Behavior models and verification

Lecture 5

Jan Kofroň, František Plášil
Agenda

- CTL logic
- CTL model checking

- **Computation Tree Logic**
  - A formula can reason about many executions in a computation tree at once
CTL Model checking (explicit)

- Markov chains
- Timed automata
- Labelled transition system
- Kripke structure

Model

 CTL Property specification

Property satisfied

Property violated

Model checker

AG(\text{start} \rightarrow \text{AF heat})
The task of explicit CTL model checking reads

For a Kripke structure $M = (S, I, R, L)$ over $AP$ and a (state based) temporal logic formula $\varphi$ find the set of all states in $S$ that satisfy $\varphi$:

$$X = \{ s \in S : M, s \models \varphi \}$$

"Explicit": Each state of $M$ is explicitly represented in memory in a labeled, directed graph, and checked
KS satisfies the specification $\varphi$ in \( I \) states

KS in the initial states \( I \) satisfies $\varphi$
KS does not satisfy the specification (formula) $\varphi$ in the initial states $I$. 

Jan Kofroň, František Plášil, Lecture 5
Computational Tree Logic

- Considers property of the states along the paths in a computational (sub)tree

- As opposed to LTL which, given a state s, considers property of each path (starting in s) separately
Consider

Kripke str. with initial state $\bigcirc$, property $\varphi$

Assume

• Syntax note: $A$ – All paths $E$ – Exists a path

$\varphi = AG\ EF\ p$

• In all (A) paths starting in $\bigcirc$ and for any (G) state $s$ on them it holds that there exists (E) a path starting with $s$ such that it contains (F) a state where $p$ holds

• true

$\varphi = AG\ EX\ p$

• true

$\varphi = AG\ AX\ p$

• false

$\varphi = AG\ EX\ AGp$

• True
• Consider
  ▪ Kripke str. with initial state, property $\varphi$

• LTL
  ▪ Assume $\varphi = GFp$
    ▪ In all $\infty$ paths starting in $\circ$, $p$ globally holds in the future
      ▪ Not true, since
      ▪ Implies computational tree with the path $\uparrow$
A CTL formula has one of the following forms:

- \(0, 1, p, \neg \varphi, \varphi \& \psi, \varphi \Rightarrow \psi, \varphi \lor \psi\)
  - \(p\) is an atomic formula, \(p \in AP\)
- \(AX \varphi, EX \varphi\)
- \(AG \varphi, EG \varphi\)
- \(AF \varphi, EF \varphi\)
- \(A[\varphi U \psi ], E[\varphi U \psi ]\)
  - where \(\varphi, \psi\) are CTL formulas

A – All paths  E – Exists a path  \((two\ quantifiers)\)
X – neXt  G – Globally  F – Future  U - Until
CTL semantics

- \[ M, s \models \varphi \] stands for “a state \( s \) from the Kripke structure \( M \) satisfies a CTL formula \( \varphi \)”
- \( \models \) is defined by induction on the size of \( \varphi \)

**Definition**

- \[ M, s \models p \iff p \in L(s) \]
- \[ M, s \models \neg \varphi_1 \iff \text{not } M, s \models \varphi_1 \]
- \[ M, s \models \varphi_1 \lor \varphi_2 \iff M, s \models \varphi_1 \text{ or } M, s \models \varphi_2 \]
- \[ M, s \models \varphi_1 \land \varphi_2 \iff M, s \models \varphi_1 \text{ and } M, s \models \varphi_2 \]
Definition (cont.)

\[ M, s \models \text{EX } \varphi_1 \iff \text{there is a state } t \text{ and a transition } s \rightarrow t \text{ in } M \text{ s.t. } M, t \models \varphi_1 \]

\[ M, s \models \text{AX } \varphi_1 \iff \text{for every state } t \text{ in } M \text{ s.t. } s \rightarrow t, \text{ } M, t \models \varphi_1 \text{ holds} \]
Definition (cont.)

- $M, s \models EF \varphi_1 \iff$ there exists a state $t$ and a path from $s$ to $t$ (in $M$) s.t. $M, t \models \varphi_1$

- $M, s \models AF \varphi_1 \iff$ on every infinite path (in $M$) beginning in $s$ there is a state $t$ s.t. $M, t \models \varphi_1$

- $M, s \models EG \varphi_1 \iff$ there exists an infinite path $\pi = \pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \ldots$ (in $M$) s.t. $s = \pi_0$ and for all $i \geq 0 \ \pi_i \models \varphi_1$ holds

- $M, s \models AG \varphi_1 \iff$ for every infinite path $\pi = \pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \ldots$ (in $M$) s.t. $s = \pi_0$, for all $i \geq 0 \ \pi_i \models \varphi_1$ holds
CTL semantics

- **Definition (cont.)**

  - $M, s \models E [\varphi_1 U \varphi_2]$ $\iff$
    there exists an infinite path $\pi = \pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \ldots$ (in $M$) s.t.
    $\pi_0 = s$ and there exists $i \geq 0$ s.t.:
      - $M, \pi_i \models \varphi_2$
      - for all $j$, $0 \leq j < i$, $M, \pi_j \models \varphi_1$ holds

  - $M, s \models A [\varphi_1 U \varphi_2]$ $\iff$
    for all infinite paths $\pi = \pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \ldots$ (in $M$) s.t. $\pi_0 = s$, there exists $i \geq 0$ s.t.:
      - $M, \pi_i \models \varphi_2$
      - for all $j$, $0 \leq j < i$, $M, \pi_j \models \varphi_1$ holds
Kripke structure

Computational tree
AX $\varphi_1$

\[ \bullet = \varphi_1 \text{ holds} \]

EX $\varphi_1$

\[ \bigcirc = \varphi_1 \text{ either holds or not} \]
AG $\varphi_1$

EG $\varphi_1$

AF $\varphi_1$

EF $\varphi_1$

$\bullet = \varphi_1 \text{ holds}$

$\bigcirc = \varphi_1 \text{ undefined}$
\[ E[\varphi_1 \cup \varphi_2] \]

\[ A[\varphi_1 \cup \varphi_2] \]

- \( \bullet = \varphi_1 \text{ holds } (\varphi_2 \text{ undefined}) \)
- \( \circ = \varphi_2 \text{ holds } (\varphi_1 \text{ undefined}) \)
- \( \bigcirc = \varphi_1, \varphi_2 \text{ undefined} \)
\[E[\varphi_1 \cup \varphi_2] = \varphi_1\]
\[A[\varphi_1 \cup \varphi_2] = \varphi_2\]

- \(\bullet\) = \(\varphi_1\) holds (\(\varphi_2\) undefined)
- \(\bigcirc\) = \(\varphi_2\) holds (\(\varphi_1\) undefined)
- \(\bigcirc\) = \(\varphi_1, \varphi_2\) undefined
Think of CTL formulas as approximations to LTL formulas

- $\text{AG EF } p$ is weaker than $\text{G F } p$

$\text{AF AG } p$ is stronger than $\text{F G } p$
Think of CTL formulas as approximations to LTL formulas

- **AG EF p** is **weaker** than **G F p**

- **AF AG p** is **stronger** than **F G p**
Difference between CTL and LTL

* Practicality perspective
  - $\text{AG EF } p$ is weaker than $\text{G F } p$
    
    ![Diagram](Diagram1)
    
    Good for finding bugs... $\text{EF } p$
    
    “exists” by CTL
  - $\text{AF AG } p$ is stronger than $\text{F G } p$
    
    ![Diagram](Diagram2)
    
    Good for verifying... $\text{FG } p$
    
    “invariant” by LTL
  - CTL formulas easier to verify
A property expressible in CTL but not in LTL

- **Fact:** There is no LTL formula \( \varphi \) equivalent to the CTL formula \( \text{AG(EF } p) \)
- Note that \( \text{AG(EF } p) \) is *not* the same as \( \text{G(F } p) \) in LTL
- Suppose that there is such a \( \varphi \) (in LTL). Consider the following K.S.
• AG(EF p) is true in s₀
→ φ is true in s₀ as well
  ▪ i.e. φ is true on all paths that start in s₀
→ therefore φ is true on the path that loops in s₀
→ thus φ is true in s’ of the following Kripke structure

→ thus AG(EF p) would have to be true in s’
→ contradiction!
The LTL formula $FG\ p$ is not equivalent to any CTL formula

In particular, it is not equivalent to the CTL formula $AF\ (AG\ p)$
The LTL formula $FG \ p$ is not equivalent to CTL formula $AF(AG \ p)$

To prove this, we have to find a Kripke structure $M$ and a state $s$ in $M$ s.t.:

- either
  - $M, s \models_{LTL} FG \ p$
  - and not $M, s \models_{CTL} AF (AG \ p)$

- or
  - $M, s \models_{CTL} AF (AG \ p)$
  - and not $M, s \models_{LTL} FG \ p$
**LTL ver. CTL**

\[ M, s \models_{\text{LTL}} \text{FG } p \]

\[ \text{not } M, s \models_{\text{CTL}} \text{AF (AG p)} \]

- orange circle = \( p \) holds
- white circle = \( p \) does not hold

Jan Kofroň, František Plášil   Lecture 5
LTL and CTL logics are incomparable
LTL vers. CTL: Complexity

- Model checking of $M = (S, R, L)$
  - Does $M$ satisfy $\varphi$?
    - $|M| = |S| + |R|$ 
    - $|\Phi| = \text{number of subformulas of } \Phi$

- Time complexity
  - CTL: $O(|M| \cdot |\Phi|)$
  - LTL: $O(|M| \cdot 2^{|\varphi|})$ (PSPACE complete)

- Conclusion
  - Linear complexity in $|M|$
  - LTL exponential in $|\varphi|$
    - However, typically $|\varphi| << |M|$
Back to CTL m.c.: Formula parse tree

\[(\text{EG } E[p \lor q]) \land \text{EX } r\]

\[
\begin{array}{c}
\text{EG } E[p \lor q] \\
\text{EX } r \\
p \\
q \\
r
\end{array}
\]
Explicit CTL model checking algorithm

- For every state $s$ in $S$, the algorithm labels $s$ with all subformulas of $\varphi$ which are true in $s$
  - $\textit{label}(s)$ – the set of labels associated with $s$
  - initially, $\textit{label}(s) = L(s)$
  - then, the algorithm goes through a series of stages
    - during the $i$-th stage, the subformulas with $i-1$ nested operators are processed
    - when a subformula is processed, it is added to the labeling of each state $s$ in which it is true (i.e. $\textit{label}(s)$ is updated)

- Once the algorithm terminates, we will have

$$M, s \models \varphi \iff \varphi \in \textit{label}(s)$$
Explicit CTL model checking algorithm

```
(EG E[p U q]) & EX r
```

```
EG E[p U q]
```
Explicit CTL model checking algorithm

\[(\text{EG } E[p \lor q]) \land \text{EX } r\]
Explicit CTL model checking algorithm

\[(EG \ E[p \ U \ q]) \ & \ EX \ r\]

\[EG \ E[p \ U \ q]\]

\[E[p \ U \ q]\]

\[p \ q \ r\]
Explicit CTL model checking algorithm

\[(EG E[p \land q]) \land EX r\]

\[EG E[p \land q]\]

\[E[p \land q]\]

\[p \quad q\]

\[EX r\]

\[EX r\]

\[EX r\]

\[EX r\]

\[EX r\]
Explicit CTL model checking algorithm

Jan Kofroň, František Plášil, Lecture 5

(EG E[p U q]) & EX r

EG E[p U q]

E[p U q]

EX r

p q r

p

q

r

p E[p U q]

EG E[p U q]

q E[p U q]

EG E[p U q]

r EX r

p E[p U q]

EX r

EG E[p U q]
Explicit CTL model checking algorithm

\[(\text{EG } \text{E}[p \lor q]) \land \text{EX } r\]

\[\text{EG E}[p \lor q] \land \text{EX } r\]

\[\text{E}[p \lor q] \land \text{EX } r\]

\[p \quad q \quad r\]
Explicit CTL model checking algorithm

- Any CTL formula can be expressed in the terms of $\neg$, &, EX, EU, EG

- Handling $\neg \varphi_1$, $\varphi_1 \& \varphi_2$, EX $\varphi_1$ during a stage of the algorithm is trivial
All operators in terms of EX, EG, EU

- $AX \varphi_1 = \neg EX (\neg \varphi_1)$
- $EF \varphi_1 = E[1 U \varphi_1]$
- $AG \varphi_1 = \neg EF (\neg \varphi_1)$
- $AF \varphi_1 = \neg EG (\neg \varphi_1)$
- $A[\varphi_1 U \varphi_2] = \neg EG (\neg \varphi_2) \&$
  
  & $\neg E[\neg \varphi_2 U (\neg \varphi_1 \& \neg \varphi_2)]$
procedure CheckEU(φ₁, φ₂)
T := {s : φ₂ ∈ label(s)};
for all s ∈ T do
    label(s) := label(s) ∪ {E[φ₁ U φ₂]};
end for all
while T != {}
    choose s ∈ T;
    T := T \ {s};
    for all t such that R(t,s) do
        if E[φ₁ U φ₂] ∉ label(t) and φ₁ ∈ label(t) then
            label(t) := label(t) ∪ {E[φ₁ U φ₂]};
            T := T ∪ {t};
        end if
    end for all
end while
end procedure
Handling $E[\varphi_1 U \varphi_2]$ – example: fragment of $M$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\varphi_1 U \varphi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\varphi_1 U \varphi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$
Handling $E[\varphi_1 \cup \varphi_2]$

The diagram illustrates the handling of $E[\varphi_1 \cup \varphi_2]$ with nodes representing $\varphi_1$ and $\varphi_2$.
Handling EG $\varphi_1$

- Based on decomposition of the graph into nontrivial strongly connected components
- A *strongly connected component* (SCC) $C$ is a *maximal* subgraph such that every node in $C$ is reachable from every other node in $C$ along a directed path entirely contained within $C$
- $C$ is *nontrivial* iff either it has more than one node or it contains one node with a self-loop
  - infinite path
Handling EG $\varphi_1$

- $M' = (S', R', L')$
- $S' = \{ s \in S : M, s \models \varphi_1 \}$
- $R' = R \mid_{S' \times S'}$
- $L' = L \mid_{S'}$
Lemma: $M, s \models EG \varphi_1$ iff both the following conditions are satisfied:

- $s \in S'$
- There exists a path in $M'$ that leads from $s$ to some node $t$ in a nontrivial strongly connected component $C$ of the graph $(S', R')$
Handling EG $\varphi_1$

• Construct the restricted Kripke structure $M' = (S', R', L')$

• Partition the graph $(S', R')$ into strongly connected components

• Find those states that belong to a nontrivial component

• Work backward (using converse of $R'$)
  - find all the states that can be reached by a path (converse of $R'$!) in which each state is labeled with $\varphi_1$
Handling EG $\varphi_1$

$M:$

- $\bullet = \varphi_1$ holds
- $\bigcirc = \varphi_1$ does not hold
Handling EG \( \phi_1 \)

Construction of \((S', R')\)
Identification of nontrivial strongly connected components SCC by Tarjan algorithm (not detailed here)
Handling $\text{EG} \, \varphi_1$
procedure CheckEG(φ₁)
    S' = {s : φ₁ ∈ label(s)};
    SCC = {C : C is a nontrivial SCC of S'};
    T := ∪_{C ∈ SCC} {s : s ∈ C};
    for all s ∈ T do
        label(s) := label(s) ∪ {EG φ₁};
    end for all
    while T != {} do
        choose s ∈ T;
        T := T \ {s};
        for all t such that t ∈ S' and R(t, s) do
            if EG φ₁ ∉ label(t) then
                label(t) := label(t) ∪ {EG φ₁};
                T := T ∪ {t};
            end if
        end for all
    end while
end procedure
Explicit CTL model checking algorithm

- CheckEU
  - $O(|S| + |R|)$

- CheckEG
  - $O(|S| + |R|)$
    - Partitioning using Tarjan algorithm: $O(|S'| + |R'|)$

- $\varphi$ has at most $|\varphi|$ different subformulas

- Time complexity: $O(|\varphi| \times (|S| + |R|))$