NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

8. BOUNDED, INFINITE-STATE MC, COMPOSITIONAL REASONING

Jan Kofron

FACULTY Department of

OF MATHEMATICS Distributed and

=% AND PHYSICS Dependable
2" Charles University

TODAY

@ Bounded model checking
@ Infinite-state model checking
@ Compositional reasoning

Jan Kofrori: Behaviour Models and Verification

Part I: Bounded Model Checking

Jan Kofrori: Behaviour Models and Verification 3

BOUNDED MODEL CHECKING

System model ﬁ

AG (start — AF heat)

Property specification

Jan Kofrori: Behaviour Models and Verification

Model Checker

Property satisfied

Property violated

BOUNDED MODEL CHECKING

Property satisfied

ﬂ

/B

System model ﬁ

Model Checker Property violated

AG (start — AF heat)

Property specification

Jan Kofrori: Behaviour Models and Verification

BOUNDED MODEL CHECKING

@ LetM = {S,I,R,L} be Kripke structure
Define predicate Reach(s,s’) = R(s, s')

©

k—1
[M]¥ = A Reach(s;, si i)

1=0

@ [M]* contains states reachable in exactly k steps

©

@ Then search for counterexamples formed by k states

Jan Kofrori: Behaviour Models and Verification 6

BOUNDED MODEL CHECKING — PROCEDURE

Input: M, —p
1. k=0
2. Is - satisfiable in [M]*?
@ YES:M E —p, terminate
3. Isk < threshold?
@ NO:M W, —¢, terminate
. Increment k

N

5. Goto2.

Jan Kofrori: Behaviour Models and Verification 7

BOUNDED MODEL CHECKING FOR PROGRAMS

Realized by constructing formula capturing transitions in program

@ trying to reach assertion violation, i.e., violation of formula AG (p)
@ checking for its satisfiability using SAT/SMT solver

@ SAT/SMT solvers - tools for deciding satisfiability of logical formulae

@ satisfying assignment of formulae containing negated property corresponds to
counter-example

@ NP-complete problem - the hard part of verification

Jan Kofrori: Behaviour Models and Verification 8

BMC - EXAMPLE

1: int i=4;

2: int s=o0;

3: while (1) {

4: S+=1i;

5: if (i>o0)

6: i--;

7: assert(s<10);
8: }

Jan Kofrori: Behaviour Models and Verification 9

BMC - EXAMPLE

First unwind loops up to bound (k).

int i=4;
int s=o0;
while (1) {
S+=1i;
if (i>o0)

)

assert(s<10);

coON OV bW N =

}

Jan Kofrori: Behaviour Models and Verification

- =

- 0 VW oN OVI W N =

int i=4;
int s=o0;
S+=1i;

if (i>o0)

l__

)
assert(s<10);
S+=1i;

if (i>o0)

| — -

)

assert(s<10);

BMC - EXAMPLE

1: int i=4;

2: int s=o0;

3:

4: S+=1,

5: if (i>o0)

6: i--;

7: assert(s<10);
8: s+=i;

9: if (i>o0)

10: i—-

)
11: assert(s<10);

Jan Kofrori: Behaviour Models and Verification

BMC - EXAMPLE

Transform each line of code into (CNF) formula.

1: int i=4; fio (pcr = 1) A (i = 4) A (pc, = 2)
2: int s=o0; fi(pe; =2) A (i3 = i) A(s3 = 0) A (pcs = 3)
3: fs 1 (pes = 3) A (iy = i3) A (s4. = 53) A (PCy = 4)
4: s+=1i; fa : (pcg = 4) A (is = ig) A (S5 = 54 + i) A (pcs = 5)
5: if (i>0) fs 1 (pcs = 5) A (ie = is) A (S¢ = S5) A (pce = 6)
6 i--; fo : (pce = 6) A (((is > 0) A (i; =isg — 1))V
((ie < 0) A(i; =1is))) A (s; =56) A (pc; = 7)
7: assert(s<10); f 1 (pc; = 7) A (s; = 10) A (pcs = 8)
8: s+=1i; fs : (pcs = 8) A (ig = ig) A (sg = s +1i3) A (PCy = 9)
9: if (i>o0) fo 1 (Pcg = 9) A (iro = ig) A (S10 = S9) A (PCro = 10)
10 i--; fio : (PCio = 10) A (((i10 > 0) A (in = 10 — 1))V
((i1o§0 /\(i11:i1o)))/\(511:510)/\(pc11:11)
11: assert(s<10); fu : (pcw = 11) A (s > 10) A (pcy, = 12)

Jan Kofrori: Behaviour Models and Verification

BMC - EXAMPLE

Transform each line of code into (CNF) formula.

1: int i=4;

2: int s=o0;

3:

4: S+=1,

5: if (i>o0)

6 i--;

7: assert(s<10);
8: s+=i;

9: if (i>o0)
10 i--

)

11: assert(s<10);

Jan Kofrori: Behaviour Models and Verification

fi:
f:
f3:
fq:
fs
fo

f7:
fs :
fo:
fro

(pci = 1) A (i, = 4) A (pc, = 2)

(pc: =2) A (i3 =10) A (s3 = 0) A (pc; = 3)

(pcs = 3) A iy = i3) A (54 = 53) A (Pey = 4)

(pcy = 4) A(is = is) A (ss = s4 +1i4) A (PCs = 5)

(pcs =5) A (i = is) A (ss = s5) A (pcs = 6)

(pce = 6) A (((Is > 0) A (i, =i — 1))V

((ie < 0) A(i; =1is))) A (s; =56) A (pc; = 7)

(pc; =7) A (s, > 10) A (pcs = 8)

(pcs = 8) A (ig = i) A (Sg = S5 +ig) A (pcqg = 9)

(pcg = 9) A (io = ig) A (S10 = Sg) /A (PC1o = 10)
pcio = 10) A (((i0 > 0) A (iyy = o — 1))V

(
((iho < 0) A (i = i10))) A (511 = S10) A (PCir = 11)
=1) A (s > 10) A (pc, = 12)

BMC - EXAMPLE

@ Assertion expressions are negated — we are searching for violations
@ Formula to be checked for satisfiability: f = A fi

i=o0..k
@ Found satisfying assignment correspond to violation of original formula

@ If f is unsatisfiable, there is no violation in k steps

Jan Kofrori: Behaviour Models and Verification

BMC APPLICATIONS

@ When applied on software, BMC itself cannot prove general absence of assertion
violations

@ itis useful to discover them
@ there are extensions to BMC (unbounded model checking) aiming at proving
absence of violations

@ When applied on pieces of hardware, it can prove their absence
@ number of steps (its upper bound) of particular operations is known

Jan Kofrori: Behaviour Models and Verification

BMC - REMARKS

@ Bounds can be useful - finding shortest counter-examples

@ By including loop invariants (which are difficult to compute, though) into BMC,
infinite paths can be verified

Jan Kofrori: Behaviour Models and Verification

Part II: Infinite-State Model Checking

Jan Kofrori: Behaviour Models and Verification

MOTIVATION

@ Finite models are sometimes insufficient

@ Protocols and circuits specification can be parametrized by size of int type (CPU),
number of processors in multicore environment, of communicating network nodes,

@ Even though model checking of general infinite-state models is impossible, special
cases can be model-checked

Jan Kofrori: Behaviour Models and Verification

INFINITE FAMILIES

@ Infinite family of systems: F = {M;},
@ Verification task: assume f to be temporal formula, verify: Vi : M; = f
@ Generally, this is still undecidable — we have to add more assumptions later

@ Indexed CTL (ICTL) - formula for each system component

@ i-th formula applied onto i-th component
@ allows for special expressions: Aif (i), Vif(i), A f(j), and \/ 1(j)
J#i j#

Jan Kofrori: Behaviour Models and Verification

INFINITE FAMILIES — TOKEN RING EXAMPLE

Simple token ring

@ atomic propositions:
non-critical section, keeping token, critical section, receive token, send token

One process Q originally keeping token (t), several processes P; originally in state n

Jan Kofrori: Behaviour Models and Verification

INFINITE FAMILIES — TOKEN RING EXAMPLE

Synchronous composition Q||P with natural synchronization of s and r

Jan Kofrori: Behaviour Models and Verification

INFINITE FAMILIES — TOKEN RING EXAMPLE

Synchronous composition Q||P with natural synchronization of s and r

Generally, token ring family: 7 = {Q||P;}°,, desired property: A AG (¢; =
i

Jan Kofrori: Behaviour Models and Verification

N —¢p)

j#i

INFINITE FAMILIES

How to prove the property when there are infinitely many P processes?
We have to find generalizing structure — invariant:

@ Let F = {Q||Pi}2, be family of structures
@ Let > be reflexive, transitive relation on structures
@ Invariant I is structure such that Vi : | > M;

@ Relation > determine properties that can be checked:

@ > s bisimulation = strong preservation:| |=f < M |= f
@ >issimulation preorder = weak preservation: | = f =— M [Ef
@ Similarly for language-level preorder and equivalence

Token ring example: Token rings of size n and 2 are in simulation preorder —-
sufficient to verify just whether (P||Q) = f

Jan Kofrori: Behaviour Models and Verification

INFINITE FAMILIES — TOKEN RING EXAMPLE

(t,n) — (t,n,n)
(¢,n) — (c,n,n)
(n,t) — (n,t,n)
(n,t) = (n,n,t)
(n,c) = (n,c,n)
(n,c) — (n,n,c)

Jan Kofrori: Behaviour Models and Verification

SYSTEMATIC APPROACH TO FINDING INVARIANTS

Definition: Composition || is monotonic w.r.t. relation > <
VP17P47P27P/2:P1ZP{[/\PZZP/2 - P1HP22P4HP/2

Lemma: Let > be a reflexive, transitive relation and let || be a composition operator
that is monotonic w.r.t. > If | > Pand | > I||P, then Vi : | > P!, where F = {P'}*,.

This is more like:

“This holds once we have the relation’” than “How to find the relation”

Finding suitable relation is hard and not possible in algorithmic way — problem is
undecidable in general.

Jan Kofrori: Behaviour Models and Verification

Part Ill: Compositional Reasoning

Jan Kofrori: Behaviour Models and Verification

MOTIVATION

@ Efficient verification algorithms can extend applicability of formal methods
@ Many systems can be decomposed into parts

@ verifying properties of each part separately
@ if conjunction of parts properties implies overall specification, we are done
@ the entire system never analysed as whole

Jan Kofrori: Behaviour Models and Verification

EXAMPLE — PRODUCER-CONSUMER MODEL

@ Three communication-protocol actors: sender, network, receiver
@ Overall specification:

@ Data correctly transmitted from sender to receiver
@ Partial specifications:

@ Data correctly sent from sender to network
@ Data correctly transmitted via network
@ Data correctly transmitted from network to receiver

@ Verification of partial specifications typically much easier

@ sum of state spaces much smaller than state space of entire system (impact of state
space explosion mitigated)

Jan Kofrori: Behaviour Models and Verification

ASSUME-GUARANTEE PRINCIPLE

@ Verifies each component separately
@ Based on specification of

@ Assumptions - requirements on behaviour of environment
@ Guarantees - provisions offered to environment if assumptions are met
@ environment = the other components

@ By combining assumptions and guarantees of particular parts, it is possible to
establish correctness of entire system

@ Full transition graph never constructed

Jan Kofrori: Behaviour Models and Verification

ASSUME-GUARANTEE FORMALLY

@ Formula capturing assume-guarantee principle is triple (g)M(f) where g, f are
temporal formulae and M is program

@ whenever M is part of system satisfying g, system also guarantees f
@ Composition of proofs: ((g)M'(f)) A ((true)yM(g)) = (true)M||M’(f)
@ Can be expressed as inference rule:

(true)M(g)
(&M'(f)

(true)M[|M'(f)

Jan Kofrori: Behaviour Models and Verification

ASSUME-GUARANTEE FORMALLY

Necessary to avoid circular dependencies making reasoning unsound:

(f)M(g)
&M (f)

MM =fAg

Again: This is not incorrect!

Jan Kofrori: Behaviour Models and Verification

ASSUME-GUARANTEE — APPLICATION TO SOFTWARE COMPONENTS

@ Each component specifies not only provided (implemented) interfaces
@ similarly as objects do
@ Butalso required ones
@ inaddition to objects
@ Syntactic (type) information may or may not consider interface/type inheritance
@ Semantic (behaviour) specification — usage protocols, restrictions beyond
language capabilities, ...
@ can cover various aspects of component functional and extra-functional properties:
allowed sequences of messages/calls, timing, reliability, resource usage, security, ...
@ composability verification based on the same principle as syntax: each component
should provide at least as much (as good, fast, reliable, ...) as its environment
requires

Jan Kofrori: Behaviour Models and Verification

W

ASSUME-GUARANTEE — APPLICATION TO CODE

@ Syntax - usually checked by compiler and no additional effort required
@ Semantics — code annotations (code contracts):

at level of functions/methods

assumptions - preconditions

guarantees — postconditions

@ usually also invariants — loop invariants

@ Verification is modular:

@ each function is verified separately — whether execution of each function really
guarantees its postcondition if precondition is satisfied upon function entry
@ if function is called from within another function, its contract is used
@ precondition checked
@ postcondition is assumed

© 6 ¢

Jan Kofrori: Behaviour Models and Verification

ASSUME-GUARANTEE — REMARKS

@ Itis not easy to specify contracts:

@ too weak preconditions make it difficult to guarantee postconditions
@ too strong preconditions are hard to be satisfied by callers

@ too strong postconditions are hard to be proven

@ too weak postconditions usually do not “satisfy” callers

@ One has to know and tune...

@ There are approaches for real programming languages
@ Spec#, JML, Code Contracts, Nagini, Dafny...

@ backed by verification tools - model checkers, SAT/SMT solvers, theorem provers

Jan Kofrori: Behaviour Models and Verification

	Bounded model checking
	Infinite state model checking
	Compositional reasoning

