
NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

11. UNBOUNDED SOFTWARE MODEL CHECKING

Jan Kofroň

RECALL: BOUNDED MODEL CHECKING

open

start

empty close heat

close

empty
start

close

start

heat

Systemmodel

AG (start→ AF heat)

Property specification

Model Checker

Property satisfied

Property violated

Jan Kofroň: Behaviour Models and Verification 2

RECALL: BOUNDED MODEL CHECKING

open

start

empty close heat

close

empty
start

close

start

heat

Systemmodel

AG (start→ AF heat)

Property specification

Model Checker

Property satisfied

Property violated

Jan Kofroň: Behaviour Models and Verification 3

RECALL: BOUNDED MODEL CHECKING

LetM = {S, I, R, L} be Kripke structure
Define predicate Reach(s, s′) ≡ R(s, s′)

[[M]]k =
k−1∧
i=0

Reach(si, si+1)

[[M]]k contains states reachable in exactly k steps

Then search for counterexamples formed by k states

Jan Kofroň: Behaviour Models and Verification 4

RECALL: BOUNDED MODEL CHECKING – PROCEDURE

Input:M,¬ϕ
1. k = 0

2. Is ¬ϕ satisfiable in [[M]]k?

YES:M |= ¬ϕ, terminate

3. Is k < threshold?

NO:M 6|=k ¬ϕ, terminate

4. Increment k

5. Go to 2.

Jan Kofroň: Behaviour Models and Verification 5

RECALL: BMC FOR PROGRAMS

Unwind loops and transform each line of code into (CNF) formula.

1 : i n t i =4 ;

2 : i n t s =0 ;

3 :

4 : s += i ;

5 : i f (i >0)

6 : i − − ;

7 : a s s e r t (s < 1 0) ;

8 : s += i ;

9 : i f (i >0)

1 0 : i − − ;

1 1 : a s s e r t (s < 1 0) ;

f1 : (pc1 = 1) ∧ (i2 = 4) ∧ (pc2 = 2)

f2 : (pc2 = 2) ∧ (i3 = i2) ∧ (s3 = 0) ∧ (pc3 = 3)

f3 : (pc3 = 3) ∧ (i4 = i3) ∧ (s4 = s3) ∧ (pc4 = 4)

f4 : (pc4 = 4) ∧ (i5 = i4) ∧ (s5 = s4 + i4) ∧ (pc5 = 5)

f5 : (pc5 = 5) ∧ (i6 = i5) ∧ (s6 = s5) ∧ (pc6 = 6)

f6 : (pc6 = 6) ∧ (((i6 > 0) ∧ (i7 = i6 − 1))∨
((i6 ≤ 0) ∧ (i7 = i6))) ∧ (s7 = s6) ∧ (pc7 = 7)

f7 : (pc7 = 7) ∧ (s7 ≥ 10) ∧ (pc8 = 8)

f8 : (pc8 = 8) ∧ (i9 = i8) ∧ (s9 = s8 + i8) ∧ (pc9 = 9)

f9 : (pc9 = 9) ∧ (i10 = i9) ∧ (s10 = s9) ∧ (pc10 = 10)

f10 : (pc10 = 10) ∧ (((i10 > 0) ∧ (i11 = i10 − 1))∨
((i10 ≤ 0) ∧ (i11 = i10))) ∧ (s11 = s10) ∧ (pc11 = 11)

f11 : (pc11 = 11) ∧ (s11 ≥ 10) ∧ (pc12 = 12)

Jan Kofroň: Behaviour Models and Verification 6

RECALL: BMC FOR PROGRAMS

Unwind loops and transform each line of code into (CNF) formula.

1 : i n t i =4 ;

2 : i n t s =0 ;

3 :

4 : s += i ;

5 : i f (i >0)

6 : i − − ;

7 : a s s e r t (s < 1 0) ;

8 : s += i ;

9 : i f (i >0)

1 0 : i − − ;

1 1 : a s s e r t (s < 1 0) ;

f1 : (pc1 = 1) ∧ (i2 = 4) ∧ (pc2 = 2)

f2 : (pc2 = 2) ∧ (i3 = i2) ∧ (s3 = 0) ∧ (pc3 = 3)

f3 : (pc3 = 3) ∧ (i4 = i3) ∧ (s4 = s3) ∧ (pc4 = 4)

f4 : (pc4 = 4) ∧ (i5 = i4) ∧ (s5 = s4 + i4) ∧ (pc5 = 5)

f5 : (pc5 = 5) ∧ (i6 = i5) ∧ (s6 = s5) ∧ (pc6 = 6)

f6 : (pc6 = 6) ∧ (((i6 > 0) ∧ (i7 = i6 − 1))∨
((i6 ≤ 0) ∧ (i7 = i6))) ∧ (s7 = s6) ∧ (pc7 = 7)

f7 : (pc7 = 7) ∧ (s7 ≥ 10) ∧ (pc8 = 8)

f8 : (pc8 = 8) ∧ (i9 = i8) ∧ (s9 = s8 + i8) ∧ (pc9 = 9)

f9 : (pc9 = 9) ∧ (i10 = i9) ∧ (s10 = s9) ∧ (pc10 = 10)

f10 : (pc10 = 10) ∧ (((i10 > 0) ∧ (i11 = i10 − 1))∨
((i10 ≤ 0) ∧ (i11 = i10))) ∧ (s11 = s10) ∧ (pc11 = 11)

f11 : (pc11 = 11) ∧ (s11 ≥ 10) ∧ (pc12 = 12)

Jan Kofroň: Behaviour Models and Verification 7

MODEL REPRESENTATION FOR UNBOUNDED MODEL CHECKING

Let system under verification be represented as transition systemM = (I, T) and set of

error states E over variables in V:

I(V) – set of initial states

T(V,V′) – transition relation

E(V) – set of error states (we assume safety properties only!)

All sets are represented as logical formulae – SAT/SMT solver is used to decide upon

satisfiability by model checking algorithm

M does not contain error trace of length (exactly) k if the formula is unsatisfiable:

I(V0) ∧
[∧
0≤i<k

T(Vi,Vi+1)
]
∧ E(Vk)

Jan Kofroň: Behaviour Models and Verification 8

UNBOUNDED MODEL CHECKING

BMC is limited to error traces up to given length k – this might be quite limiting

for program verification due to huge number of iterations computing sets of

reachable states

Unbounded Model Checking attempts to overcome this by computing sequences
of sets over-approximating reachable sets of states after i steps

e.g., by means of Craig’s interpolation

The problem is still undecidable, however, for many practical cases, this approach

converges

Jan Kofroň: Behaviour Models and Verification 9

CRAIG’S INTERPOLANTS

Definition (Craig’s interpolant):

Let A, B be formulae such that A ∧ B → ⊥. Formula I is an interpolant for (A, B) iff

A → I,

I ∧ B → ⊥, and

Var(I) ⊆ Var(A) ∩ Var(B)

Theorem (Craig, 1957)1:

For each pair of propositional formulae A, B such that A ∧ B → ⊥, there exists an

interpolant I for (A, B).

1William Craig. (1957). Three Uses of the Herbrand-Gentzen Theorem in Relating Model Theory and

Proof Theory. Journal of Symbolic Logic, 22(3):269-285. DOI: 10.2307/2963594

Jan Kofroň: Behaviour Models and Verification 10

CRAIG’S INTERPOLANTS

For given formulae (A, B), interpolant is not unique

Variability

complexity

number of connectives

number of unique variables

logical strength

Example:

A = {a1ā2, ā1ā3, a2}, B = {ā2a3, a2a4, ā4}
I1 = ā3 ∧ a2

I2 = ā3

I3 = ā3 ∨ ā2

Jan Kofroň: Behaviour Models and Verification 11

GRAPHICAL VIEW OF INTERPOLANT

A
B

Jan Kofroň: Behaviour Models and Verification 12

GRAPHICAL VIEW OF INTERPOLANT

A
B

I1

Jan Kofroň: Behaviour Models and Verification 13

GRAPHICAL VIEW OF INTERPOLANT

A
B

I1 I2

Jan Kofroň: Behaviour Models and Verification 14

GRAPHICAL VIEW OF INTERPOLANT

A
B

I1

I3

Jan Kofroň: Behaviour Models and Verification 15

INTERPOLANTS AS STATES APPROXIMATION

Interpolants can serve as over-approximation of sets of (reachable) states

Why not using the exact representation of states?

interpolant is usually simpler than precise representation

model checking algorithm can converge faster – in less iterations (later)

Interpolant can be computed from resolution refutation proof of unsatisfiability

in linear time wrt. proof size

various interpolation systems exist

Jan Kofroň: Behaviour Models and Verification 16

INTERPOLATION-BASED MODEL CHECKING

The idea is to use approach of bounded model checking while attempting to find

fixpoint of over-approximation of reachable states w.r.t. transition relation

Since state space is finite (BMC), algorithm always finishes

however, state space size can be huge, practically equal to unbounded

it can take very long

therefore, we need smart way to simplify, i.e., over-approximate sets of states

Error state can be reachable (from over-approximation) due to too coarse

over-approximation

⇒ refine over-approximation

Jan Kofroň: Behaviour Models and Verification 17

SAFE OVER-APPROXIMATION

Safe over-approximation of set of states represented by Aw.r.t. E is formula O such

that:

A =⇒ O, and

O ∩ E = ∅

Wewant to find either safe over-approximation of all reachable states or real error

Jan Kofroň: Behaviour Models and Verification 18

VERIFICATION EXAMPLE

I E

O1
1

O2
1

O1
2O
1
3

O2
3O

3
3 ≡ O2

3

Jan Kofroň: Behaviour Models and Verification 19

VERIFICATION EXAMPLE

I E

O1
1

O2
1

O1
2O
1
3

O2
3O

3
3 ≡ O2

3

Jan Kofroň: Behaviour Models and Verification 20

VERIFICATION EXAMPLE

I E

O1
1

O2
1

O1
2O
1
3

O2
3O

3
3 ≡ O2

3

Jan Kofroň: Behaviour Models and Verification 21

VERIFICATION EXAMPLE

I E

O1
1

O2
1

O1
2

O1
3

O2
3O

3
3 ≡ O2

3

Jan Kofroň: Behaviour Models and Verification 22

VERIFICATION EXAMPLE

I E

O1
1

O2
1

O1
2

O1
3

O2
3O

3
3 ≡ O2

3

Jan Kofroň: Behaviour Models and Verification 23

VERIFICATION EXAMPLE

I E

O1
1

O2
1

O1
2

O1
3

O2
3

O
3
3 ≡ O2

3

Jan Kofroň: Behaviour Models and Verification 24

VERIFICATION EXAMPLE

I E

O1
1

O2
1

O1
2

O1
3

O2
3

O
3
3 ≡ O2

3

Jan Kofroň: Behaviour Models and Verification 25

APPROACH FORMALLY

Initial checks:

General case (start with k = 1):

Splitting ψk for interpolation:

I(V0) ∧ E(V0) is SAT =⇒ error

I(V0) ∧ T(V0,V1) ∧ E(V1) is SAT =⇒ error

ψk(Si) ≡ Si(V0) ∧
[∧
0≤i<k

T(Vi,Vi+1)
]
∧ E(Vk)

A ≡ Si(V0) ∧ T(V0,V1)

B ≡
[∧
1≤i<k

T(Vi,Vi+1)
]
∧ E(Vk)

Si+1 = interpolant for (A, B)

Si is i-th over-approximation of I

Jan Kofroň: Behaviour Models and Verification 26

VERIFICATION ALGORITHM

function VERIFY(M, E)

if I ∩ E 6= ∅ then return Error

end if

k := 1

while true do

result := FindFP(M, E, k)

if result is unknown then

k := k+ 1

else return result

end if

end while

end function

function FINDFP(M, E, k)

S0 := I

i := 0

while ψM
k (Si) is UNSAT do

(A, B) := Split(ψM
k (Si))

Ti := Itp(A, B)[V := V′]
if Ti ∧ ¬Si is UNSAT then return safe

end if

Si+1 := Si ∨ Ti
i := i+ 1

end while

if Si = I then return unsafe

else return unknown

end if

end function

Jan Kofroň: Behaviour Models and Verification 27

IMPLEMENTATION

Front end transforms input program (e.g., in C) into formula representation

Model checking algorithm implemented in model checker

SAT checking and interpolant computation provided by (interpolating) SMT solver

OPENSMT2, SMTINTERPOL3

Tools employing interpolation: BLAST4, CPACHECKER5, SEAHORN (SPACER)6

2https://github.com/usi-verification-and-security/opensmt/
3https://github.com/ultimate-pa/smtinterpol/
4http://mtc.epfl.ch/software-tools/blast/index-epfl.php
5https://cpachecker.sosy-lab.org/
6https://seahorn.github.io/

Jan Kofroň: Behaviour Models and Verification 28

https://github.com/usi-verification-and-security/opensmt/
https://github.com/ultimate-pa/smtinterpol/
http://mtc.epfl.ch/software-tools/blast/index-epfl.php
https://cpachecker.sosy-lab.org/
https://seahorn.github.io/

	Motivation

