conjunction of two OBDDs: f; A f, = (X1 V X3) A (X1 V —X5)

1 L X4 V X2 - Xq V —X5 f1 A fz

A A A

LOGICAL OPERATIONS — CONJUNCTION

Conjunction of two OBDDs: f; A f, = (X1 V X3) A (X1 V —X5)

1 L X4 V X2 - Xq V —X5 f1 A fz

A A A

LOGICAL OPERATIONS — CONJUNCTION

Conjunction of two OBDDs: f; A f, = (X1 V X3) A (X1 V —X5)

1 L X4 V X2 - Xq V —X5 f1 A fz

A A A

LOGICAL OPERATIONS — CONJUNCTION

Conjunction of two OBDDs: f; A f, = (X1 V X3) A (X1 V —X5)

1 L X4 V X2 - Xq V —X5 f1 A fz

A AA

Jan Kofrori: Behaviour Models and Verification

LOGICAL OPERATIONS — DISJUNCTION

Disjunction of two OBDDs: f; V f, = (X; V X3) V (X3 V —X3)

1 L X4 V X2 - Xq V —X5 f1 V fz

A4

Jan Kofrori: Behaviour Models and Verification

LOGICAL OPERATIONS — DISJUNCTION

Disjunction of two OBDDs: f; V f, = (X; V X3) V (X3 V —X3)

1 L X4 V X2 - Xq V —X5 f1 V fz

A A

Jan Kofrori: Behaviour Models and Verification 28

LOGICAL OPERATIONS — QUANTIFICATION

Quantification of Boolean formula does not introduce greater expressive power:
Q@ Ix:f < flxm=r Vflx=T
@ Vx:f < flx=1 Aflx=T

However, it is convenient in many cases

Jan Kofrori: Behaviour Models and Verification

RELATIONS USING OBDDs

Let Q be n-ary relation over {0, 1}

@ Qcanbe represented by OBDD using its characteristic function:

fo(X1, s Xn) = 1= Q(X4, ..., Xn)

Let Q be n-ary relation over finite domain D
@ W.l.o.g. assume D has 2™ elements for somem > o
@ D can be encoded using bijection: ¢ : {0,1}™ +— D
@ Define relation Qp of arity m x n: Qu({X1), ..., (Xn)) = Q(&((X4)), .-, #({Xn)))

@ (x;)is vector of m Boolean variables encoding variable x;

@ Qcanberepresented as OBDD using characteristic function for Q,

Jan Kofrori: Behaviour Models and Verification

KRIPKE STRUCTURE AS OBDDs

Let M = (S,1,R, L) be Kripke structure:
@ Setsof states S,I: ¢ : {0,1}™ — S, assuming 2™ states for some m

@ Transition relation R: using characteristic function fg, of Rp((x), (x'))
@ Labelling function L:

@ in contrast to usual direction of mapping states to subset of atomic proposition
satisfied in particular states, inverse mapping used here

@ each atomic proposition corresponds to subset of states satisfying it:
L, = {s € Slp € L(s)}

@ OBDDs for each one created using its characteristic function

Jan Kofrori: Behaviour Models and Verification

KRIPKE STRUCTURE AS OBDDs

X

S;: 0

Sy 01
3 S5

I —=x
R:(—=xAX)V(xAX)V(xA—x)
L:aw {s;,s,},b— {s,}

Lo = {o0,1},Lp = {0}

Jan Kofrori: Behaviour Models and Verification

STEP TO SYMBOLIC CTL MODEL CHECKING

@ We have Kripke structure represented as OBDDs
@ but we still do not know how to use them for model checking

@ We need to define more structures allowing us to model-check

@ lattices
@ fixpoints

Jan Kofrori: Behaviour Models and Verification

LATTICE

@ Lattice L is structure consisting of partially ordered set S of elements where every
two elements have

@ unique supremum (least upper bound or join) and
@ unique infimum (greatest lower bound or meet)

Set P(S) of all subsets of S forms complete lattice

Each element E € L can also be thought as predicate on S
Greatest element of Lis S (T, true)

Least element of Lis () (L, false)

7 : P(S) — P(S) is called predicate transformer

© © 6 06 ¢

Jan Kofrori: Behaviour Models and Verification

EXAMPLE: SUBSET LATTICE OF {1, 2, 3, 4}

{1’2)3’4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

Sl S =T

2 {13y {23 {14} {24} {34}

FIXPOINTS

Let 7 : P(S) — P(S) be predicate transformer

@ 7ismonotonic =Q CR = 7(Q) C 7(R)
@ Qisfixpointof T =7(Q) =Q

Jan Kofrori: Behaviour Models and Verification

FIXPOINTS

Theorem (Knaster-Tarski): A monotonic predicate transformer 7 on P(S) always has
the least fixpoint ©Z.7(Z), and the greatest fixpoint vZ.7(Z).

@ uZ.7(2)=0n{Z|7(z) C Z}
Q@ vZ.7(2) =U{Z|r(2) D> Z}

We write 7/(Z) to denote i applications of T to Z:

@ °(2)=z2
@ (2) =7('(2))

Jan Kofrori: Behaviour Models and Verification

FIXPOINTS

Lemma: If 7 is monotonic, then for each i:
@ 7i(false) C 7'*(false)
@ 7i(true) D 7 (true)

Lemma: If 7 is monotonic and S is finite, then:
@ i, > 0:Vi>i,: 7/(false) = 7" (false)
@ Jjo > 0:Vj>jo : Ti(true) = 7o (true)

Lemma: If 7 is monotonic and S is finite, then:
@ iy : puZ.7(2) = 7 (false)

@ Jjo : vZ.7(2) = 7(true)

Knaster-Tarski theorem for finite lattices directly follows from these lemmas

Jan Kofrori: Behaviour Models and Verification

FIXPOINTS

Kripke structures are finite-state = only finite versions of the theorem needed.

The least and greatest fixpoints of a monotonic predicate transformer can be
computed easily (next lecture)

Jan Kofrori: Behaviour Models and Verification

	Ordered Binary Decision Diagrams
	Lattices and fixpoints

