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RECALL: LATTICE

Lattice L is structure consisting of partially ordered set S of elements where every
two elements have

unique supremum (least upper bound or join) and

unique infimum (greatest lower bound or meet)

Set P(S) of all subsets of S forms complete lattice

Each element E ∈ L can also be thought as predicate on S

Greatest element of L is S (>, true)

Least element of L is ∅ (⊥, false)

τ : P(S) 7→ P(S) is called predicate transformer
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EXAMPLE: SUBSET LATTICE OF {1, 2, 3, 4}

{1,2,3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2} {1,3} {2,3} {1,4} {2,4} {3,4}

{1} {2} {3} {4}

∅
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FIXPOINTS

Let τ : P(S) 7→ P(S) be predicate transformer

τ ismonotonic ≡ Q ⊆ R =⇒ τ(Q) ⊆ τ(R)

Q is fixpoint of τ ≡ τ(Q) = Q
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FIXPOINT COMPUTATION

function LFP(τ : PredicateTransformer): Predicate

Q := false

Q′ := τ(Q)
while Q 6= Q′ do

Q := Q′

Q′ := τ(Q)
end while

return(Q)
end function

Function Gfp differs just in initialization Q := true
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EXAMPLE OF FIXPOINTS

Let τ(Q) = Q ∪ {1}.

What are fixpoints of τ ?

{1,2,3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2} {1,3} {2,3} {1,4} {2,4} {3,4}

{1} {2} {3} {4}

∅
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EXAMPLE OF FIXPOINTS

Let τ(Q) = Q ∪ {1}.

What is the least fixpoint of τ ?

{1,2,3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2} {1,3} {2,3} {1,4} {2,4} {3,4}

{1} {2} {3} {4}

∅
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CTL OPERATORS AS FIXPOINTS

We identify CTL formula f with set/predicate {s|M, s |= f} in P(S)

EG and EU may be characterized as least or greatest fixpoints of an appropriate
predicate transformer:

EG q = νZ.(q ∧ EX Z)
E[pU q] = µZ.

(
q ∨ (p ∧ EX Z)

)
The same holds for EF, AG, AF, AU, however, those operators can be expressed

using EG, EU

Intuitively:

least fixpoints correspond to eventualities

greatest fixpoints correspond to properties that should hold forever
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EG AS FIXPOINT
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EU AS FIXPOINT
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}
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SYMBOLIC CTL MODEL CHECKING

Explicit model checking—e.g., Spin—is linear in size of generated state space

usually exponential in size of input model

resulting in state space explosion

Symbolic model checking operates on sets of states in each step of algorithm

can mitigate state-space-explosion impact substantially
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QUANTIFIED BOOLEAN FORMULAE

QBFs are useful in symbolic CTL model checking

Quantification does not introduce greater expressive power:

∃x f ≡ f|x=⊥ ∨ f|x=>

∀x f ≡ f|x=⊥ ∧ f|x=>
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SYMBOLIC CTL MODEL CHECKING

General approach identical to explicit model checking

decomposing formula into sub-formulae

identifying sets of states satisfying particular sub-formulae

Computing states satisfying particular formula types based on manipulation with

OBDDs
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SYMBOLIC CTL MODEL CHECKING

Computing OBDD(f) for formula f depends on top-most operand

note that only ¬, ∧, ∨, EX, EG, and EU are needed, others can be eliminated

f ∈ AP: return OBDD defined for f

f : ¬g, f ∧ g, or f ∨ g: use logical operation upon OBDD

described in previous lecture

f = EX g: OBDD for ∃〈v′〉
(
o(〈v′〉) ∧ R(〈v〉, 〈v′〉)

)
o(〈v〉) stands for OBDD representing states satisfying formula g

f = E[f U g]: compute least fixpoint E[f U g] = µZ.
(
g ∨ (f ∧ EX Z)

)
using LfP procedure

f = EG f: compute greatest fixpoint EG f = νZ.(f ∧ EX Z)

using GfP procedure
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EXAMPLE
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EXAMPLE

TR:
x1
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⊥
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EXAMPLE

We have OBDD for states satisfying ¬x and now, we can proceed to EG (¬x) and
compute OBDD for it.

We compute greatest fixpoint of predicate transformer: EG (¬x) : νZ.(¬x ∧ EX Z).

computation starts with trivial OBDD for> (Z).
single step: Z = ¬x ∧ (∃x′0, x′1 : Z′ ∧ TR)

Z′ denotes OBDD Zwhere all variables get primed (x → x′)

if Z changes, repeat previous step, otherwise fixpoint reached and computation is

over

EG (¬x) :
x0

> ⊥

> ⊥
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EXAMPLE

We have OBDD for states satisfying EG (¬x) and now, we can trivially compute its

negation ¬EG (¬x) = AF x.

This corresponds to states 00 and 10 of Kripke structure.

¬EG (¬x) = AF x :

x0

⊥ >

> ⊥

a x b

c x d

00 01

10 11
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CONCLUSION

During symbolic CTL model checking, all operation performed just upon OBDDs as

application of logical operations and fixpoint computations.

Usually highly efficient comparing to explicit model checking.
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