TODAY

- Bounded model checking
- Infinite-state model checking
- Compositional reasoning
Part I: Bounded Model Checking
BOUNDED MODEL CHECKING

System model

- open
- start empty
- close empty
- close
- start close
- start
- heat

Property specification

\[AG (\text{start} \rightarrow \text{AF heat}) \]

Model Checker

- Property satisfied
- Property violated
BOUNDED MODEL CHECKING

System model

AG (start \(\rightarrow\) AF heat)

Property specification

Model Checker

Property satisfied

Property violated
Let $M = \{S, I, R, L\}$ be Kripke structure

Define predicate $\text{Reach}(s, s') \equiv R(s, s')$

$\mathcal{M}^k = \bigwedge_{i=0}^{k-1} \text{Reach}(s_i, s_{i+1})$

\mathcal{M}^k contains states reachable in exactly k steps

Then search for counterexamples formed by k states
Input: $M, \neg \varphi$

1. $k = 0$
2. Is $\neg \varphi$ satisfiable in $[M]^k$?
 - YES: $M \models \neg \varphi$, terminate
3. Is $k < \text{threshold}$?
 - NO: $M \not\models_k \neg \varphi$, terminate
4. Increment k
5. Go to 2.
Realized by constructing formula capturing transitions in program

- trying to reach assertion violation, i.e., violation of formula $\text{AG} \left(p \right)$
- checking for its satisfiability using SAT/SMT solver
 - SAT/SMT solvers – tools for deciding satisfiability of logical formulae
 - satisfying assignment of formulae containing negated property corresponds to counter-example
 - NP-complete problem – the hard part of verification
BMC – Example

1: int i = 4;
2: int s = 0;
3: while (1) {
4: s += i;
5: if (i > 0)
6: i --;
7: assert(s < 10);
8: }
First unwind loops up to bound (k).

```java
1: int i = 4;
2: int s = 0;
3: while (1) {
4:     s += i;
5:     if (i > 0)
6:         i --;
7:     assert(s < 10);
8: }
```
1: \textbf{int} \ i=4; \\
2: \textbf{int} \ s=0; \\
3: \\
4: s+=i; \\
5: \textbf{if} \ (i>0) \\
6: \quad i--; \\
7: \textbf{assert}(s<10); \\
8: s+=i; \\
9: \textbf{if} \ (i>0) \\
10: \quad i--; \\
11: \textbf{assert}(s<10);
Transform each line of code into (CNF) formula.

1: ```int i = 4;```
   ```f_1 : (pc_1 = 1) \land (i_2 = 4) \land (pc_2 = 2)```  

2: ```int s = 0;```  
   ```f_2 : (pc_2 = 2) \land (i_3 = i_2) \land (s_3 = 0) \land (pc_3 = 3)```  

3:
   ```f_3 : (pc_3 = 3) \land (i_4 = i_3) \land (s_4 = s_3) \land (pc_4 = 4)```  

4: ```s += i;```  
   ```f_4 : (pc_4 = 4) \land (i_5 = i_4) \land (s_5 = s_4 + i_4) \land (pc_5 = 5)```  

5: ```if (i > 0)```
   ```f_5 : (pc_5 = 5) \land (i_6 = i_5) \land (s_6 = s_5) \land (pc_6 = 6)```  

6: ```i --;```  
   ```f_6 : (pc_6 = 6) \land (((i_6 > 0) \land (i_7 = i_6 - 1)) \lor ((i_6 \leq 0) \land (i_7 = i_6))) \land (s_7 = s_6) \land (pc_7 = 7)```  

7: ```assert(s < 10);```
   ```f_7 : (pc_7 = 7) \land (s_7 \geq 10) \land (pc_8 = 8)```  

8: ```s += i;```  
   ```f_8 : (pc_8 = 8) \land (i_9 = i_8) \land (s_9 = s_8 + i_8) \land (pc_9 = 9)```  

9: ```if (i > 0)```
   ```f_9 : (pc_9 = 9) \land (i_{10} = i_9) \land (s_{10} = s_9) \land (pc_{10} = 10)```  

10: ```i --;```  
    ```f_{10} : (pc_{10} = 10) \land (((i_{10} > 0) \land (i_{11} = i_{10} - 1)) \lor ((i_{10} \leq 0) \land (i_{11} = i_{10}))) \land (s_{11} = s_{10}) \land (pc_{11} = 11)```  

11: ```assert(s < 10);```
    ```f_{11} : (pc_{11} = 11) \land (s_{11} \geq 10) \land (pc_{12} = 12)```
Transform each line of code into (CNF) formula.

1: `int i = 4;` \[ f_1 : (pc_1 = 1) \land (i_2 = 4) \land (pc_2 = 2) \]
2: `int s = 0;` \[ f_2 : (pc_2 = 2) \land (i_3 = i_2) \land (s_3 = 0) \land (pc_3 = 3) \]
3: \[ f_3 : (pc_3 = 3) \land (i_4 = i_3) \land (s_4 = s_3) \land (pc_4 = 4) \]
4: `s += i;` \[ f_4 : (pc_4 = 4) \land (i_5 = i_4) \land (s_5 = s_4 + i_4) \land (pc_5 = 5) \]
5: `if (i > 0)` \[ f_5 : (pc_5 = 5) \land (i_6 = i_5) \land (s_6 = s_5) \land (pc_6 = 6) \]
6: `i --;` \[ f_6 : (pc_6 = 6) \land (((i_6 > 0) \land (i_7 = i_6 - 1)) \lor \ ((i_6 \leq 0) \land (i_7 = i_6))) \land (s_7 = s_6) \land (pc_7 = 7) \]
7: `assert(s < 10);` \[ f_7 : (pc_7 = 7) \land (s_7 \geq 10) \land (pc_8 = 8) \]
8: `s += i;` \[ f_8 : (pc_8 = 8) \land (i_9 = i_8) \land (s_9 = s_8 + i_8) \land (pc_9 = 9) \]
9: `if (i > 0)` \[ f_9 : (pc_9 = 9) \land (i_{10} = i_9) \land (s_{10} = s_9) \land (pc_{10} = 10) \]
10: `i --;` \[ f_{10} : (pc_{10} = 10) \land (((i_{10} > 0) \land (i_{11} = i_{10} - 1)) \lor \ ((i_{10} \leq 0) \land (i_{11} = i_{10}))) \land (s_{11} = s_{10}) \land (pc_{11} = 11) \]
11: `assert(s < 10);` \[ f_{11} : (pc_{11} = 11) \land (s_{11} \geq 10) \land (pc_{12} = 12) \]
Assertion expressions are negated – we are searching for violations

Formula to be checked for satisfiability: $f = \bigwedge_{i=0..k} f_i$

Found satisfying assignment correspond to violation of original formula

If $f$ is unsatisfiable, there is no violation in $k$ steps
When applied on software, BMC itself cannot prove general absence of assertion violations

- it is useful to discover them
- there are extensions to BMC (unbounded model checking) aiming at proving absence of violations

When applied on pieces of hardware, it can prove their absence

- number of steps (its upper bound) of particular operations is known
Bounds can be useful – finding shortest counter-examples

By including loop invariants (which are difficult to compute, though) into BMC, infinite paths can be verified
Part II: Infinite-State Model Checking
Finite models are sometimes insufficient
- Protocols and circuits specification can be parametrized by size of int type (CPU), number of processors in multicore environment, of communicating network nodes, ...
- Even though model checking of general infinite-state models is impossible, special cases can be model-checked
Infinite family of systems: $\mathcal{F} = \{M_i\}_{i=1}^{\infty}$

Verification task: assume $f$ to be temporal formula, verify: $\forall i : M_i \models f$

Generally, this is still undecidable – we have to add more assumptions later

Indexed CTL (ICTL) – formula for each system component
  - $i$-th formula applied onto $i$-th component
  - allows for special expressions: $\bigwedge_i f(i)$, $\bigvee_i f(i)$, $\bigwedge_{j \neq i} f(j)$, and $\bigvee_{j \neq i} f(j)$
INFINITE FAMILIES – TOKEN RING EXAMPLE

Simple token ring

- atomic propositions:
  - non-critical section, keeping token, critical section, receive token, send token

One process Q originally keeping token (t), several processes $P_i$ originally in state $n$

![Token ring diagram]
Synchronous composition $Q \parallel P$ with natural synchronization of $s$ and $r$
Synchronous composition $Q || P$ with natural synchronization of $s$ and $r$

Generally, token ring family: $\mathcal{F} = \{Q || P_i\}_{i=1}^{\infty}$, desired property: $\bigwedge_{i} AG (c_i \implies \bigwedge_{j \neq i} \neg c_j)$
How to prove the property when there are infinitely many $P$ processes? We have to find generalizing structure – *invariant*:

- Let $\mathcal{F} = \{Q\parallel P_i\}_{i=1}^{\infty}$ be family of structures
- Let $\geq$ be reflexive, transitive relation on structures
- *Invariant* $I$ is structure such that $\forall i : I \geq M_i$
- Relation $\geq$ determine properties that can be checked:
  - $\geq$ is bisimulation $\implies$ strong preservation: $I \models f \iff M \models f$
  - $\geq$ is simulation preorder $\implies$ weak preservation: $I \models f \implies M \models f$
  - Similarly for language-level preorder and equivalence

**Token ring example:** Token rings of size $n$ and 2 are in simulation preorder $\implies$ sufficient to verify just whether $(P\parallel Q) \models f$
Infinite Families – Token Ring Example

- $(t, n) \mapsto (t, n, n)$
- $(c, n) \mapsto (c, n, n)$
- $(n, t) \mapsto (n, t, n)$
- $(n, t) \mapsto (n, n, t)$
- $(n, c) \mapsto (n, c, n)$
- $(n, c) \mapsto (n, n, c)$
**Definition:** Composition $||$ is monotonic w.r.t. relation $\geq$ $\iff$
\[ \forall P_1, P_1', P_2, P_2' : P_1 \geq P_1' \land P_2 \geq P_2' \implies P_1 || P_2 \geq P_1'|| P_2' \]

**Lemma:** Let $\geq$ be a reflexive, transitive relation and let $||$ be a composition operator that is monotonic w.r.t. $\geq$. If $I \geq P$ and $I \geq I||P$, then $\forall i : I \geq P_i$, where $F = \{P_i\}_{i=1}^{\infty}$.

This is more like:

“This holds once we have the relation” than “How to find the relation”

Finding suitable relation is hard and not possible in algorithmic way – problem is undecidable in general.
Part III: Compositional Reasoning
Efficient verification algorithms can extend applicability of formal methods

Many systems can be decomposed into parts
  - verifying properties of each part separately
  - if conjunction of parts properties implies overall specification, we are done
  - the entire system never analysed as whole
EXAMPLE – PRODUCER-CONSUMER MODEL

- Three communication-protocol actors: sender, network, receiver
- Overall specification:
  - Data correctly transmitted from sender to receiver
- Partial specifications:
  - Data correctly sent from sender to network
  - Data correctly transmitted via network
  - Data correctly transmitted from network to receiver
- Verification of partial specifications typically much easier
  - sum of state spaces much smaller than state space of entire system (impact of state space explosion mitigated)
**ASSUME-GUARANTEE PRINCIPLE**

- Verifies each component separately
- Based on specification of
  - **Assumptions** – requirements on behaviour of environment
  - **Guarantees** – provisions offered to environment if assumptions are met
    - environment = the other components
- By combining assumptions and guarantees of particular parts, it is possible to establish correctness of entire system
- Full transition graph never constructed
ASSUME-GUARANTEE FORMALLY

- Formula capturing assume-guarantee principle is triple $\langle g \rangle M \langle f \rangle$ where $g, f$ are temporal formulae and $M$ is program
  - whenever $M$ is part of system satisfying $g$, system also guarantees $f$
- Composition of proofs: $(\langle g \rangle M' \langle f \rangle) \land (\langle true \rangle M \langle g \rangle) \implies \langle true \rangle M | | M' \langle f \rangle$
- Can be expressed as inference rule:
  \[
  \begin{array}{c}
  \langle true \rangle M \langle g \rangle \\
  \langle g \rangle M' \langle f \rangle \\
  \hline
  \langle true \rangle M | | M' \langle f \rangle
  \end{array}
  \]
Necessary to avoid circular dependencies making reasoning **unsound:**

\[
\begin{align*}
\langle f \rangle M \langle g \rangle \\
\langle g \rangle M' \langle f \rangle
\end{align*}
\]

\[
M || M' \models f \land g
\]

**Again: This is not incorrect!**
ASSUME-GUARANTEE – APPLICATION TO SOFTWARE COMPONENTS

- Each component specifies not only provided (implemented) interfaces
  - similarly as objects do
- But also required ones
  - in addition to objects
- Syntactic (type) information may or may not consider interface/type inheritance
- Semantic (behaviour) specification – usage protocols, restrictions beyond language capabilities, ...
  - can cover various aspects of component functional and extra-functional properties: allowed sequences of messages/calls, timing, reliability, resource usage, security, ...
  - composability verification based on the same principle as syntax: each component should provide at least as much (as good, fast, reliable, ...) as its environment requires
ASSUME-GUARANTEE – APPLICATION TO CODE

- Syntax – usually checked by compiler and no additional effort required
- Semantics – code annotations (code contracts):
  - at level of functions/methods
  - assumptions – preconditions
  - guarantees – postconditions
  - usually also invariants – loop invariants
- Verification is modular:
  - each function is verified separately – whether execution of each function really guarantees its postcondition if precondition is satisfied upon function entry
  - if function is called from within another function, its contract is used
    - precondition checked
    - postcondition is assumed

Jan Kofroň: Behaviour Models and Verification 33
ASSUME-GUARANTEE – REMARKS

• It is not easy to specify contracts:
  • too weak preconditions make it difficult to guarantee postconditions
  • too strong preconditions are hard to be satisfied by callers
  • too strong postconditions are hard to be proven
  • too weak postconditions usually do not “satisfy” callers

• One has to know and tune...

• There are approaches for real programming languages
  • Spec#, JML, Code Contracts, Nagini, ...
  • backed by verification tools – model checkers, SAT/SMT solvers, theorem provers