Behavior models and verification

Lecture 5

Jan Kofroň, František Plášil
Model checking

- For a Kripke structure $\mathcal{M} = (S, I, R, L)$ over AP and a (state based) temporal logic formula φ find the set of all states in S that satisfy φ:

$$\mathcal{X} = \{ s \in S : \mathcal{M}, s \models \varphi \}$$
Explicit vs. symbolic model checking

- Explicit model checking
 - M is *explicitly* represented in memory as a labeled, directed graph

- Symbolic model checking
 - Based on manipulation with *Boolean formulas*
 - The algorithm operates on entire sets of states rather than on individual states
 - Reduction of time and memory consumption
Did you know...?

• Explicit model checking
 ■ M is explicitly represented in memory directed graph

• Symbolic model checking
 ■ Based on manipulation with Boolean formulas
 ■ The algorithm operates on entire sets of states rather than on individual states
 ■ Reduction of time and memory consumption

George Boole (1815 –1864)
English mathematician, philosopher and logician
Foundations for symbolic CTL model checking:

1. Ordered Binary Decision Diagrams (OBDDs)
2. Lattices, fixpoints

- We will later present a symbolic CTL model checking algorithm, based on manipulation with OBDDs, lattices, and fixpoints
Today

Outline

- Representing Boolean functions using OBDDs
 - Size of the OBDDs depends on the variable ordering
 - Heuristics for good variable ordering
- Logical operations on OBDDs
- Representing Kripke structures using OBDDs
- Lattices, fixpoints
Ordered Binary Decision Diagrams

• Canonical form representation for Boolean formulas
 ▪ Often substantially more compact than traditional normal forms (conjunctive NF, disjunctive NF)
 ▪ Variety of applications
 • symbolic simulation
 • verification of combinational logic
 • verification of finite-state concurrent systems

• We first introduce binary decision trees
 ▪ ... and then generalize binary decision trees to obtain (ordered) binary decision diagrams
Binary Decision Trees (BDTs)

- Rooted, directed trees
- Two types of vertices
 - Nonterminal
 - Each nonterminal vertex \(v \)
 - is labeled by a variable \(\text{var}(v) \)
 - has two successors:
 - \(\text{low}(v) \) ... variable \(v \) is assigned 0
 - \(\text{high}(v) \) ... variable \(v \) is assigned 1
 - Terminal
 - Each terminal vertex \(v \) is labeled by \(\text{value}(v) \) which is either 0 or 1
Binary Decision Trees (BDTs)

\[\text{var}(u) = a_1 \]

\[\text{low}(u) = v \]

\[\text{high}(u) = w \]

assignment \(t \): \(\text{value}(t) = 1 \)
Q: What function does this represent?

\(\text{var}(u) = a_1 \)

\(\text{low}(u) = v \)

\(\text{high}(u) = w \)
Binary Decision Trees (BDTs)
Every binary decision tree represents a Boolean formula (Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$)

Our example: two-bit comparator

$$f(a_1, a_2, b_1, b_2) = (a_1 \leftrightarrow b_1) \land (a_2 \leftrightarrow b_2)$$

To decide whether a particular truth assignment makes the formula true or false, proceed like this:

- Traverse the tree from the root to a terminal vertex t
- On the path, in a nonterminal vertex v:
 - If the variable $\text{var}(v)$ is 0, then the next vertex on the path from the root to the terminal vertex will be $\text{low}(v)$
 - If the variable $\text{var}(v)$ is 1, then the next vertex on the path from the root to the terminal vertex will be $\text{high}(v)$
- $\text{value}(t)$ is the value of the function / formula for this assignment
Binary Decision Trees (BDTs)

- Not very concise representation for Boolean functions
 - Essentially the same size as truth tables
- Usually a lot of redundancy in such trees
 - Two BDTs T_1, T_2 are **isomorphic** iff there exists one-to-one and onto function h s.t.
 - h maps terminals of T_1 to terminals of T_2
 - h maps nonterminals of T_1 to nonterminals of T_2
 - for every terminal vertex v, $\text{value}(v) = \text{value}(h(v))$
 - for every nonterminal vertex v
 - $\text{var}(v) = \text{var}(h(v))$
 - $h(\text{low}(v)) = \text{low}(h(v))$
 - $h(\text{high}(v)) = \text{high}(h(v))$
 - In our example: 8 subtrees with roots labeled by b2, but only 3 are distinct (i.e., not isomorphic)
 - \Rightarrow merging the isomorphic subtrees, we obtain a more concise representation – a **binary decision diagram**
BDT \rightarrow BDD
BDT → BDD
BDT \rightarrow BDD
Binary Decision Diagrams (BDDs)

- Rooted, directed acyclic graphs
- Two types of vertices
 - Nonterminal
 - Each nonterminal vertex \(v \)
 - is labeled by a variable \(\text{var}(v) \)
 - has two successors:
 - \(\text{low}(v) \) ... variable \(v \) is assigned 0
 - \(\text{high}(v) \) ... variable \(v \) is assigned 1
 - Terminal
 - Each terminal vertex \(v \) is labeled by \(\text{value}(v) \) which is either 0 or 1
Binary Decision Diagrams (BDDs)

- Every vertex \(v \) in a BDD determines a Boolean function \(f_v(x_1, \ldots, x_n) \)
 - If \(v \) is a terminal vertex
 - \(f_v(x_1, \ldots, x_n) = \text{value}(v) \)
 - If \(v \) is a nonterminal vertex with \(\text{var}(v) = x_i \)
 - \(f_v(x_1, \ldots, x_n) = \)
 \[
 = \left(\neg x_i \land f_{\text{low}}(v)(x_1, \ldots, x_n) \right) \lor \left(x_i \land f_{\text{high}}(v)(x_1, \ldots, x_n) \right)
 \]

- A BDD with root \(r \) represents the Boolean function \(f_r(x_1, \ldots, x_n) \)
Canonical Representation

- It is desirable to have a **canonical representation** for Boolean functions
 - Two Boolean functions are logically equivalent if and only if they have isomorphic canonical representations
 - \(\rightarrow \) simplifies
 - checking equivalence of two formulas
 - checking satisfiability of a formula

- Two BDDs \(B_1, B_2 \) are isomorphic iff there exists one-to-one and onto function \(h \) s.t.
 - \(h \) maps terminals of \(B_1 \) to terminals of \(B_2 \)
 - \(h \) maps nonterminals of \(B_1 \) to nonterminals of \(B_2 \)
 - for every terminal vertex \(v \), \(value(v) = value(h(v)) \)
 - for every nonterminal vertex \(v \)
 - \(var(v) = var(h(v)) \)
 - \(h(low(v)) = low(h(v)) \)
 - \(h(high(v)) = high(h(v)) \)
Ordered Binary Decision Diagrams (OBDDs)

- By placing two restrictions on BDDs, we obtain a canonical representation of Boolean functions:

 Ordered Binary Decision Diagrams (OBDDs)

1. The same order of variables
 → imposing a total ordering on the variables
2. No isomorphic subtrees or redundant vertices
 → applying 3 transformation rules:
 - Remove duplicate terminals
 - Eliminate all but one terminal vertex with a given label and redirect all arcs to the eliminated vertices to the remaining one
 - Remove duplicate nonterminals
 - If two nonterminals u and v have $\text{var}(u) = \text{var}(v)$, $\text{low}(u) = \text{low}(v)$ and $\text{high}(u) = \text{high}(v)$, then eliminate u or v and redirect all incoming arcs to the other vertex
 - Remove redundant tests
 - If nonterminal v has $\text{low}(v) = \text{high}(v)$, then eliminate v and redirect all incoming arcs to $\text{low}(v)$
Remove Duplicate Terminals
Remove Duplicate Terminals
Remove Redundant Tests

Jan Kofroň, František Plášil, Lecture 5
Remove Redundant Tests
Remove Redundant Tests

[Diagram of a directed graph showing nodes labeled a2, b2, b1, and a1 with edges labeled with 0 and 1]
Remove Redundant Tests
Remove Redundant Tests
Remove Duplicate Nonterminals
Remove Duplicate Nonterminals
Ordered Binary Decision Diagrams (OBDDs)

- Transformation procedure
 - Start with a BDD satisfying the ordering property
 - Apply the transformation rules until the size of the diagram can no longer be reduced
- This can be done in a bottom-up manner by a procedure called **Reduce** (in time which is linear in the size of the original BDD)
- OBDD as a canonical form
 - Checking equivalence = checking isomorphism
 - Checking satisfiability = checking equivalence to the trivial OBDD (only one terminal labeled by 0)
The size of an OBDD can depend critically on the variable ordering.

- For variable order $a_1 < b_1 < a_2 < b_2$:
 - OBDD structure for $a_1 < b_1 < a_2 < b_2$.

- For variable order $a_1 < a_2 < b_1 < b_2$:
 - OBDD structure for $a_1 < a_2 < b_1 < b_2$.
Ordered Binary Decision Diagrams (OBDDs)

• For n-bit comparator
 - $a_1 < b_1 < \ldots < a_n < b_n$
 - 3n + 2 vertices in the OBDD
 - $a_1 < \ldots < a_n < b_1 < \ldots < b_n$
 - $3 \times 2^n - 1$ vertices in the OBDD

• In general
 - Finding an optimal ordering for variables is infeasible
 - Even checking that a particular ordering is optimal is NP-complete
 - There are many functions that have exponential size OBDDs for any variable ordering

• **However:** In practice, using OBDDs to encode Boolean functions, sets, Kripke structures, etc. in many cases saves time and memory
Heuristics for good variable ordering

- Combinational circuit
 - Related variables should be “close together” in the ordering
 - Variables in a sub-circuit
 - determining the sub-circuit output
 - Depth-first traversal

- Dynamic reordering
Logical operations with OBDDs

- \(f(x_1, \ldots, x_n) \) – a Boolean function
- **Restriction** of some argument \(x_i \) of \(f \) to a constant value \(b \) (0 or 1)
 - \(f\mid_{x_i \leftarrow b}(x_1, \ldots, x_n) = f(x_1, \ldots, x_{i-1}, b, x_{i+1}, \ldots, x_n) \)
- Implementation: depth-first traversal of the OBDD

\[
\begin{array}{c}
\text{b = 0} \\
\text{x} \\
\text{y} \\
\end{array}
\]

```latex
\begin{align*}
\text{Reduce}
\end{align*}
```

\[
\begin{align*}
\text{Reduce}
\end{align*}
\]
Logical operations with OBDDs

- Shannon expansion
 \[f = (\neg x \land f|_{x \leftarrow 0}) \lor (x \land f|_{x \leftarrow 1}) \]
 Application: efficient implementation of logical operations on Boolean functions represented using OBDDs
Logical operations with OBDDs

- Let $*$ be an arbitrary two-argument logical operation
 - imagine conjunction (logical AND) for instance
- f, f' – Boolean functions
- v, v' – roots of the OBDDs representing f, f'
 - Both OBDDs respect the same variable ordering
- If v is a nonterminal vertex, $x = \text{var}(v)$
- If v' is a nonterminal vertex, $x' = \text{var}(v')$
Logical operations with OBDDs

- If \(v, v' \) are terminal vertices
 - \(f \circ f' = \text{value}(v) \circ \text{value}(v') \)
 - for instance: \(\text{value}(v) \land \text{value}(v') \)

- If \(v, v' \) are nonterminal vertices and \(x = x' \)
 - \(f \circ f' = (\neg x \land (f|_{x\leftarrow 0} \circ f'|_{x\leftarrow 0})) \lor (x \land (f|_{x\leftarrow 1} \circ f'|_{x\leftarrow 1})) \)
 - The sub-problems are solved recursively
 - The root of the resulting OBDD will be a new node \(w \) with \(\text{var}(w) = x \), \(\text{low}(w) \) will be the OBDD for \(f|_{x\leftarrow 0} \circ f'|_{x\leftarrow 0} \) and \(\text{high}(w) \) will be the OBDD for \(f|_{x\leftarrow 1} \circ f'|_{x\leftarrow 1} \)
If v is a nonterminal vertex and
- Either v' is a nonterminal vertex and $x < x'$
- Or v' is a terminal vertex

$\Rightarrow f'$ does not depend on x

$\Rightarrow f'|_{x\leftarrow 0} = f'|_{x\leftarrow 1} = f'$

\Rightarrow Shannon expansion simplifies to

$f \cdot f' = (\neg x \land (f|_{x\leftarrow 0} \cdot f')) \lor (x \land (f|_{x\leftarrow 1} \cdot f'))$

- The sub-problems are solved recursively
- The root of the resulting OBDD will be a new node w with $\text{var}(w) = x$, $\text{low}(w)$ will be the OBDD for $f|_{x\leftarrow 0} \cdot f'$ and $\text{high}(w)$ will be the OBDD for $f|_{x\leftarrow 1} \cdot f'$
Logical operations with OBDDs

• To prevent the algorithm from being exponential, use dynamic programming
 ➔ polynomial algorithm

• Each subproblem corresponds to a pair of OBDDs that are subgraphs of OBDDs for f, f'
 ▪ Each subgraph is uniquely determined by its root
 ▪ The number of subgraphs in the OBDD for f is bounded by the size of the OBDD for f (similarly for f')
 ➔ the number of sub-problems is bounded by the product of the size of the OBDDs for f and f'

• Result Cache
 ▪ A hash table used to record previously computed sub-problems
Representing relations using OBDDs

- If \(Q \) is an \(n \)-ary relation over \(\{0,1\} \)
 - \(Q \) can be represented by the OBDD for its characteristic function:
 \[
 f_Q(x_1, \ldots, x_n) = 1 \text{ iff } Q(x_1, \ldots, x_n)
 \]

- Let \(Q \) be an \(n \)-ary relation over a finite domain \(D \)
 - Without loss of generality we assume \(D \) has \(2^m \) elements for some \(m > 0 \)
 - We encode elements of \(D \) using a bijection
 \(\phi: \{0,1\}^m \rightarrow D \)
 - We construct a Boolean relation \(Q_b \) of arity \(m \times n \):
 \[
 Q_b(<x_1>, ..., <x_n>) = Q(\phi(<x_1>), ..., \phi(<x_n>))
 \]
 - \(<x_i>\) is a vector of \(m \) Boolean variables that encodes the variable \(x_i \),
 which takes values in \(D \)
 - \(Q \) can now be represented as the OBDD determined by the characteristic function \(f_{Q_b} \) of \(Q_b \).
Representing Kripke structures using OBDDs

- $M = (S, R, L)$
- Encoding S
 - We assume there are exactly 2^m states
 - $\phi: \{0,1\}^m \rightarrow S$
- Encoding R
 - The OBDD for characteristic function f_{R_b} of $R_b(<x>, <x'>)$
- Encoding L
 - Typically, L is defined as mapping from states to subsets of atomic propositions
 - It is more convenient to consider it as mapping from atomic propositions to subsets of states
 - An atomic proposition p is mapped to the set of states that satisfy it: $L_p = \{s | p \in L(s)\}$
 - L_p is represented using the encoding ϕ
Representing Kripke structures using OBDDs

\[
\begin{align*}
\begin{array}{c}
x \\
s_1: 0 \\
s_2: 1
\end{array}
\end{align*}
\]

\[
R: (\neg x \land x') \lor (x \land x') \lor (x \land \neg x')
\]

\[
L: a \rightarrow \{s_1, s_2\}, b \rightarrow \{s_1\}
\]

\[
\{(0,0), (0,1), (1,0)\}
\]
We have Kripke structure represented as OBDD
 - But we still do not know how to use it for model checking

We need to define more structures allowing us to model-check
Lattice L is a structure consisting of a partially ordered set S of elements where every two elements have a unique supremum (least upper bound or join) and a unique infimum (greatest lower bound or meet).

- The set $P(S)$ of all subsets of S forms a complete lattice.
- Each element $E \in L$ of the lattice can also be thought as a predicate on S.
- The greatest element of L is S (true).
- The least element of L is \emptyset (false).
- $\tau: P(S) \rightarrow P(S)$ is called a predicate transformer.
Example: Subset lattice of \{1, 2, 3, 4\}
Fixpoint representations

- Let $\tau: P(S) \to P(S)$ be a predicate transformer.

- τ is monotonic provided that $Q \subseteq R$ implies $\tau(Q) \subseteq \tau(R)$.

- Q is a fixpoint of τ iff $\tau(Q) = Q$.
Theorem (Knaster-Tarski): A monotonic predicate transformer τ on $P(S)$ always has the least fixpoint, $\mu Z. \tau(Z)$, and the greatest fixpoint, $\nu Z. \tau(Z)$

- $\mu Z. \tau(Z) = \cap \{Z | \tau(Z) \subseteq Z\}$
- $\nu Z. \tau(Z) = \cup \{Z | \tau(Z) \supseteq Z\}$
Fixpoint representations

- We write $\tau^i(Z)$ to denote i applications of τ to Z
 - $\tau^0(Z) = Z, \tau^{i+1}(Z) = \tau(\tau^i(Z))$

- **Lemma:** If τ is monotonic, then for every i:
 - $\tau^i(false) \subseteq \tau^{i+1}(false)$
 - $\tau^i(true) \supseteq \tau^{i+1}(true)$

- **Lemma:** If τ is monotonic and S finite, then:
 - there is an integer i_0 s.t. for every $i \geq i_0: \tau^i(false) = \tau^{i_0}(false)$
 - there is an integer j_0 s.t. for every $j \geq j_0: \tau^j(true) = \tau^{j_0}(true)$

- **Lemma:** If τ is monotonic and S finite, then:
 - $\exists i_0: \mu Z. \tau(Z) = \tau^{i_0}(false)$
 - $\exists j_0: \nu Z. \tau(Z) = \tau^{j_0}(true)$
We are interested only in **finite** Kripke structures → finite S

The least and greatest fixpoints of a monotonic predicate transformer can be computed

- We will see next time
Next time...

We will finally see how this piece of machinery can be used for

Symbolic CTL model checking