Today

- Abstractions
- Symmetries and Partial order reduction
Part I: Abstractions
System model

AG (start → AF heat)

Property specification

Model Checker

Property satisfied

Property violated
System Model

- **open**
- **start empty**
- **close**
- **empty**
- **start close**
- **heat**
- **start heat**

Model Checker

- Property specification: $AG (\text{start} \rightarrow \text{AF heat})$

- **Property satisfied**
- **Property violated**
Ways to reduce (simplify) state space – optimizations – realized as elimination of some details of model

Particular abstractions:

- *Cone of influence reduction*
- *Data abstraction*
CONE OF INFLUENCE REDUCTION (CoIR)

- Focus just on variables related to specification, i.e., those in formula to be model checked
- Variables not influencing values of variables in specification can be removed – they cannot affect whether the spec is valid or not
Let S be synchronous circuit described by set of equations $v_i = f_i(V)$

- $v_i \in V$
- f_i are Boolean functions

Let specification contain set of variables $V' \subseteq V$

- Some $x \in V'$ can depend on $y \notin V'$
- We define set $C \supseteq V'$ of interest – C as cone
The cone of influence C of V' is the minimal set of variables such that:

- $V' \subseteq C$, and
- $\forall k, j : (v_k \in C) \land (f_k \text{ depends on } v_j) \implies v_j \in C$

New (reduced) system is constructed from original by removing all equations whose left-hand-side variables do not appear in C
Theorem: Let f be CTL formula and M Kripke structure. Let M' be Kripke structure after CoIR of M with respect to f. Then $M \models f \iff M' \models f$.

Proof idea: Removing variables not in C and adding transitions existing in original states with identical values.
Specification comprising three variables:

- $v'_1 = \neg v_1$
- $v'_2 = v_1 \oplus v_2$
- $v'_3 = (v_1 \land v_2) \oplus v_3$

Corresponding Kripke structure $M = (S, I, R, L)$ over variables $V = \{v_1, ..., v_n\}$:

- $S = \{0, 1\}^n$
- $I \subseteq S$
- $R = \bigwedge_{i=1}^{n} [v'_i = f_i(V)]$
- $L(s) = \{v_i | s(v_i) = 1, 1 \leq i \leq n\}$
ORIGINAL STATE SPACE

0, 0, 0 → 0, 0, 1 → 0, 1, 0 → 0, 1, 1

1, 1, 1 → 1, 1, 0 → 1, 0, 1 → 1, 0, 0
Let $C = \{v_1, \ldots v_k\}$ for some k be Col. Reduced model is $M' = (S', I', R', L')$:

- $S' = \{0, 1\}^k$
- $I' = \{(d'_1, \ldots d'_k) | \exists (d_1, \ldots, d_n) \in I : d'_i = d_i, 1 \leq i \leq k\}$
- $R' = \bigwedge_{i=1}^{k} [v'_i = f_i(V)]$
- $L'(s') = \{v_i | s'(v_i) = 1, 1 \leq i \leq k\}$
REDUCED STATE SPACE

\[V' = \{ v_1 \} \rightarrow C = \{ v_1 \} \]
Reduced State Space

\[V' = \{ v_1 \} \rightarrow C = \{ v_1 \} \]

\[V' = \{ v_2 \} \rightarrow C = \{ v_1, v_2 \} \]
Reduced State Space

\[V' = \{ v_1 \} \rightarrow C = \{ v_1 \} \]

\[V' = \{ v_2 \} \rightarrow C = \{ v_1, v_2 \} \]

\[V' = \{ v_3 \} \rightarrow C = \{ v_1, v_2, v_3 \} \text{ – original state space} \]
Let $B \subseteq S \times S'$ be defined as follows: $((d_1, .., d_n), (d'_1, .., d'_k)) \in B \iff d_i = d'_i, \forall 1 \leq i \leq k$

It suffices to show that B is bisimulation

- bisimulation implies $M \models f \iff M' \models f$
- first consider initial states and then all transitions and target states
- it is easy to see that it is bisimulation ;-)
Number of combinations of possible values of (user) input can be enormous
Results in very large or sometimes even infinite (floating point numbers) state space
Model checking hard or not possible in principle
Solution: Data abstraction
DATA ABSTRACTION – PROCEDURE

1. Define abstract domain(s) and map concrete values to abstract ones
2. Create reduced Kripke structure
 2.1 Replace concrete AP with abstract AP
 2.2 Merge states with same set of AP
3. Model checking
1. Abstract Domains

Motivation is to significantly lower number of possible values for selected variables

Abstraction means *hiding* some information

Done by mapping each *concrete* value to *abstract* one, e.g., integer domain can be mapped to abstract domain

Note that in Kripke structure data are encoded in (Boolean) atomic propositions
DATA ABSTRACTION – EXAMPLE

Let $A = \{a_0, a_+, a_-\}$ be abstract domain and $h(x)$ mapping (abstraction) function

For int i: $h(i) = a_0$ if $i = 0$

$h(i) = a_+$ if $i > 0$

$h(i) = a_-$ if $i < 0$

Corresponding atomic propositions for concrete variables: a_0, a_+, a_-
2. Creating Reduced Kripke Structure

1. Create $M' = (S, I, R, L')$ such that it is identical to M except for $L - L'$ labels states with abstract atomic propositions

2. Create reduced Kripke structure $M_r = (S_r, I_r, R_r, L_r)$:
 - $S_r = \{L'(s) \mid s \in S\}$ – merging states with identical set of AP
 - $s_r \in I_r \iff \exists s \in S : s_r = L'(s) \wedge s \in I$
 - $(s_r, t_r) \in R_r \iff \exists s, t \in S : (s, t) \in R \wedge s_r = L'(s) \wedge t_r = L'(t)$
3. MODEL CHECKING

Perform model checking of M_r

Desired property: $M_r \models f_r \implies M \models f$. Does this hold for any CTL formula?
Perform model checking of M_r

Desired property: $M_r \models f_r \implies M \models f$. Does this hold for any CTL formula?

Example: Traffic lights

- Green
- Red
- Yellow
DATA ABSTRACTION – EXAMPLE

Original atomic propositions $AP = \{\text{red}, \text{yellow}, \text{green}\}$, in each state exactly one is true

Abstract domain $A = \{\text{stop}, \text{go}\}$

Mapping function h: $h(\text{red}) = \text{stop}$, $h(\text{yellow}) = \text{stop}$, $h(\text{green}) = \text{go}$
DATA ABSTRACTION – EXAMPLE

Original atomic propositions $AP = \{\text{red}, \text{yellow}, \text{green}\}$, in each state exactly one is true

Abstract domain $A = \{\text{stop}, \text{go}\}$

Mapping function h: $h(\text{red}) = \text{stop}$, $h(\text{yellow}) = \text{stop}$, $h(\text{green}) = \text{go}$
Original atomic propositions \(AP = \{\text{red, yellow, green}\} \), in each state exactly one is true

Abstract domain \(A = \{\text{stop, go}\} \)

Mapping function \(h: h(\text{red}) = \text{stop}, h(\text{yellow}) = \text{stop}, h(\text{green}) = \text{go} \)
Desired property: $M_r \models f_r \implies M \models f$. Does this hold for any CTL formula?
Desired property: $M_r \models f_r \implies M \models f$. Does this hold for any CTL formula? \textbf{NO!}
Desired property: $M_r \models f_r \implies M \models f$. Does this hold for any CTL formula? **NO!**

Consider formula $AG (\text{red} \land \text{EX yellow})$ which is **not** satisfied in red state.

After abstraction formula reads $AG (\text{stop} \land \text{EX stop})$ and this formula **is** satisfied in stop state of M_r.

So what is it good for?!?
We cannot do arbitrary abstractions – this way we could reduce any KS into one with just one state and possibly self loop, which is apparently not correct.
DATA ABSTRACTION – JUSTIFICATION

We cannot do arbitrary abstractions – this way we could reduce any KS into one with just one state and possibly self loop, which is apparently not correct.

Two options:

1. Limit allowed abstractions

2. Limit language of formulae
DATA ABSTRACTION – JUSTIFICATION

We cannot do arbitrary abstractions – this way we could reduce any KS into one with just one state and possibly self loop, which is apparently not correct.

Two options:
1. Limit allowed abstractions
 - only exact abstractions allowed – those congruent with respect to primitive relations (transition relation, set of initial states)
2. Limit language of formulae
DATA ABSTRACTION – JUSTIFICATION

We cannot do arbitrary abstractions – this way we could reduce any KS into one with just one state and possibly self loop, which is apparently not correct.

Two options:

1. Limit allowed abstractions
 - only *exact abstractions* allowed – those congruent with respect to primitive relations (transition relation, set of initial states)

2. Limit language of formulae
 - using *ACTL* – formulae in negative normal form without existential quantification
Part II: Symmetries and Partial Order Reduction
Concurrent systems often exhibit a lot of symmetry:
- memories
- caches
- buses

Identification of symmetric states can lead to substantial reduction of states space by checking just one representative of each symmetry group.

We need to define what symmetric means in particular context/example:
- property specification
- system model
Symmetries

- From each set of symmetric states just one is picked, and its transitions are taken into account.
- Formally, reduction is based on finding quotiens and invariant groups of automorphisms upon permutations.
 - skipping algebraic theory here for sake of time :-)

Jan Kofroň: Behaviour Models and Verification
EXAMPLE – TOKEN RING NETWORK

Token ring of two nodes

Reduced model based on symmetry:
\{ (t, n), (n, t) \} and \{ (c, n), (n, c) \}
EXAMPLE – TOKEN RING NETWORK

We can apply reduction to larger configurations of i nodes

- obtaining again two symmetry groups:
 $\{(t, n^i), (n, t, n^{i-1}), \ldots, (n^i, t)\}$ and $\{(c, n^i), (n, c, n^{i-1}), \ldots, (n^i, c)\}$

This results to exactly the same state space
EXECUTION SYMMETRY: PARTIAL ORDER REDUCTION

Parallel composition (of processes) causes exponential growth of state space.

If processes do not communicate too much, majority of states are equivalent to other states and do not need to be explored.

This means exploring just some paths from initial to final state.
PARTIAL ORDER REDUCTION

Idea:
- Before model checking, reduced state graph is constructed
- Full state graph is never constructed
- Exploiting commutativity of concurrently executed transitions, which result in the same state when executed in different orders
- Formulated by Doron Peled in 1993

The name – Partial Order Reduction:
- Early versions were based on the partial order model of the program execution
- Better name: Model checking using representatives
It is convenient to formulate the algorithm upon STS rather than Kripke structure

- **Kripke structure** $M = (S, I, R, L)$
- **Corresponding STS** $N = (S, T, S_0, L)$:
 - $S, S_0 = I, L$ – identical to Kripke structure
 - T is set of transitions: $R(s, s')$ \iff $\exists a \in T : a(s, s')$
 - Transitions are labelled
 - Transitions with the same label are considered the same transition
Transition a is enabled in state $s \iff \exists s' : a(s, s')$

If transition is not enabled, it is disabled

$\text{enabled}(s)$ refers to all enabled transition is state s

Transition a is deterministic

$\iff \forall s : a$ is enabled in s, there exists at most one state $s' : a(s, s')$

- We can write $s' = a(s)$
- Only deterministic systems will be considered
REDUCTION ALGORITHM

expand_state(s0)

function expand_state(s) {
 work_set = ample(s);
 while work_set is not empty {
 choose a from work_set
 work_set = work_set \ {a}
 t = a(s)
 if new(t)
 expand_state(t)

 create_edge(s, a, t);
 }
}
Ample Set: Requirements

Systematic way of computing ample sets required

Desired properties of function ample(s):

1. Sufficiently many behaviours must be present in reduced state graph, so that algorithm provides correct results
2. Reduced state graph should be significantly smaller than full graph
3. Overhead of computing ample(s) must be reasonably small

Important notions are independence and invisibility of transitions
Independence

Definition: Independence relation $I \subseteq T \times T$ is symmetric, anti-reflexive relation satisfying following two conditions:

- **enabledness:** $a, b \in enabled(s) \implies a \in enabled(b(s))$
- **commutativity:** $a, b \in enabled(s) \implies a(b(s)) = b(a(s))$

Definition exploits symmetry of relation

Dependency relation D is complement of independence relation I: $D = (T \times T) \setminus I$

Independence relation to be specified:

- obtained either from computational model
- or knowledge of modelled system

Even actions that cannot be executed in parallel, e.g., incrementing variable by several processes, can be independent
Let a, b be transitions performed by different processes. a, b are independent if:

- a accesses local variable of its process, b is arbitrary transition
- a, b access two different global variables or channels
 - Also including sending and receiving messages on different channels, and testing length of different channels
- a, b read one global variable (or test length of one channel)
- a is send operation on channel $chan$, b is receive operation on $chan$, provided that $chan$ is asynchronous and default behaviour of send is used (i.e., send on full channel is blocked)
Definition: Transition is called \textit{invisible} if both origin and target states satisfy same set of atomic propositions.

- can be restricted to subset of AP
- invisible \sim no visible change after executing the transition

Each path can be split into blocks, where each block contains states satisfying the same set of AP

Definition: Two paths are \textit{stuttering equivalent} iff they contain the same blocks (w.r.t. AP) in the same order, possibly differing just in lengths.

- minimal length of each block is one
- block length is always finite
STUTTERING EQUIVALENCE OF STRUCTURES

Two structures M, M' (Kripke structures or state transition systems) are stuttering equivalent iff:

- M and M' have the same set of initial states
- for each path σ of M that starts from initial state s of M there exists path σ' of M' from the same initial state s such that $\sigma \sim_{st} \sigma'$
- for each path σ' of M' that starts from initial state s of M' there exists path σ of M from the same initial state s such that $\sigma' \sim_{st} \sigma$
LTL formula is \textit{invariant under stuttering} iff for each pair of paths \(\pi \) and \(\pi' \) such that \(\pi \sim_{st} \pi' : \pi \models f \iff \pi' \models f \).

We denote LTL without next operator by LTL\(_{-X}\)

Theorem: Any LTL\(_{-X}\) property is invariant under stuttering.

Theorem: Every LTL property that is invariant under stuttering can be expressed in LTL\(_{-X}\).

Theorem: Let \(M, M' \) be two stuttering equivalent structures. Then, for every LTL\(_{-X}\) property \(f \), and every initial state \(s \): \(M, s \models f \iff M', s \models f \).

Idea: Partial Order Reduction generates stuttering equivalent structure and model-checks just this smaller structure
Independence and invisibility are not enough, reduction has to address cycles and postponing transitions forever

State s is fully expanded iff $\text{ample}(s) = \text{enabled}(s)$

Four conditions to be satisfied by $\text{ample}(s)$ function:

C0. $\text{ample}(s) = \emptyset \iff \text{enabled}(s) = \emptyset$

C1. Along every path in full state graph that starts at s it holds that transition dependent on transition in $\text{ample}(s)$ cannot be executed without transition in $\text{ample}(s)$ occurring first

C2. If s is not fully expanded, then every $a \in \text{ample}(s)$ is invisible

C3. Cycle is not allowed if it contains state in which some transition a is enabled, but is never included in $\text{ample}(s)$ for any state s of the cycle
Java PathFinder is explicit code model checker for Java programs

In principle special virtual machine executing “all” possible thread interleavings and “trying” all specified (random) input values

Since there are exponentially (in size and number of threads) many thread interleavings, switch only when it makes sense:

- For example, sequential update of local variables cannot affect other threads
- Consider just interesting instruction as re-scheduling points:
 - scheduling-relevant instructions
 - non-deterministic instructions
Only about 10% are scheduling-relevant instructions:

- synchronization (monitorEnter, monitorExit, invokeX on synchronized methods)
- field access (putX, getX)
- array element access (Xaload, Xastore)
- thread instructions (start, sleep, yield, join)
- object methods (wait, notify)