NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

11. UNBOUNDED SOFTWARE MODEL CHECKING

Jan Kofron

FACULTY Department of

OF MATHEMATICS Distributed and
AND PHYSICS Dependable
2" Charles University

RECALL: BOUNDED MODEL CHECKING

System model ﬁ

AG (start — AF heat)

Property specification

Jan Kofrori: Behaviour Models and Verification

Model Checker

Property satisfied

Property violated

RECALL: BOUNDED MODEL CHECKING

Property satisfied

ﬂ

/B

System model ﬁ

Model Checker Property violated

AG (start — AF heat)

Property specification

Jan Kofrori: Behaviour Models and Verification

RECALL: BOUNDED MODEL CHECKING

@ LetM = {S,I,R,L} be Kripke structure
Define predicate Reach(s,s’) = R(s, s')

©

©

k—1
[M]¥ = A Reach(s;, si i)

1=0
@ [M]* contains states reachable in exactly k steps
@ Then search for counterexamples formed by k states

Jan Kofrori: Behaviour Models and Verification 4

RECALL: BOUNDED MODEL CHECKING — PROCEDURE

Input: M, —p
1. k=0
2. Is - satisfiable in [M]*?
@ YES:M E —p, terminate
3. Isk < threshold?
@ NO:M W, —¢, terminate
. Increment k

N

5. Goto2.

Jan Kofrori: Behaviour Models and Verification 5

RECALL: BMC FOR PROGRAMS

Unwind loops and transform each line of code into (CNF) formula.

1: int i=4; fio (pcr = 1) A (i = 4) A (pc, = 2)
2: int s=o0; fi(pe; =2) A (i3 = i) A(s3 = 0) A (pcs = 3)
3: fs 1 (pes = 3) A (iy = i3) A (s4. = 53) A (PCy = 4)
4: s+=1i; fa : (pcg = 4) A (is = ig) A (S5 = 54 + i) A (pcs = 5)
5: if (i>0) fs 1 (pcs = 5) A (ie = is) A (S¢ = S5) A (pce = 6)
6 i--; fo : (pce = 6) A (((is > 0) A (i; =isg — 1))V
((ie < 0) A(i; =1is))) A (s; =56) A (pc; = 7)
7: assert(s<10); f 1 (pc; = 7) A (s; = 10) A (pcs = 8)
8: s+=1i; fs : (pcs = 8) A (ig = ig) A (sg = s +1i3) A (PCy = 9)
9: if (i>o0) fo 1 (Pcg = 9) A (iro = ig) A (S10 = S9) A (PCro = 10)
10 i--; fio : (PCio = 10) A (((i10 > 0) A (in = 10 — 1))V
((i1o§0 /\(i11:i1o)))/\(511:510)/\(pc11:11)
11: assert(s<10); fu : (pcw = 11) A (s > 10) A (pcy, = 12)

Jan Kofrori: Behaviour Models and Verification 6

RECALL: BMC FOR PROGRAMS

Unwind loops and transform each line of code into (CNF) formula.

1: int i=4; fio (pcr = 1) A (i = 4) A (pc, = 2)
2: int s=o0; fi(pe; =2) A (i3 = i) A(s3 = 0) A (pcs = 3)
3: fs 1 (pes = 3) A (iy = i3) A (s4. = 53) A (PCy = 4)
4: s+=1i; fa : (pcg = 4) A (is = ig) A (S5 = 54 + i) A (pcs = 5)
5: if (i>0) fs 1 (pcs = 5) A (ie = is) A (S¢ = S5) A (pce = 6)
6 i--; fo : (pce = 6) A (((is > 0) A (i; =isg — 1))V

(s < 0) A (i = i6)) A (5, = 56) A (pe; = 7)
7: assert(s<10); f7:(pc; =7) A (s; = 10) A (pcs = 8)
8: s+=1i; fs : (pcs = 8) A (ig = ig) A (59 = sg +ig) A (pcg = 9)
9: if (i>o0) fo : (Pcg = 9) A (io = i) A (S10 = Sg) A (PCio = 10)
10 i--; fio : (PCio = 10) A (((i10 > 0) A (in = 10 — 1))V

((i1o < 0) A (i11 = i1o))) A (511 = 510) A (PCn = 11)
11: assert(s<10); fu: (pew = 1) A (s, = 10) A (pcy, = 12)

Jan Kofrori: Behaviour Models and Verification 7

MODEL REPRESENTATION FOR UNBOUNDED MODEL CHECKING

Let system under verification be represented as transition system M = (I, T) and set of
error states E over variablesin V:

@ I(V) - set of initial states
@ T(V,V') - transition relation
@ E(V) - set of error states (we assume safety properties only!)

All sets are represented as logical formulae — SAT/SMT solver is used to decide upon
satisfiability by model checking algorithm

M does not contain error trace of length (exactly) k if the formula is unsatisfiable:

1(Vo) A [O</_\<k T(Vi, Via)] A E(Vi)

Jan Kofrori: Behaviour Models and Verification 8

UNBOUNDED MODEL CHECKING

@ BMCis limited to error traces up to given length k — this might be quite limiting
for program verification due to huge number of iterations computing sets of
reachable states

@ Unbounded Model Checking attempts to overcome this by computing sequences
of sets over-approximating reachable sets of states after i steps

@ e.g., by means of Craig’s interpolation

@ The problem is still undecidable, however, for many practical cases, this approach
converges

Jan Kofrori: Behaviour Models and Verification 9

CRAIG’S INTERPOLANTS

Definition (Craig’s interpolant):
Let A, B be formulae such that A A B — L. Formula I is an interpolant for (A, B) iff

@ Al
@ INB— 1,and
@ Var(l) C Var(A) N Var(B)

Theorem (Craig, 1957)":
For each pair of propositional formulae A, B such that A A B — L, there exists an
interpolant I for (A, B).

'William Craig. (1957). Three Uses of the Herbrand-Gentzen Theorem in Relating Model Theory and
Proof Theory. Journal of Symbolic Logic, 22(3):269-285. DOI: 10.2307/2963594

Jan Kofrori: Behaviour Models and Verification

CRAIG’S INTERPOLANTS

@ For given formulae (A, B), interpolant is not unique
@ Variability
@ complexity

@ number of connectives
@ number of unique variables

@ logical strength

Example:

A= {01(1_2, d]ds, az}, B = {0_203, 02(147 a_4}
o ’1 — (1_3 A (12
o ’2 — (1_3

Jan Kofrori: Behaviour Models and Verification

GRAPHICAL VIEW OF INTERPOLANT

Jan Kofrori: Behaviour Models and Verification

GRAPHICAL VIEW OF INTERPOLANT

Jan Kofrori: Behaviour Models and Verification

13

GRAPHICAL VIEW OF INTERPOLANT

Jan Kofrori: Behaviour Models and Verification

14

GRAPHICAL VIEW OF INTERPOLANT

Jan Kofrori: Behaviour Models and Verification

15

INTERPOLANTS AS STATES APPROXIMATION

@ Interpolants can serve as over-approximation of sets of (reachable) states

@ Why not using the exact representation of states?

@ interpolant is usually simpler than precise representation
@ model checking algorithm can converge faster — in less iterations (later)

@ Interpolant can be computed from resolution refutation proof of unsatisfiability

@ inlinear time wrt. proof size
@ various interpolation systems exist

Jan Kofrori: Behaviour Models and Verification

INTERPOLATION-BASED MODEL CHECKING

@ Theideais to use approach of bounded model checking while attempting to find
fixpoint of over-approximation of reachable states w.r.t. transition relation

@ Since state space is finite (BMC), algorithm always finishes

@ however, state space size can be huge, practically equal to unbounded
@ it cantake very long
@ therefore, we need smart way to simplify, i.e., over-approximate sets of states

@ Error state can be reachable (from over-approximation) due to too coarse
over-approximation
= refine over-approximation

Jan Kofrori: Behaviour Models and Verification

SAFE OVER-APPROXIMATION

Safe over-approximation of set of states represented by A w.r.t. E is formula O such

that:
@ A — O,and
@ ONE=10

We want to find either safe over-approximation of all reachable states or real error

Jan Kofrori: Behaviour Models and Verification

VERIFICATION EXAMPLE

ANV

Jan Kofrori: Behaviour Models and Verification

VERIFICATION EXAMPLE

b

Jan Kofrori: Behaviour Models and Verification

VERIFICATION EXAMPLE

Jan Kofrori: Behaviour Models and Verification

VERIFICATION EXAMPLE

Jan Kofrori: Behaviour Models and Verification

VERIFICATION EXAMPLE

b

Jan Kofrori: Behaviour Models and Verification

VERIFICATION EXAMPLE

S

Jan Kofrori: Behaviour Models and Verification

VERIFICATION EXAMPLE

= <

Jan Kofrori: Behaviour Models and Verification

APPROACH FORMALLY

Initial checks: I(Vo) NE(Vo) is SAT = error
(Vo) A T(Vo, Vi) AE(V;) is SAT = error

General case (start with k = 1): U(S) =Si(Vo) A A T(Vi,Viga)] AE(Vi)
o<i<k
Splitting 1) for interpolation: A =Si(Vo) AT(Vo, Vy)
B=[A T(Vi,Viga)] AE(Vi)
1<i<k

Si++ = interpolant for (A, B)

Si is i-th over-approximation of |

Jan Kofrori: Behaviour Models and Verification

VERIFICATION ALGORITHM

function VERIFY(M, E)
if | N E # () then return Error
end if
k:=1
while true do
result := FindFP(M, E, k)
if result is unknown then
k:=k-+1
else return result
end if
end while
end function

Jan Kofrori: Behaviour Models and Verification

function FINDFP(M, E, k)
So =1
i:=o0
while (S;) is UNSAT do
(A.B) = Split(}(s)))
T := Itp(A, B)[V := V']
if T; A\ =S; is UNSAT then return safe
end if
Sit1:=S5i VT
i=i+1
end while
if S; = I then return unsafe
else return unknown
end if
end function

IMPLEMENTATION

@ Front end transforms input program (e.g., in C) into formula representation
@ Model checking algorithm implemented in model checker

@ SAT checking and interpolant computation provided by (interpolating) SMT solver
@ OPENSMT?, SMTINTERPOL3

@ Tools employing interpolation: BLAST#, CPACHECKERS, SEAHORN (SPACER)®

*https://github.com/usi-verification-and-security/opensmt/
3https://github.com/ultimate-pa/smtinterpol/
*http://mtc.epfl.ch/software-tools/blast/index-epfl.php
Shttps://cpachecker.sosy-lab.org/
®https://seahorn.github.io/

Jan Kofrori: Behaviour Models and Verification

https://github.com/usi-verification-and-security/opensmt/
https://github.com/ultimate-pa/smtinterpol/
http://mtc.epfl.ch/software-tools/blast/index-epfl.php
https://cpachecker.sosy-lab.org/
https://seahorn.github.io/

	Motivation

