Model checking

For a Kripke structure $M = (S, I, R, L)$ over AP and a (state based) temporal logic formula φ find the set of all states in S that satisfy φ:

$$X = \{ s \in S : M, s \models \varphi \}$$
Explicit vs. symbolic model checking

- **Explicit model checking**
 - M is *explicitly* represented in memory as a labeled, directed graph

- **Symbolic model checking**
 - Based on manipulation with **Boolean formulas**
 - The algorithm operates on entire sets of states rather than on individual states
 - Reduction of time and memory consumption
Did you know...?

- Explicit model checking
 - M is explicitly represented in memory directed graph

- Symbolic model checking
 - Based on manipulation with Boolean formulas
 - The algorithm operates on entire sets of states rather than on individual states
 - Reduction of time and memory consumption

George Boole (1815 –1864)

English mathematician, philosopher and logician
Foundations for symbolic CTL model checking:

1. Ordered Binary Decision Diagrams (OBDDs)
2. Lattices, fixpoints

- We will later present a symbolic CTL model checking algorithm, based on manipulation with OBDDs, lattices, and fixpoints
Today

Outline

- Representing Boolean functions using OBDDs
 - Size of the OBDDs depends on the variable ordering
 - Heuristics for good variable ordering
- Logical operations on OBDDs
- Representing Kripke structures using OBDDs
- Lattices, fixpoints
Ordered Binary Decision Diagrams

- Canonical form representation for Boolean formulas
 - Often substantially more compact than traditional normal forms (conjunctive NF, disjunctive NF)
 - Variety of applications
 - symbolic simulation
 - verification of combinational logic
 - verification of finite-state concurrent systems

- We first introduce binary decision trees
 - ... and then generalize binary decision trees to obtain (ordered) binary decision diagrams
• Rooted, directed trees
• Two types of vertices
 ▪ Nonterminal
 • Each nonterminal vertex \(v \)
 ▪ is labeled by a variable \(\text{var}(v) \)
 ▪ has two successors:
 • \(\text{low}(v) \) ... variable \(v \) is assigned 0
 • \(\text{high}(v) \) ... variable \(v \) is assigned 1
 ▪ Terminal
 • Each terminal vertex \(v \) is labeled by \(\text{value}(v) \) which is either 0 or 1
Binary Decision Trees (BDTs)

\[\text{var}(u) = a_1 \]

\[\text{low}(u) = v \]

\[\text{high}(u) = w \]

assignment \(t \): value(\(t \)) = 1
Binary Decision Trees (BDTs)

Q: What function does this represent?

\[\text{var}(u) = a_1 \]

\[\text{low}(u) = v \]

\[\text{high}(u) = w \]
Binary Decision Trees (BDTs)
Every binary decision tree represents a Boolean formula
(Boolean function \(f : \{0,1\}^n \rightarrow \{0,1\} \))

Our example: two-bit comparator

\[
f(a_1, a_2, b_1, b_2) = (a_1 \leftrightarrow b_1) \land (a_2 \leftrightarrow b_2)
\]

To decide whether a particular truth assignment makes the
formula true or false, proceed like this:

- Traverse the tree from the root to a terminal vertex \(t \)
- On the path, in a nonterminal vertex \(v \):
 - If the variable \(\text{var}(v) \) is 0, then the next vertex on the path from the root to the terminal vertex will be \(\text{low}(v) \)
 - If the variable \(\text{var}(v) \) is 1, then the next vertex on the path from the root to the terminal vertex will be \(\text{high}(v) \)
- \(\text{value}(t) \) is the value of the function / formula for this assignment
Binary Decision Trees (BDTs)

- Not very concise representation for Boolean functions
 - Essentially the same size as truth tables
- Usually a lot of redundancy in such trees
 - Two BDTs T_1, T_2 are **isomorphic** iff there exists one-to-one and onto function h s.t.
 - h maps terminals of T_1 to terminals of T_2
 - h maps nonterminals of T_1 to nonterminals of T_2
 - for every terminal vertex v, $\text{value}(v) = \text{value}(h(v))$
 - for every nonterminal vertex v
 - $\text{var}(v) = \text{var}(h(v))$
 - $h(\text{low}(v)) = \text{low}(h(v))$
 - $h(\text{high}(v)) = \text{high}(h(v))$
 - In our example: 8 subtrees with roots labeled by b_2, but only 3 are distinct (i.e., not isomorphic)
 - \Rightarrow merging the isomorphic subtrees, we obtain a more concise representation – a **binary decision diagram**
BDT → BDD
BDT \rightarrow BDD
BDT \rightarrow BDD
BDT \rightarrow BDD
Jan Kofroň, František Plášil, Lecture 6
Binary Decision Diagrams (BDDs)

- Rooted, directed acyclic graphs
- Two types of vertices
 - Nonterminal
 - Each nonterminal vertex v
 - is labeled by a variable $\text{var}(v)$
 - has two successors:
 - $\text{low}(v)$... variable v is assigned 0
 - $\text{high}(v)$... variable v is assigned 1
 - Terminal
 - Each terminal vertex v is labeled by $\text{value}(v)$ which is either 0 or 1
Every vertex \(v \) in a BDD determines a Boolean function \(f_v(x_1, \ldots, x_n) \).

- If \(v \) is a terminal vertex,
 \[f_v(x_1, \ldots, x_n) = \text{value}(v) \]
- If \(v \) is a nonterminal vertex with \(\text{var}(v) = x_i \),
 \[f_v(x_1, \ldots, x_n) = \neg x_i \land f_{\text{low}(v)}(x_1, \ldots, x_n) \lor x_i \land f_{\text{high}(v)}(x_1, \ldots, x_n) \]

A BDD with root \(r \) represents the Boolean function \(f_r(x_1, \ldots, x_n) \).
It is desirable to have a canonical representation for Boolean functions

- Two Boolean functions are logically equivalent if and only if they have isomorphic canonical representations
 - simplifies checking equivalence of two formulas
 - checking satisfiability of a formula

Two BDDs B_1, B_2 are isomorphic iff there exists one-to-one and onto function h s.t.

- h maps terminals of B_1 to terminals of B_2
- h maps nonterminals of B_1 to nonterminals of B_2
- for every terminal vertex v, $\text{value}(v) = \text{value}(h(v))$
- for every nonterminal vertex v
 - $\text{var}(v) = \text{var}(h(v))$
 - $h(\text{low}(v)) = \text{low}(h(v))$
 - $h(\text{high}(v)) = \text{high}(h(v))$
Ordered Binary Decision Diagrams (OBDDs)

• By placing two restrictions on BDDs, we obtain a canonical representation of Boolean functions:

 Ordered Binary Decision Diagrams (OBDDs)

 1. The same order of variables → imposing a total ordering on the variables
 2. No isomorphic subtrees or redundant vertices → applying 3 transformation rules:

 • Remove duplicate terminals
 ▪ Eliminate all but one terminal vertex with a given label and redirect all arcs to the eliminated vertices to the remaining one

 • Remove duplicate nonterminals
 ▪ If two nonterminals \(u \) and \(v \) have \(\text{var}(u) = \text{var}(v) \), \(\text{low}(u) = \text{low}(v) \) and \(\text{high}(u) = \text{high}(v) \), then eliminate \(u \) or \(v \) and redirect all incoming arcs to the other vertex

 • Remove redundant tests
 ▪ If nonterminal \(v \) has \(\text{low}(v) = \text{high}(v) \), then eliminate \(v \) and redirect all incoming arcs to \(\text{low}(v) \)
Remove Duplicate Terminals
Remove Duplicate Terminals
Remove Redundant Tests
Remove Duplicate Nonterminals

Jan Kofroň, František Plášil, Lecture 6
Remove Duplicate Nonterminals
Transformation procedure
- Start with a BDD satisfying the ordering property
- Apply the transformation rules until the size of the diagram can no longer be reduced

This can be done in a bottom-up manner by a procedure called **Reduce** (in time which is linear in the size of the original BDD)

OBDD as a canonical form
- Checking equivalence = checking isomorphism
- Checking satisfiability = checking equivalence to the trivial OBDD (only one terminal labeled by 0)
Ordered Binary Decision Diagrams (OBDDs)

- The size of an OBDD can depend critically on the variable ordering

\[a_1 < b_1 < a_2 < b_2 \]

\[a_1 < a_2 < b_1 < b_2 \]
Ordered Binary Decision Diagrams (OBDDs)

- For n-bit comparator
 - $a_1 < b_1 < \ldots < a_n < b_n$
 - 3n + 2 vertices in the OBDD
 - $a_1 < \ldots < a_n < b_1 < \ldots < b_n$
 - $3 \times 2^n - 1$ vertices in the OBDD

- In general
 - Finding an optimal ordering for variables is infeasible
 - Even checking that a particular ordering is optimal is NP-complete
 - There are many functions that have exponential size OBDDs for any variable ordering

- However: In practice, using OBDDs to encode Boolean functions, sets, Kripke structures, etc. in many cases saves time and memory
Heuristics for good variable ordering

- Combinational circuit
 - Related variables should be “close together” in the ordering
 - Variables in a sub-circuit
 - determining the sub-circuit output
 - Depth-first traversal

- Dynamic reordering
Logical operations with OBDDs

- \(f(x_1, \ldots, x_n) \) – a Boolean function
- **Restriction** of some argument \(x_i \) of \(f \) to a constant value \(b \) (0 or 1)
 - \(f|_{x_i \leftarrow b}(x_1, \ldots, x_n) = f(x_1, \ldots, x_{i-1}, b, x_{i+1}, \ldots, x_n) \)
 - Implementation: depth-first traversal of the OBDD

Reduce

\(\text{b = 0} \)
Logical operations with OBDDs

- Shannon expansion
 \[f = (\neg x \land f|_{x\leftarrow 0}) \lor (x \land f|_{x\leftarrow 1}) \]
 - Application: efficient implementation of logical operations on Boolean functions represented using OBDDs
Logical operations with OBDDs

- Let * be an arbitrary two-argument logical operation
 - imagine **conjunction** (logical AND) for instance
- \(f, f' \) – Boolean functions
- \(v, v' \) – roots of the OBDDs representing \(f, f' \)
 - Both OBDDs respect the same variable ordering
- If \(v \) is a nonterminal vertex, \(x = \text{var}(v) \)
- If \(v' \) is a nonterminal vertex, \(x' = \text{var}(v') \)
Logical operations with OBDDs

- If v, v' are terminal vertices
 - $f \ast f' = \text{value}(v) \ast \text{value}(v')$
 - for instance: $\text{value}(v) \land \text{value}(v')$

- If v, v' are nonterminal vertices and $x = x'$
 - $f \ast f' = (\neg x \land (f|_{x=0} \ast f'|_{x=0})) \lor (x \land (f|_{x=1} \ast f'|_{x=1}))$
 - The sub-problems are solved recursively
 - The root of the resulting OBDD will be a new node w with $\text{var}(w) = x, \text{low}(w)$ will be the OBDD for $f|_{x=0} \ast f'|_{x=0}$ and $\text{high}(w)$ will be the OBDD for $f|_{x=1} \ast f'|_{x=1}$
Logical operations with OBDDs

- If \(v \) is a nonterminal vertex and
 - Either \(v' \) is a nonterminal vertex and \(x < x' \)
 - Or \(v' \) is a terminal vertex

 \(f' \) does not depend on \(x \)
 - \(f'|_{x=0} = f'|_{x=1} = f' \)

 Shannon expansion simplifies to
 - \(f \ast f' = (\neg x \land (f|_{x=0} \ast f')) \lor (x \land (f|_{x=1} \ast f')) \)
 - The sub-problems are solved recursively
 - The root of the resulting OBDD will be a new node \(w \) with
 \(\text{var}(w) = x \), \(\text{low}(w) \) will be the OBDD for \(f|_{x=0} \ast f' \) and \(\text{high}(w) \) will be the OBDD for \(f|_{x=1} \ast f' \)
Logical operations with OBDDs

• To prevent the algorithm from being exponential, use dynamic programming
 ➔ polynomial algorithm

• Each subproblem corresponds to a pair of OBDDs that are subgraphs of OBDDs for f, f'
 ▪ Each subgraph is uniquely determined by its root
 ▪ The number of subgraphs in the OBDD for f is bounded by the size of the OBDD for f (similarly for f')
 ➔ the number of sub-problems is bounded by the product of the size of the OBDDs for f and f'

• Result Cache
 ▪ A hash table used to record previously computed sub-problems
Representing relations using OBDDs

- If Q is an n-ary relation over $\{0,1\}$
 - Q can be represented by the OBDD for its characteristic function:
 \[f_Q(x_1, ..., x_n) = 1 \text{ iff } Q(x_1, ..., x_n) \]

- Let Q be an n-ary relation over a finite domain D
 - Without loss of generality we assume D has 2^m elements for some $m > 0$
 - We encode elements of D using a bijection $\phi: \{0,1\}^m \rightarrow D$
 - We construct a Boolean relation Q_b of arity $m \times n$:
 \[Q_b(<x_1>, ..., <x_n>) = Q(\phi(<x_1>), ..., \phi(<x_n>)) \]
 - $<x_i>$ is a vector of m Boolean variables that encodes the variable x_i, which takes values in D
 - Q can now be represented as the OBDD determined by the characteristic function f_{Q_b} of Q_b
Representing Kripke structures using OBDDs

- \(M = (S, R, L) \)
- Encoding \(S \)
 - We assume there are exactly \(2^m \) states
 - \(\phi: \{0,1\}^m \to S \)
- Encoding \(R \)
 - The OBDD for characteristic function \(f_{R_b} \) of \(R_b(\langle x \rangle, \langle x' \rangle) \)
- Encoding \(L \)
 - Typically, \(L \) is defined as mapping from states to subsets of atomic propositions
 - It is more convenient to consider it as mapping from atomic propositions to subsets of states
 - An atomic proposition \(p \) is mapped to the set of states that satisfy it:
 \(L_p = \{s \mid p \in L(s)\} \)
 - \(L_p \) is represented using the encoding \(\phi \)
Representing Kripke structures using OBDDs

\[\begin{align*}
 a \quad & b \\
 s_1 \quad & s_2
\end{align*} \]

\[R: \ (\neg x \land x') \lor (x \land x') \lor (x \land \neg x') \]

\[L: \ a \rightarrow \{s_1, s_2\}, \ b \rightarrow \{s_1\} \]

\[\{(0,0), (0,1), (1,0)\} \]
A step to CTL symbolic model checking

- We have Kripke structure represented as OBDD
 - But we still do not know how to use it for model checking

- We need to define more structures allowing us to model-check
Lattice

- **Lattice** L is a structure consisting of a partially ordered set S of elements where every two elements have a unique **supremum** (least upper bound or join) and a unique **infimum** (greatest lower bound or meet).
- The set $P(S)$ of all subsets of S forms a **complete lattice**.
- Each element $E \in L$ of the lattice can also be thought as a **predicate** on S.
- The greatest element of L is S (true).
 The least element of L is \emptyset (false).
- $\tau: P(S) \rightarrow P(S)$ is called a **predicate transformer**.
Example: Subset lattice of \{1, 2, 3, 4\}

\[
\begin{align*}
\emptyset & \quad \{1\} & \{2\} & \{3\} & \{4\} & \{1,2\} & \{1,3\} & \{1,4\} & \{2,3\} & \{2,4\} & \{3,4\} & \{1,2,3\} & \{1,2,4\} & \{1,3,4\} & \{2,3,4\} & \{1,2,3,4\}
\end{align*}
\]
Fixpoint representations

- Let $\tau: \mathcal{P}(S) \to \mathcal{P}(S)$ be a predicate transformer.

- τ is **monotonic** provided that $Q \subseteq R$ implies $\tau(Q) \subseteq \tau(R)$.

- Q is a **fixpoint** of τ iff $\tau(Q) = Q$.
Theorem (Knaster-Tarski): A monotonic predicate transformer τ on $P(S)$ always has the least fixpoint, $\mu Z. \tau(Z)$, and the greatest fixpoint, $\nu Z. \tau(Z)$

- $\mu Z. \tau(Z) = \cap \{Z | \tau(Z) \subseteq Z\}$
- $\nu Z. \tau(Z) = \cup \{Z | \tau(Z) \supseteq Z\}$
Fixpoint representations

- We write $\tau^i(Z)$ to denote i applications of τ to Z
 - $\tau^0(Z) = Z, \tau^{i+1}(Z) = \tau(\tau^i(Z))$

- **Lemma**: If τ is monotonic, then for every i:
 - $\tau^i(false) \subseteq \tau^{i+1}(false)$
 - $\tau^i(true) \supseteq \tau^{i+1}(true)$

- **Lemma**: If τ is monotonic and S finite, then:
 - there is an integer i_0 s.t. for every $i \geq i_0$: $\tau^i(false) = \tau^{i_0}(false)$
 - there is an integer j_0 s.t. for every $j \geq j_0$: $\tau^j(true) = \tau^{j_0}(true)$

- **Lemma**: If τ is monotonic and S finite, then:
 - $\exists i_0: \mu Z. \tau(Z) = \tau^{i_0}(false)$
 - $\exists j_0: \nu Z. \tau(Z) = \tau^{j_0}(true)$
Fixpoint representations

- We are interested only in **finite** Kripke structures
 \[\rightarrow \text{finite } S \]

- The least and greatest fixpoints of a monotonic predicate transformer can be computed
 - We will see next time
Next time...

We will finally see how this piece of machinery can be used for

Symbolic CTL model checking