NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

12. COUNTER-EXAMPLE GUIDED ABSTRACTION REFINEMENT

Jan Kofron
FACULTY Department of
OF MATHEMATICS Distributed and
AND PHYSICS Dependable
g

Charles University

MOTIVATION

Verification of programs is undecidable problem

@ due toloops, threads, recursion, dynamic memory allocation, ...

In many cases, we can verify them
@ however, not using just brute force

@ by employing kind of abstraction

One significant source of undecidability is data non-determinism

@ userinput, random values, ...

Jan Kofrori: Behaviour Models and Verification

MOTIVATION

Verification of programs is undecidable problem

@ due toloops, threads, recursion, dynamic memory allocation, ...

In many cases, we can verify them
@ however, not using just brute force

@ by employing kind of abstraction

One significant source of undecidability is data non-determinism

@ userinput, random values, ...

Counter-Example Guided Abstraction Refinement—CEGAR

Jan Kofrori: Behaviour Models and Verification 3

CEGAR

while (x < 0)

X++;

assert (x != 0);

System model

assertion violations

Property specification

Jan Kofrori: Behaviour Models and Verification

%4\%
=

Model Checker

Property satisfied

Property violated

CEGAR

while (x < 0)

X++;

assert (x != 0);

System model

assertion violations

Property specification

Jan Kofrori: Behaviour Models and Verification

S
o

ﬁ

Model Checker

/A

Property satisfied

Property violated

OVERVIEW

1. Initial abstraction is created via replacing all data in tests with non-deterministic
Boolean values (predicates) and all data updates with skips

@ Boolean program over-approximates original program

Jan Kofrori: Behaviour Models and Verification 6

OVERVIEW

1. Initial abstraction is created via replacing all data in tests with non-deterministic
Boolean values (predicates) and all data updates with skips

@ Boolean program over-approximates original program
2. Boolean program is model checked

@ number of program paths is finite — it always terminates
@ no error found — program is safe, terminate
@ error found — analyse error and either

@ itisreal error—report it and terminate, or
@ itis spurious—refine abstraction, i.e., extend set of predicates

Jan Kofrori: Behaviour Models and Verification 7

OVERVIEW

1. Initial abstraction is created via replacing all data in tests with non-deterministic
Boolean values (predicates) and all data updates with skips
@ Boolean program over-approximates original program
2. Boolean program is model checked
@ number of program paths is finite — it always terminates

@ no error found — program is safe, terminate
@ error found — analyse error and either

@ itisreal error—report it and terminate, or
@ itis spurious—refine abstraction, i.e., extend set of predicates

3. Repeat from step 2
@ May not terminate—inevitable due to undecidability of software verification

Jan Kofrori: Behaviour Models and Verification 8

OVERVIEW

Concrete C program

Jan Kofrori: Behaviour Models and Verification 9

OVERVIEW

Abstraction

Concrete C program

Jan Kofrori: Behaviour Models and Verification

OVERVIEW

Abstraction

—>

Boolean
program

BP
model checker

Concrete C program

Jan Kofrori: Behaviour Models and Verification

OVERVIEW

Abstraction

—>

Boolean
program

BP
model checker

Concrete C program

Jan Kofrori: Behaviour Models and Verification

OK

—>

Property
satisfied

OVERVIEW

Abstraction

—>

Error analysis
Error

Boolean
program

BP
model checker

Concrete C program

Jan Kofrori: Behaviour Models and Verification

OK

:> Property
satisfied

OVERVIEW

Abstraction

—>

Error analysis| [—— >

ﬁ

Boolean
program

BP
model checker

Concrete C program

Jan Kofrori: Behaviour Models and Verification

feasible

OK

—>

Property
violated

Property
satisfied

OVERVIEW

Abstraction

infeasible

feasible

T (o]

—>

ﬁ

Boolean
program

BP
model checker

Concrete C program

Jan Kofrori: Behaviour Models and Verification

OK

—>

Property
violated

Property
satisfied

OVERVIEW

@
Abstraction

infeasible

feasible

T (o]

—>

ﬁ

Boolean
program

BP
model checker

Concrete C program

Jan Kofrori: Behaviour Models and Verification

OK

—>

Property
violated

Property
satisfied

CHALLENGES

Two operations of CEGAR loop are hard:
@ Checking error trace feasibility
@ Performing refinement, i.e., finding new predicates

Jan Kofrori: Behaviour Models and Verification

ERROR TRACE FEASIBILITY

We need to simulate abstract error trace on concrete program:
1. record path condition using symbolic execution
2. create path formula encoding error trace found

3. check path formula satisfiability using SMT solver

3.1 satisfiable formula — real error
3.2 unsatisfiable formula — spurious error — need for abstraction refinement

Jan Kofrori: Behaviour Models and Verification

EXAMPLE

Start with empty set of predicates—data replaced by non-deterministic values:

X = 2 X =2
if (x >= 20) if (%)
X = X % 20; skip;
if (x >= 10) if (*)
X = x [2; skip;
assert(x < 10); assert(*);

Jan Kofrori: Behaviour Models and Verification

EXAMPLE

Start with empty set of predicates—data replaced by non-deterministic values:

X = 2 X =2
if (x >= 20) if (%)
X = X % 20; skip;
if (x >= 10) if (*)
X = x [2; skip;
assert(x < 10); assert(*);

Orange means false, green means true

Jan Kofrori: Behaviour Models and Verification

EXAMPLE

Model check Boolean program and perform symbolic execution along error path:

X =72 X =2

if (*) if (x >= 20)
skip; X = x % 20;

if (*) if (x >= 10)
skip; X = x [2;

assert(+*); assert(x < 10);

Symbolic execution yields path predicates: {—(x > 20), =(x > 10), =(x < 10)}

Jan Kofrori: Behaviour Models and Verification

EXAMPLE

@ Path predicates form path condition: P; = (x < 20) A (x < 10) A (x > 10)

Jan Kofrori: Behaviour Models and Verification

EXAMPLE

@ Path predicates form path condition: P; = (x < 20) A (x < 10) A (x > 10)
@ P, is unsatisfiable — error path found is spurious — refinement needed

Jan Kofrori: Behaviour Models and Verification

EXAMPLE

@ Path predicates form path condition: P; = (x < 20) A (x < 10) A (x > 10)
@ P, is unsatisfiable — error path found is spurious — refinement needed
@ Predicate to add is computed using interpolation over predicates of P, : (A, B)

Jan Kofrori: Behaviour Models and Verification

EXAMPLE

@ Path predicates form path condition: P; = (x < 20) A (x < 10) A (x > 10)
@ P, is unsatisfiable — error path found is spurious — refinement needed
@ Predicate to add is computed using interpolation over predicates of P, : (A, B)

@ Interpolant is computed for each program location

Jan Kofrori: Behaviour Models and Verification

EXAMPLE

Path predicates form path condition: P, = (x < 20) A (x < 10) A (x > 10)
P, is unsatisfiable — error path found is spurious — refinement needed
Predicate to add is computed using interpolation over predicates of P, : (A, B)

Interpolant is computed for each program location
Predicate for refining abstraction = an interpolant before the first inconsistent
transition:

@ A= (x<20)A(x<10)

@ B=(x>10)

@ Interpolant |, of (A,B)isx <10

© 6 6 06 ¢

Jan Kofrori: Behaviour Models and Verification

EXAMPLE

Model check Boolean program and perform symbolic execution along error path:

x =72

if (%)

assume (%);

if (11_1)
assume (%);

assert(I_1);

Jan Kofrori: Behaviour Models and Verification

EXAMPLE

Model check Boolean program and perform symbolic execution along error path:

X =7 X =27

if (%) if (x >= 20)
assume (%); X = X % 20;

if (1I_1) if (x >= 10)
assume(%); X = x [2;

assert(l_1); assert(x < 10);

Symbolic execution path predicates: {—(x; > 20),x; > 10, X, = x,/2, 7(x, < 10)}

Jan Kofrori: Behaviour Models and Verification

EXAMPLE

@ Path predicates form path condition:
Py = —(x; > 20) A (X <10) A Xy = X;/2 A (%, < 10)

Jan Kofrori: Behaviour Models and Verification

EXAMPLE

@ Path predicates form path condition:
Py = —(x; > 20) A (X <10) A Xy = X;/2 A (%, < 10)

@ P, is unsatisfiable — error path found is spurious — refinement needed

Jan Kofrori: Behaviour Models and Verification

EXAMPLE

@ Path predicates form path condition:
Py = —(x; > 20) A (X <10) A Xy = X;/2 A (%, < 10)
@ P, is unsatisfiable — error path found is spurious — refinement needed
@ Predicate to add is computed using interpolation over predicates of P, : (A, B)
@ A=(x;>20)A (X, <10) A Xy = X,/2
@ B=—(x, <10)

Jan Kofrori: Behaviour Models and Verification

EXAMPLE

@ Path predicates form path condition:
Py = —(x; > 20) A (X <10) A Xy = X;/2 A (%, < 10)
@ P, is unsatisfiable — error path found is spurious — refinement needed
@ Predicate to add is computed using interpolation over predicates of P, : (A, B)

(*) A:_‘(X1220)/_‘(X1<10)/\X2:x1/2
o B:—‘(X2<1O)

@ Interpolant |, of (A, B) is x < 20
@ new predicate to be added to refine abstract program

Jan Kofrori: Behaviour Models and Verification

W

EXAMPLE

Model check Boolean program:

x = ?

if (1I_2)
assume(I_2);

if (!1(I_1))
assume(I_2);
assume(I_1);

assert(I_1);

Jan Kofrori: Behaviour Models and Verification

=

None of the four paths violates the assert
condition = the program is safe!

TooLs: SDV AND SLAM

Static Driver Verifier (SDV) from Microsoft Research

Employs results of SLAM project—uverification engine that uses CEGAR
Purpose: Analysing third party Windows device drivers

Specific rules about proper usage of Windows kernel API

Drivers have feasible code size and a strict environment
https://www.microsoft.com/en-us/research/project/slam/

© © 6 06 606 ©

Jan Kofrori: Behaviour Models and Verification

https://www.microsoft.com/en-us/research/project/slam/

TOOLS: BLAST

@ Blast employs lazy abstraction—abstracting just those parts of state space to
avoid spurious errors

©

More efficient in terms of memory usage and time consumption
@ Traverses just fraction of entire state space
@ http://mtc.epfl.ch/software-tools/blast/index-epfl.php

Jan Kofrori: Behaviour Models and Verification

http://mtc.epfl.ch/software-tools/blast/index-epfl.php

	Motivation

