NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION 10. STOCHASTIC MODEL CHECKING

Jan Kofroň

FACULTY OF MATHEMATICS AND PHYSICS Charles University

In some cases absolute absence of errors is infeasible

- failures of particular parts of system
- non-deterministic behaviour of users

It might be useful to determine level of reliability in terms of probability

- frequency of errors
- time to recovery
- throughput
- mean waiting time

....

Stochastic Model Checking

Lecture based on M. Kwiatkowska et al.: Stochastic Model Checking http://www.prismmodelchecker.org/papers/sfm07.pdf

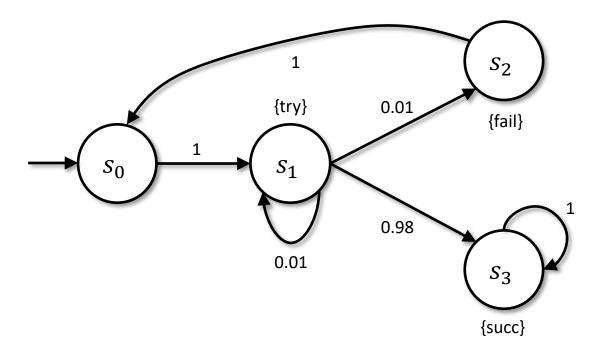
- Not only validity of certain properties
 - but also probability of reaching states/paths
- \rightarrow Need for special language
 - PCTL = Probabilistic Computational Tree Logic
 - CSL = Continuous Stochastic Logic
- Discrete-time Markov Chains (DTMC) are used as models for discrete time analysis
- Continuous-time Markov Chains (CTMC) are used for continuous time analysis

Definition: A labelled DTMC *D* is a tuple $(S, \overline{S}, \mathbf{P}, L)$ where:

- *S* is finite set of states
- $\overline{s} \in S$ is initial state
- $\mathbf{P}: S \times S \rightarrow [0,1]$ is **transition probability matrix** where $\sum_{s' \in S} \mathbf{P}(s,s') = 1$ for all $s \in S$
- $L: S \to 2^{AP}$ is labelling function assigning to each state set L(s) of atomic propositions

- Sum of probabilities of transitions originating in each state must be 1!
- Terminating states can be modelled by self-loop with probability 1

EXAMPLE



$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Path is non-empty sequence $s_0s_1s_2$... where $s_i \in S$ and $\forall i \ge 0$: $P(s_i, s_{i+1}) > 0$
- Path can be finite or infinite
- $Path^{D}(s)$ set of **infinite** paths in D starting at s
 - this is default meaning of paths
- $Path_{fin}^{D}(s)$ set of **finite** paths in *D* starting at *s*

Probability for finite path $\omega_{fin} \in P_{fin}^D(s)$:

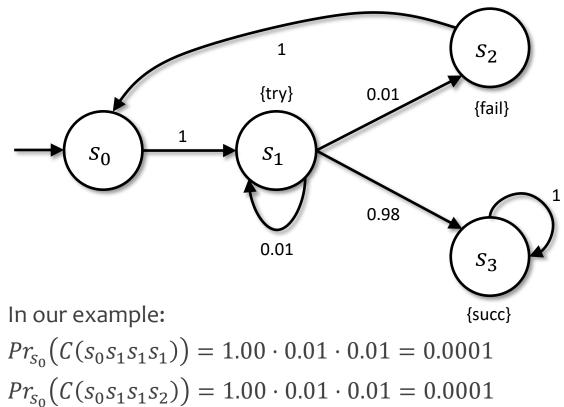
$$P_{s}(\omega_{fin}) = \begin{cases} 1 & \text{if } n = 0\\ \prod_{i=0}^{n-1} P(\omega(i), \omega(i+1)) & \text{otherwise} \end{cases}$$

where *n* is length of ω_{fin}

Cylinder set $C(\omega_{fin}) \subseteq Path^{D}(s)$: $C(\omega_{fin}) \stackrel{\text{def}}{=} \{ \omega \in Path^{D}(s) | \omega_{fin} \text{ is a prefix of } \omega \}$

Probability measure *Pr_s* is function defined as:

$$Pr_{s}\left(C(\omega_{fin})\right) = P_{s}(\omega_{fin}) \text{ for all } \omega_{fin} \in Path_{fin}^{D}(s)$$



$$Pr_{s_0}(C(s_0s_1s_1s_2)) = 1.00 \cdot 0.01 \cdot 0.01 = 0.0001$$
$$Pr_{s_0}(C(s_0s_1s_1s_3)) = 1.00 \cdot 0.01 \cdot 0.98 = 0.0098$$
$$Pr_{s_0}(C(s_0s_1s_2s_0)) = 1.00 \cdot 0.01 \cdot 1.00 = 0.01$$
$$Pr_{s_0}(C(s_0s_1s_3s_3)) = 1.00 \cdot 0.98 \cdot 1.00 = 0.98$$

PROBABILISTIC COMPUTATIONAL TREE LOGIC (PCTL)

- Extension of CTL
- Syntax:

 $\Phi ::= true \mid a \mid \neg \Phi \mid \Phi \land \Phi \mid P_{\sim p}[\phi]$

 $\phi ::= X \Phi \mid \Phi U^{\leq k} \Phi$, where

(state formula) (path formula)

a is atomic proposition $\sim \in \{<, \le, \ge, >\}$ $p \in [0,1]$ $k \in \mathbb{N} \cup \infty$

- ... plus common (derived) facts:
 - false $\equiv \neg true$
 - $\Phi \lor \Psi \equiv \neg (\neg \Phi \land \neg \Psi)$

$$\begin{split} s \vDash true & \text{for all } s \in S \\ s \vDash a \Leftrightarrow a \in L(s) \\ s \vDash \neg \Phi \Leftrightarrow s \nvDash \Phi \\ s \vDash \neg \Phi \Leftrightarrow s \vDash \varphi \\ s \vDash \phi \land \Psi \Leftrightarrow s \vDash \phi \land s \vDash \Psi \\ s \vDash P_{\sim p}[\phi] \Leftrightarrow Prob^{D}(s,\phi) \sim p \\ \omega \vDash X\Phi \Leftrightarrow \omega(1) \vDash \Phi \\ \omega \vDash \phi U^{\leq k} \psi \Leftrightarrow \exists i \in \mathbb{N} \colon (i \leq k \land \omega(i) \vDash \psi \land \forall j < i \colon (\omega(j) \vDash \phi)) \end{split}$$

where $Prob^{D}(s, \phi) \stackrel{\text{\tiny def}}{=} Pr_{s}\{\omega \in Path^{D}(s) \mid \omega \models \phi\}$

CTL F and G operators:

$$P_{\sim p}[F \Phi] \equiv P_{\sim p}[true \ U^{\leq \infty} \Phi]$$
$$P_{\sim p}[F^{\leq k} \Phi] \equiv P_{\sim p}[true \ U^{\leq k} \Phi]$$
$$G \Phi \equiv \neg F \neg \Phi$$
$$G^{\leq k} \Phi \equiv \neg F^{\leq k} \neg \Phi$$

- Syntax does not allow for negation of path formulae
- However, it holds:

$$P_{\sim p}[G \Phi] \equiv P_{\eqsim 1-p}[F \neg \Phi]$$
$$P_{\sim p}[G^{\le k} \Phi] \equiv P_{\eqsim 1-p}[F^{\le k} \neg \Phi]$$

where $\overline{<} \equiv >, \overline{\le} \equiv \ge, \overline{\ge} \equiv \le, \overline{>} \equiv <$

QUANTIFIERS

• $P_{\sim p}[\cdot]$ is probabilistic analogue to path quantifiers:

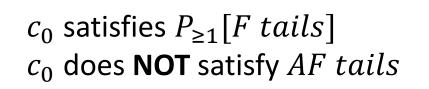
{heads}

{tails}

0.5

0.5

- $\blacksquare EF\Phi \equiv P_{>0}[F \Phi]$
- But: $AF\Phi$ is **NOT** the same as $P_{\geq 1}[F \Phi]$



- $P_{\geq 0.4}[X \text{ delivered}]$
 - probability that message gets delivered in next step is at least 0.4
- $init \rightarrow P_{\leq 0}[F \ error]$
 - error state is not reachable from any init state
- $P_{\geq 0.9}[\neg down \ U \ served]$
 - probability that server does not go down before request gets served is at least 0.9
- $P_{<0.1}[\neg done \ U^{\le 10} \ fault]$
 - probability that error occurs before protocol is done and within 10 steps is less than 0.1

- Based on CTL model checking algorithm
 - 1. decomposing formula into sub-formulae
 - 2. in bottom-up manner finding set of states satisfying particular sub-formulae
 - 3. the set of states for the input formula at root
- Special handling of the *P* formulae

ΧФ

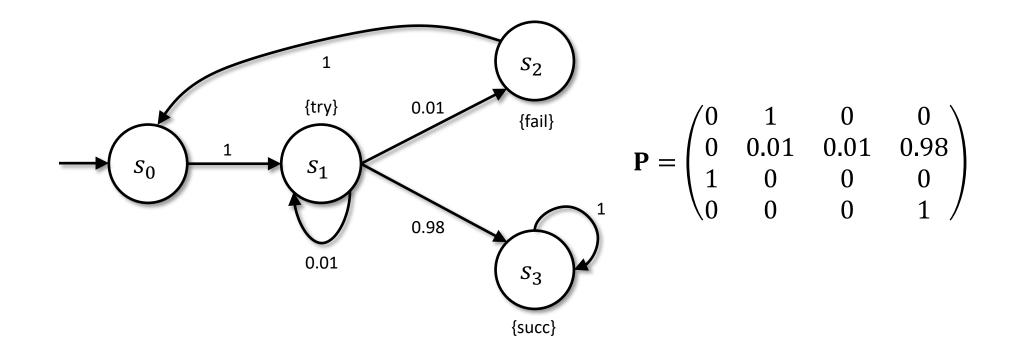
• For $P_{\sim p}[X \Phi]$ we need to compute $Prob^{D}(s, X \Phi)$ for each state *s*:

$$Prob^{D}(s, X\Phi) = \sum_{s' \in Sat(\Phi)} \mathbf{P}(s, s')$$

where $Sat(\Phi)$ is set of states satisfying Φ

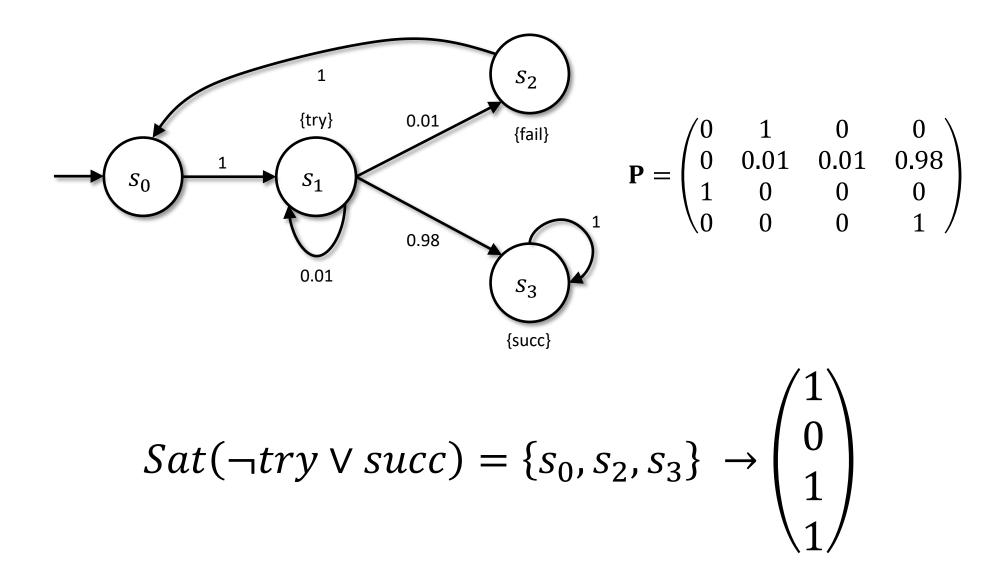
- Let $\underline{\Phi}(s) = \begin{cases} 1 & if \ s \in \operatorname{Sat}(\Phi) \\ 0 & otherwise \end{cases}$
- <u>Prob^D</u>(X Φ) = **P** · Φ
 - Vector with probabilities for particular states

$X\Phi - EXAMPLE$

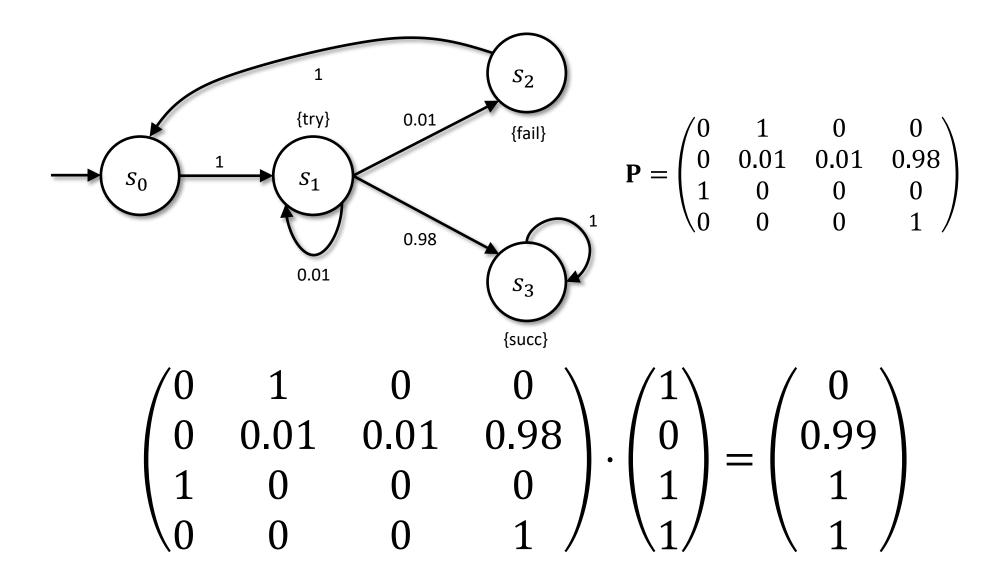


 $P_{\geq 0.9}[X(\neg try \lor succ)]$

$X\Phi - EXAMPLE$



$X\Phi - EXAMPLE$



For $P_{\sim p}[\Phi U^{\leq k} \Psi]$ we need to compute $Prob^{D}(s, \Phi U^{\leq k} \Psi)$ for each state *s*:

 $Prob^{D}(s, \Phi U^{\leq k} \Psi) =$

$$= \begin{cases} 1 & if \ s \in Sat(\Psi) \\ 0 & if \ k = 0 \ or \ s \in Sat(\neg \Phi \land \neg \Psi) \\ \sum_{s' \in S} \mathbf{P}(s, s') \cdot Prob^{D}(s', \Phi \ U^{\leq k-1} \ \Psi) & otherwise \end{cases}$$

where $Sat(\Phi)$ is set of states satisfying Φ

Definition: For any *DTMC* $D = (S, \bar{s}, \mathbf{P}, L)$ and PCTL formula Φ , let $D[\Phi] = (S, \bar{s}, \mathbf{P}[\Phi], L)$ where, if $s \neq \Phi$, then $\mathbf{P}[\Phi](s, s') = \mathbf{P}(s, s')$ for all $s' \in S$, and if $s \models \Phi$, then $\mathbf{P}[\Phi](s, s) = 1$ and $\mathbf{P}[\Phi](s, s') = 0$ for all $s' \neq s$.

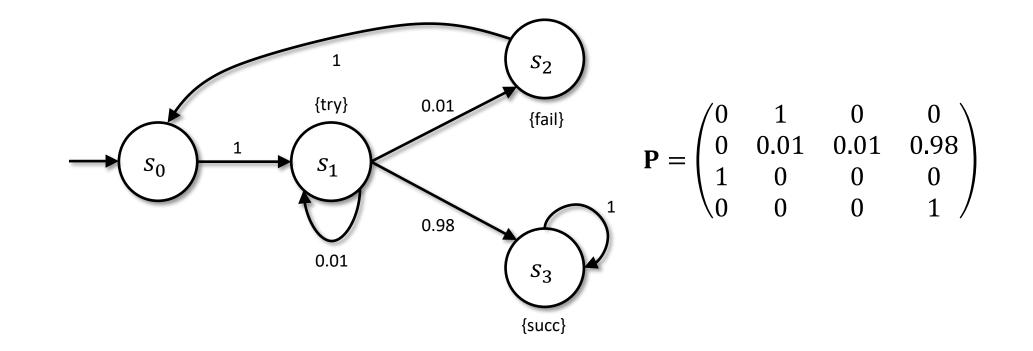
Then it holds:

$$Prob^{D}(s, \Phi U^{\leq k} \Psi) = \sum_{s' \models \Psi} \pi^{D[\neg \Phi \lor \Psi]}_{s,k}(s')$$

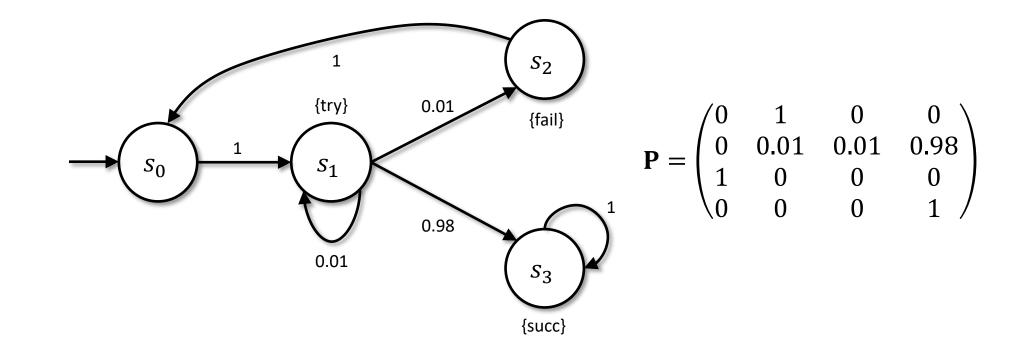
Vector of probabilities $\underline{Prob}^{D}(\Phi U^{\leq k} \Psi)$ can be computed as: $\underline{Prob}^{D}(\Phi U^{\leq k} \Psi) = (\mathbf{P}[\neg \Phi \lor \Psi])^{k} \cdot \underline{\Psi}$

Usually computed in iterative way

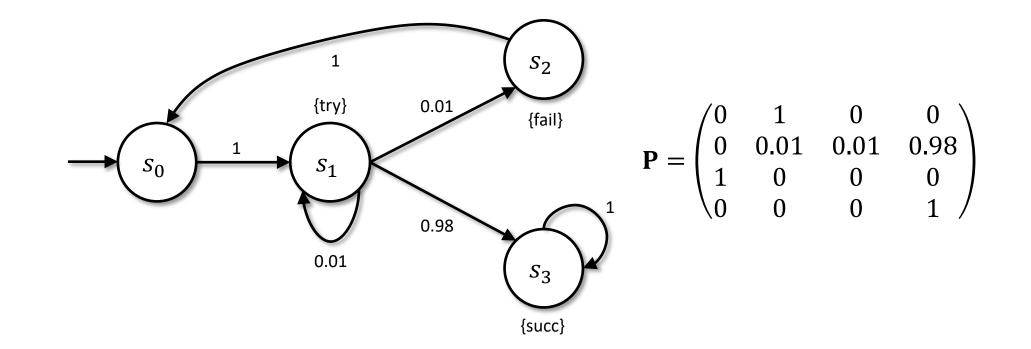
but can be pre-computed for particular k



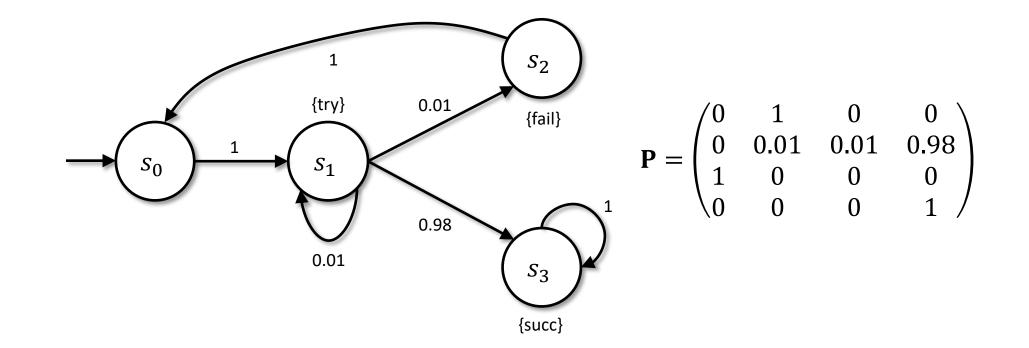
$$\mathbf{P}_{>0.98}[F^{\le 2}succ] = \mathbf{P}_{>0.98}[true \ U^{\le 2}succ]$$



$$Sat(true) = \{s_0, s_1, s_2, s_3\}, Sat(succ) = \{s_3\}$$
$$\mathbf{P}[\neg true \lor succ] = \mathbf{P}$$



$$\frac{Prob^{D}(\Phi \ U^{\leq 0}\Psi) = succ = [0,0,0,1]}{Prob^{D}(\Phi \ U^{\leq 1}\Psi) = \mathbf{P}[\neg true \lor succ] \cdot \frac{Prob^{D}(\Phi \ U^{\leq 0} \ \Psi) = [0,0.98,0,1]}{Prob^{D}(\Phi \ U^{\leq 2}\Psi) = \mathbf{P}[\neg true \lor succ] \cdot \frac{Prob^{D}(\Phi \ U^{\leq 1} \ \Psi) = [\mathbf{0}.\mathbf{98},\mathbf{0}.\mathbf{98}\mathbf{98},\mathbf{0},\mathbf{1}]}$$



$$\frac{Prob^{D}(\Phi U^{\leq 2} \Psi) = [0.98, 0.9898, 0, 1]}{\text{Hence } Sat(P_{>0.98}[F^{\leq 2}succ]) = \{s_{1}, s_{3}\}}$$

- For brevity, instead of $U^{\leq \infty}$ we just write U
- We need to compute $Prob^{D}(s, \Phi U \Psi)$ for each state s:

$$Prob^{D}(s, \Phi U \Psi) == \begin{cases} 1 & if \ s \in Sat(\Psi) \\ 0 & if \ s \in Sat(\neg \Phi \land \neg \Psi) \\ \sum_{s' \in S} \mathbf{P}(s, s') \cdot Prob^{D}(s', \Phi U \Psi) & \text{otherwise} \end{cases}$$

This system of equations can have many solutions – we convert it to one with just one solution

The following sets are computed using fixpoint algorithm (similar to CTL case, using complement on sets):

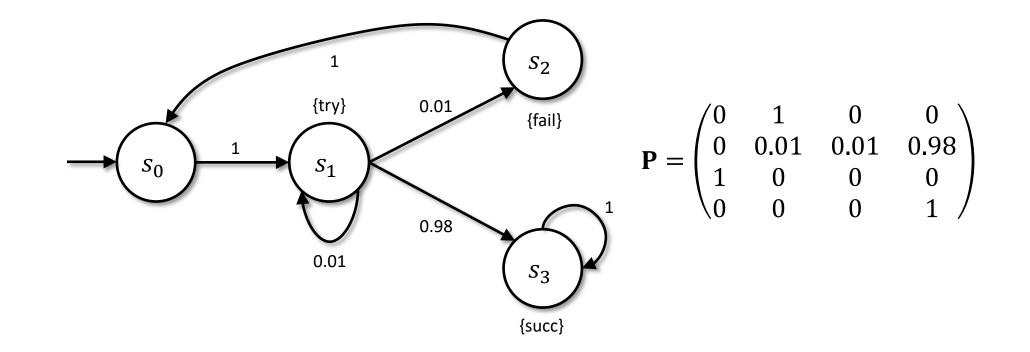
$$Sat(P_{\leq 0}[\Phi U \Psi]) = \{s \in S \mid Prob^{D}(s, \Phi U \Psi) = 0\}$$
$$Sat(P_{\geq 1}[\Phi U \Psi]) = \{s \in S \mid Prob^{D}(s, \Phi U \Psi) = 1\}$$

Resulting system of equation then reads:

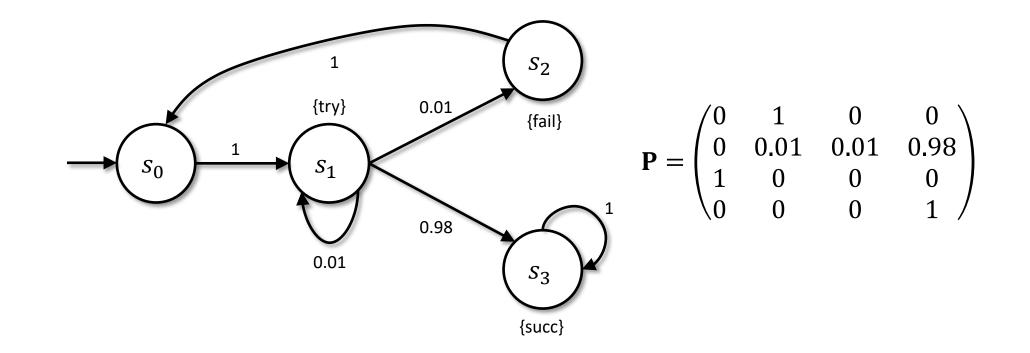
```
Prob^{D}(s, \Phi U \Psi) = \begin{cases} 1 & if \ s \in Sat(P_{\geq 1}[\Phi U \Psi]) \\ 0 & if \ s \in Sat(P_{\leq 0}[\Phi U \Psi]) \\ \sum_{s' \in S} \mathbf{P}(s, s') \cdot Prob^{D}(s', \Phi U \Psi) & \text{otherwise} \end{cases}
```

Having computed sets for probabilities 0 and 1, we can restrict computation to rest of states

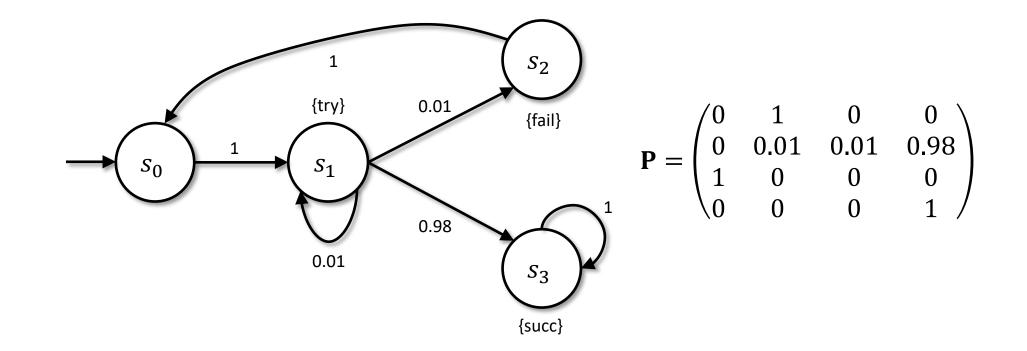
Optimization



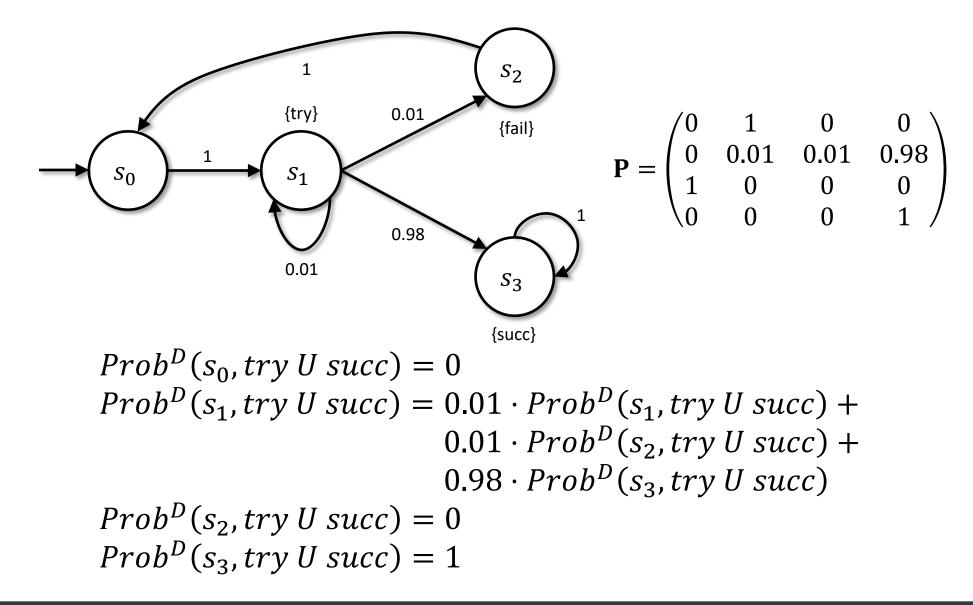
$P_{>0.99}[try U succ]$

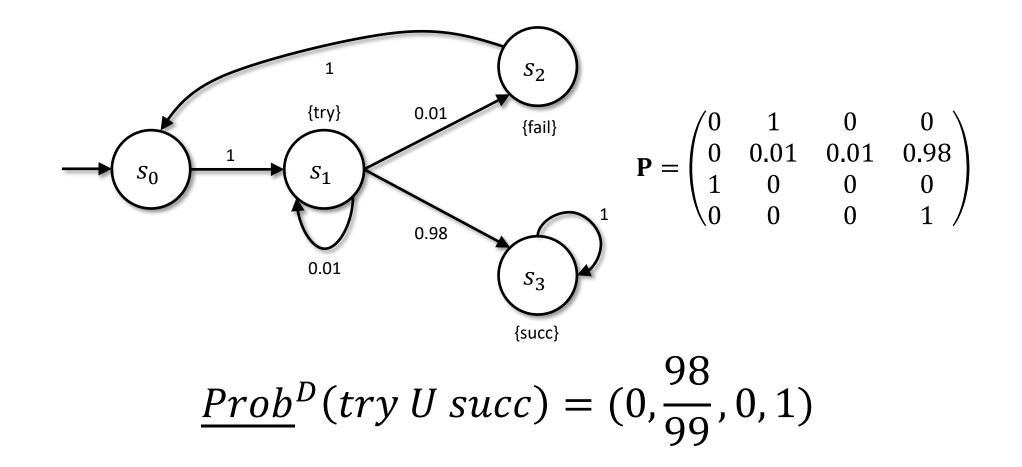


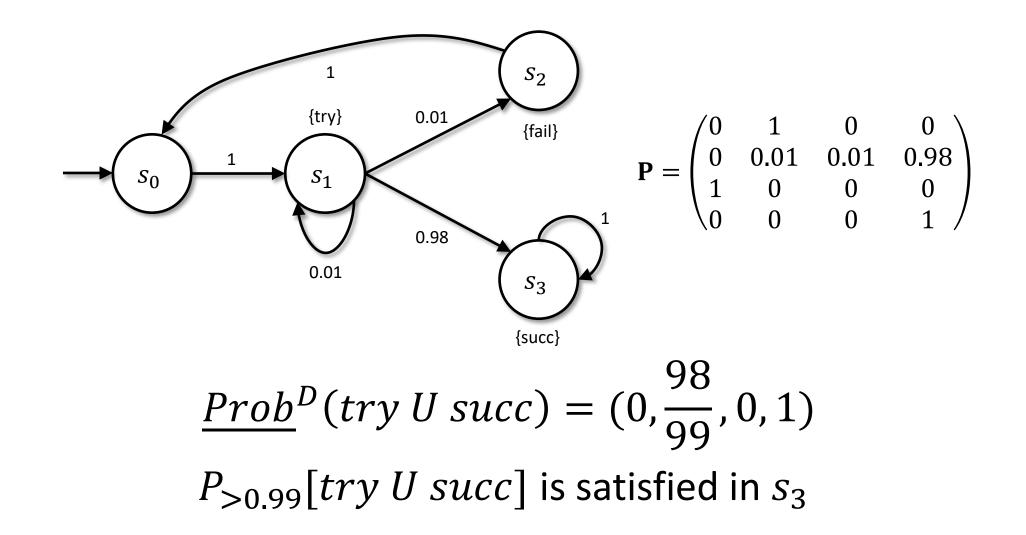
 $Sat(try) = \{s_1\}, Sat(succ) = \{s_3\}$



 $Sat(P_{\leq 0}[try \ U \ succ]) = \{s_0, s_2\}, \quad Sat(P_{\geq 1}[try \ U \ succ]) = \{s_3\}$







DTMC and PCTL can be extended by rewards (or costs)

- specification of cost for transition
- reasoning about cost of particular computation, e.g., satisfying PCTL property, restricting to computations with cost less than k, ...

D3S

Transitions are supposed to occur at real time

contrary to DTMC where they occur at discrete time steps

CTMC allow to reason about different properties

- Continuous Stochastic Logic (CSL) is used instead of PCTL
- very close to PCTL including time specifications
- support for specification of time intervals

Instead of probability matrix of DTMC, we have **transition rate matrix** (of real numbers)

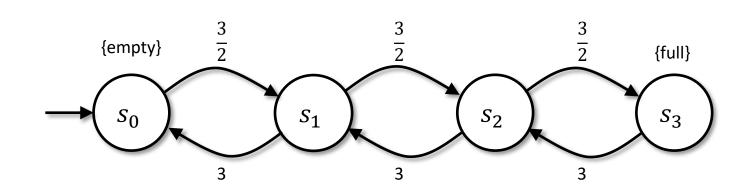
- assigns rates to each pair of states
- rates determine the probability of the transition
- exponential distribution probability of transition (s, s') within t time units, if $\mathbf{R}(s, s') > 0$ equals

$$1 - e^{-\mathbf{R}(s,s') \cdot t}$$

Exit rate E(s) of state s is given by:

$$E(s) \stackrel{\text{\tiny def}}{=} \sum_{s' \in S} \mathbf{R}(s, s')$$

CTMC – EXAMPLE



$$\mathbf{R} = \begin{pmatrix} 0 & \frac{3}{2} & 0 & 0 \\ 3 & 0 & \frac{3}{2} & 0 \\ 0 & 3 & 0 & \frac{3}{2} \\ 0 & 0 & 3 & 0 \end{pmatrix} \qquad \mathbf{P^{emb}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \frac{2}{3} & 0 & \frac{1}{3} & 0 \\ 0 & \frac{2}{3} & 0 & \frac{1}{3} \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

D3S

- Allows for checking DTMC, CTMC and other types of models
- Uses simple dedicated input language
- http://www.prismmodelchecker.org

```
// Two process mutual exclusion
```

mdp

module M1

- x : [0..2] init 0;
- [] x=0 -> 0.8: (x'=0) + 0.2: (x'=1); [] x=1 & y!=2 -> (x'=2); [] x=2 -> 0.5: (x'=2) + 0.5: (x'=0);

endmodule

module M2

y : [0..2] init 0;

```
[] y=0 -> 0.8: (y'=0) + 0.2: (y'=1);
[] y=1 & x!=2 -> (y'=2);
[] y=2 -> 0.5: (y'=2) + 0.5: (y'=0);
```

endmodule

