CTL, LTL model checking is fine
→ sometimes however time is important
To model behavior of real-time systems over time, in 1994, Alur et al proposed

Timed Automata
Timed Automata

- Markov chains
- Timed automata
- Labelled transition system
- Kripke structure

Model

- Open
- Close
- Heat
- Start empty
- Start close
- Start heat
- Close empty

Property specification

\[AG(\text{start} \rightarrow AF \text{heat}) \]

Model checker

- Property satisfied
- Property violated
- Error report
Timed Automata

Properties specification:

\[\text{AG}(\text{start} \rightarrow \text{AF heat}) \]

Model:

- open
- empty
- close
- heat
- start

Model checker:

Property satisfied

Property violated

Error report
Recall: Büchi automaton and ω-regular languages

Finite automaton accepting infinite words

A word is accepted if

- An accepting state is visited infinitely many times (standard case)
- A state from each accepting set is visited infinitely many times (generalized case)

Büchi automaton accepting $(a+b)^*a^\omega$
Timed sequence $t = t_1 t_2 t_3 \ldots$ is an infinite sequence of time values $t_i \in \mathbb{R}, t_i > 0$ satisfying:

1. Monotonicity, i.e., $\forall i \geq 1$: $t_i < t_{i+1}$
2. Progress, i.e., $\forall t \in \mathbb{R}, \exists i \geq 1$: $t_i > t$

Timed word is a tuple (s, t), where

- s is an infinite sequence of symbols
- t is a timed sequence (above)
Timed automaton – example

In addition to Büchi, finite set of real variables representing clocks (below: x)

- Initially set to 0, all incrementing at the same speed
- Can be reset to 0 at any transition
- Transition only allowed if the condition upon clocks holds
- Accepts timed words

Example of Timed automaton
Clock constraints

For a set X of clocks, the set $\Phi(X)$ of clock constraints δ is defined:

$$\delta := x \leq c \mid c \leq x \mid \neg \delta \mid \delta_1 \land \delta_2$$

where x is a clock in X and c is a constant in \mathbb{Q}
A (nondeterministic) timed automaton A is a tuple $(\Sigma, S, S_0, C, E, F)$, where

- Σ is a finite alphabet,
- S is a finite set of states,
- $S_0 \subseteq S$ is set of initial states,
- C is a finite set of clocks,
- $E \subseteq S \times S \times \Sigma \times 2^C \times \Phi(C)$ is transition relation, where 2^C specifies the clocks to be reset, and $\Phi(C)$ is clock constraint over C,
- $F \subseteq S$ is the set of accepting states.
Timed automaton – another example

The automaton below accepts the language L:

$$\left\{ ((abcd)^\omega, t) \mid \forall j. \left((t_{4j+3} < t_{4j+1} + 1) \land (t_{4j+4} > t_{4j+2} + 2) \right) \right\}$$

![Timed automaton diagram](image-url)
Question: Is the class of timed regular languages closed under:

- Finite union?
Question: Is the class of timed regular languages closed under:
- Finite union?

Answer: Yes
Properties of TA

Question: Is the class of timed regular languages closed under:
- Finite union?

Answer: Yes

Proof: Since the TA are nondeterministic, union is represented by disjoint union of particular automata. (Similar to Büchi automata)
Properties of TA

Question: Is the class of timed regular languages closed under:
- Intersection?
Properties of TA

Question: Is the class of timed regular languages closed under:

- Intersection?

Answer: Yes
Question: Is the class of timed regular languages closed under:
- Intersection?

Answer: Yes

Proof: Simple modification of intersection of Büchi automata
Recall: definition for Büchi automata

Let $A_1 = (\Sigma, S_1, S_{01}, \Delta_1, F_1)$ and $A_2 = (\Sigma, S_2, S_{02}, \Delta_2, F_2)$ be Büchi automata.

We define the product Büchi automaton to be $(\Sigma, S, S_0, \Delta, F)$, where:

- $S = S_1 \times S_2 \times \{1,2\}$
- $S_0 = S_{01} \times S_{02} \times \{1\}$
- $F = F_1 \times S_2 \times \{1\}$
- Δ as follows
Recall: definition for Büchi automata

\[\Delta:\]
- for all \(s, s' \in S_1, t, t' \in S_2, a \in \Sigma, \ i, j \in \{1, 2\}:
 \(((s, t, i), a, (s', t', j)) \in \Delta \text{ iff } (s, a, s') \in \Delta_1, (t, a, t') \in \Delta_2, \)
 and:
 a) \(i = 1, s \in F_1, \text{ and } j = 2, \text{ or} \)
 b) \(i = 2, t \in F_2, \text{ and } j = 1, \text{ or} \)
 c) neither a) or b) above applies and \(j = i\)
Recall: Intersection for Büchi automata

A_1, A_2 are Büchi automata
Recall: Intersection for Büchi automata

\[A = A_1 \cap A_2 \]
Intersection of Timed automata

Let A_1, A_2 are two timed automata with disjoint set of clocks

Denote $A = A_1 \cap A_2$

Denote C_i the set of clocks

Transitions are $(s_1, s_2, i), (s_1', s_2', j), a, \lambda, \varphi)$

- $(s_1, s_2, i), (s_1', s_2', j), a$ as in the case of intersection of Büchi automata
- $\lambda = \lambda_1 \cup \lambda_2$ is the set of clock to be reset
- $\varphi = \varphi_1 \land \varphi_2$ is the transition constraint
Complement of Timed automaton

Timed automata are **NOT** closed under complement

Even worse – inclusion of timed languages

$L(A) \subseteq L(B)$ is **undecidable** problem
Important property

- Recall LTL model checking algorithm

Idea: Construct Büchi B automaton such that B accepts the same language (up to timing) as the timed automaton under consideration
For a state s of timed automaton, by (s, n) denote an extended state

- s is a state
- n is a clock interpretation (i.e., valuation of clock variables)

If $t \in \mathbb{R}$, $t = \lfloor t \rfloor + \text{frac}(t)$
Let $A = (\Sigma, S, S_0, C, E, F)$ be a timed automaton

For $x \in C$, by c_x denote the largest c such that $x \leq c$ or $c \leq x$ is a subformula of some clock constraints in F

The equivalence relation \sim over clock interpretation -- $n \sim n'$ iff all of the following holds:

1. For all $x \in C$, either $\lfloor n(x) \rfloor = \lfloor n'(x) \rfloor$ or $\lfloor n(x) \rfloor > c_x \land \lfloor n'(x) \rfloor > c_x$

2. For all $x, y \in C$ with $n(x) \leq c_x$ and $n(y) \leq c_y$:
 \[\text{frac}(n(x)) \leq \text{frac}(n(y)) \iff \text{frac}(n'(x)) \leq \text{frac}(n'(y)) \]

3. For all $x \in C$ with $n(x) \leq c_x$:
 \[\text{frac}(n(x)) = 0 \iff \text{frac}(n'(x)) = 0 \]

Clock region for A is the equivalence class induced by \sim
Clock regions – example
6 corner regions: (0,0), (0,1), (1,0), …
Clock regions – example

6 corner regions: (0,0), (0,1), (1,0), …
14 open line segments: 0<x=y<1, 0<x<1 & y=0, 2<x & y=0,…

![Diagram with x and y axes showing clock regions](image-url)
6 corner regions: (0,0), (0,1), (1,0), …
14 open line segments: 0<x=y<1, 0<x<1 & y=0, 2<x & y=0,…
8 open regions: 0<x<y<1, 2<x & 1<y, …
Clock regions III.

Each region can be characterized by specifying:

1. for each clock x one clock constraint from set:
 \[
 \{ x = c | c = 0,1, \ldots, c_x \} \cup \{ c - 1 < x < c | c = 1,2 \ldots, c_x \} \cup \{ x > c_x \}
 \]

2. for each pair of clock x and y such that $c - 1 < x < c$ and $d - 1 < y < d$ appear in 1. for some c, d whether $\frac{x}{x}$ is less than, greater than, or equal to $\frac{y}{y}$

Note that number of regions is finite
A clock region b is a successor of a clock region a iff for each $n \in a$ there exists a positive $t \in \mathbb{R}$ such that $n + t \in b$.
How to construct the successors of region a?

- If for each clock x satisfies $x > x_c$, then the only successor of a is this region itself.
- Denote C_0 set of clocks such that $x = c$, for a clock $x \in C_0$ in the clock set, successors of a are defined as set b as follows:
 - If $x = c_x$, then b satisfies $x > c_x$, otherwise b satisfies $c < x < c + 1$.
 - For $x \notin C_0$ the constraint in b is the same as in a.

- If neither of the above applies, then...
Let C_0 be a set of clocks x such that region a does not satisfy $x > c_x$ and for all $y \in C_0$:
\[
\text{frac}(y) \leq \text{frac}(x)
\]

Let b be the clock region:
- For $x \in C_0$ if a satisfies $c - 1 < x < c$ then b satisfies $x = c$, for $x \notin C_0$ the constraint in b is the same as in a
- For clocks x, y such that $c - 1 < x < c$ and $d - 1 < y < d$ appearing above, the ordering in b between fractional parts is the same as in a

Successors of a include a, b and all successors of b
Informally:

- Successors of a region are all regions that can be directly reached by moving diagonally up, i.e., increasing the time of all clocks.
- The successor relation is transitive.
Region successors – example
For a timed automaton $A = (\Sigma, S, S_0, C, E, F)$, corresponding region automaton $R(A)$ is defined:

- States of $R(A)$ are of the form (s, a) where $s \in S$ and a is a clock region.
- Initial states are of the form $(s_0, [n_0])$ where $s_0 \in S_0$ and $n_0(x) = 0$ for all $x \in C$.
- $R(A)$ has edge $((s, a), (s', a'), m)$ iff there is edge $(s, s', m, \lambda, \varphi) \in E$ and region a'' such that:
 - a'' is successor of a.
 - a'' satisfies φ.
 - $a' = [\lambda \to 0]a''$.
Region automaton – example
Lemma: If r is a progressive run of $R(A)$ over s, then there exists a time sequence t and a run r' of A over (s, t) such that r equals $[r']$.

- Progressive means that for all clocks there is no bound
- We can consider just progressive runs
 - Proof skipped ☺
Checking for emptiness III.

Theorem: Given Timed automaton $A = (\Sigma, S, S_0, \Delta, F)$, there exists Büchi automaton which accepts $Untime(L(A))$.

Idea:

1. Construct region automaton $R(A)$
2. Set of accepting states $F' = \{(s, a) | s \in F\}$
3. Omit time
Network of TA

For modeling communicating parts of system in independent way

Each part represented by a single TA

- Communicates with other parts through input/output actions

Composition resulting in parallel synchronous product
Network of TA

![Diagram of a network of states]

- **off**
 - press?
 - $y := 0$
 - $y >= 5$
 - press?

- **low**
 - $y < 5$
 - press?

- **bright**
 - press?

- **idle**
 - press!

- **lamp**

- **user**
• A tool for verification of TA models
• Academic, but quite well established and used in industry nowadays
• Allows modeling, verification, simulation
• Successfully applied on communication protocols, multimedia applications, ...
• Available at http://www.uppaal.org/ and http://www.uppaal.com