
NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

12. COUNTER-EXAMPLE GUIDED ABSTRACTION REFINEMENT

Jan Kofroň

MOTIVATION

Verification of programs is undecidable problem

due to loops, threads, recursion, dynamic memory allocation, ...

In many cases, we can verify them

however, not using just brute force

by employing kind of abstraction

One significant source of undecidability is data non-determinism

user input, random values, ...

Counter-Example Guided Abstraction Refinement—CEGAR

Jan Kofroň: Behaviour Models and Verification 2

MOTIVATION

Verification of programs is undecidable problem

due to loops, threads, recursion, dynamic memory allocation, ...

In many cases, we can verify them

however, not using just brute force

by employing kind of abstraction

One significant source of undecidability is data non-determinism

user input, random values, ...

Counter-Example Guided Abstraction Refinement—CEGAR

Jan Kofroň: Behaviour Models and Verification 3

CEGAR

x = *;
while (x < 0)
x++;

assert (x != 0);

Systemmodel

assertion violations

Property specification

Model Checker

Property satisfied

Property violated

Jan Kofroň: Behaviour Models and Verification 4

CEGAR

x = *;
while (x < 0)
x++;

assert (x != 0);

Systemmodel

assertion violations

Property specification

Model Checker

Property satisfied

Property violated

Jan Kofroň: Behaviour Models and Verification 5

OVERVIEW

1. Initial abstraction is created via replacing all data in tests with non-deterministic
Boolean values (predicates) and all data updates with skips

Boolean program over-approximates original program

2. Boolean program is model checked

number of program paths is finite→ it always terminates

no error found→ program is safe, terminate
error found→ analyse error and either

it is real error—report it and terminate, or

it is spurious—refine abstraction, i.e., extend set of predicates

3. Repeat from step 2

May not terminate—inevitable due to undecidability of software verification

Jan Kofroň: Behaviour Models and Verification 6

OVERVIEW

1. Initial abstraction is created via replacing all data in tests with non-deterministic
Boolean values (predicates) and all data updates with skips

Boolean program over-approximates original program

2. Boolean program is model checked

number of program paths is finite→ it always terminates

no error found→ program is safe, terminate
error found→ analyse error and either

it is real error—report it and terminate, or

it is spurious—refine abstraction, i.e., extend set of predicates

3. Repeat from step 2

May not terminate—inevitable due to undecidability of software verification

Jan Kofroň: Behaviour Models and Verification 7

OVERVIEW

1. Initial abstraction is created via replacing all data in tests with non-deterministic
Boolean values (predicates) and all data updates with skips

Boolean program over-approximates original program

2. Boolean program is model checked

number of program paths is finite→ it always terminates

no error found→ program is safe, terminate
error found→ analyse error and either

it is real error—report it and terminate, or

it is spurious—refine abstraction, i.e., extend set of predicates

3. Repeat from step 2

May not terminate—inevitable due to undecidability of software verification

Jan Kofroň: Behaviour Models and Verification 8

OVERVIEW

Concrete C program

Abstraction
BP

model checker

Boolean

program

OK
Property

satisfied

Error analysis

Error

feasible
Property

violated

infeasible

Refinement

Predicates

Jan Kofroň: Behaviour Models and Verification 9

OVERVIEW

Concrete C program

Abstraction

BP

model checker

Boolean

program

OK
Property

satisfied

Error analysis

Error

feasible
Property

violated

infeasible

Refinement

Predicates

Jan Kofroň: Behaviour Models and Verification 10

OVERVIEW

Concrete C program

Abstraction
BP

model checker

Boolean

program

OK
Property

satisfied

Error analysis

Error

feasible
Property

violated

infeasible

Refinement

Predicates

Jan Kofroň: Behaviour Models and Verification 11

OVERVIEW

Concrete C program

Abstraction
BP

model checker

Boolean

program

OK
Property

satisfied

Error analysis

Error

feasible
Property

violated

infeasible

Refinement

Predicates

Jan Kofroň: Behaviour Models and Verification 12

OVERVIEW

Concrete C program

Abstraction
BP

model checker

Boolean

program

OK
Property

satisfied

Error analysis

Error

feasible
Property

violated

infeasible

Refinement

Predicates

Jan Kofroň: Behaviour Models and Verification 13

OVERVIEW

Concrete C program

Abstraction
BP

model checker

Boolean

program

OK
Property

satisfied

Error analysis

Error

feasible
Property

violated

infeasible

Refinement

Predicates

Jan Kofroň: Behaviour Models and Verification 14

OVERVIEW

Concrete C program

Abstraction
BP

model checker

Boolean

program

OK
Property

satisfied

Error analysis

Error

feasible
Property

violated

infeasible

Refinement

Predicates

Jan Kofroň: Behaviour Models and Verification 15

OVERVIEW

Concrete C program

Abstraction
BP

model checker

Boolean

program

OK
Property

satisfied

Error analysis

Error

feasible
Property

violated

infeasible

Refinement

Predicates

Jan Kofroň: Behaviour Models and Verification 16

CHALLENGES

Two operations of CEGAR loop are hard:

Checking error trace feasibility

Performing refinement, i.e., finding new predicates

Jan Kofroň: Behaviour Models and Verification 17

ERROR TRACE FEASIBILITY

We need to simulate abstract error trace on concrete program:

1. record path condition using symbolic execution

2. create path formula encoding error trace found

3. check path formula satisfiability using SMT solver

3.1 satisfiable formula→ real error

3.2 unsatisfiable formula→ spurious error→ need for abstraction refinement

Jan Kofroň: Behaviour Models and Verification 18

EXAMPLE

Start with empty set of predicates—data replaced by non-deterministic values:

x = ?

i f (x >= 20)

x = x % 20 ;

i f (x >= 10)

x = x / 2 ;

a s s e r t (x < 1 0) ;

⇒

x = ?

i f (*)
s k i p ;

i f (*)
s k i p ;

a s s e r t (*) ;

Orangemeans false, greenmeans true

Jan Kofroň: Behaviour Models and Verification 19

EXAMPLE

Start with empty set of predicates—data replaced by non-deterministic values:

x = ?

i f (x >= 20)

x = x % 20 ;

i f (x >= 10)

x = x / 2 ;

a s s e r t (x < 1 0) ;

⇒

x = ?

i f (*)
s k i p ;

i f (*)
s k i p ;

a s s e r t (*) ;

Orangemeans false, greenmeans true

Jan Kofroň: Behaviour Models and Verification 20

EXAMPLE

Model check Boolean program and perform symbolic execution along error path:

x = ?

i f (*)
s k i p ;

i f (*)
s k i p ;

a s s e r t (*) ;

⇒

x = ?

i f (x >= 20)
x = x % 20 ;

i f (x >= 10)
x = x / 2 ;

a s s e r t (x < 10) ;

Symbolic execution yields path predicates: {¬(x ≥ 20),¬(x ≥ 10),¬(x < 10)}

Jan Kofroň: Behaviour Models and Verification 21

EXAMPLE

Path predicates form path condition: P1 ≡ (x < 20) ∧ (x < 10) ∧ (x ≥ 10)

P1 is unsatisfiable→ error path found is spurious→ refinement needed

Predicate to add is computed using interpolation over predicates of P1 : (A, B)

Interpolant is computed for each program location

Predicate for refining abstraction≡ an interpolant before the first inconsistent
transition:

A = (x < 20) ∧ (x < 10)
B = (x ≥ 10)
Interpolant I1 of (A, B) is x < 10

Jan Kofroň: Behaviour Models and Verification 22

EXAMPLE

Path predicates form path condition: P1 ≡ (x < 20) ∧ (x < 10) ∧ (x ≥ 10)

P1 is unsatisfiable→ error path found is spurious→ refinement needed

Predicate to add is computed using interpolation over predicates of P1 : (A, B)

Interpolant is computed for each program location

Predicate for refining abstraction≡ an interpolant before the first inconsistent
transition:

A = (x < 20) ∧ (x < 10)
B = (x ≥ 10)
Interpolant I1 of (A, B) is x < 10

Jan Kofroň: Behaviour Models and Verification 23

EXAMPLE

Path predicates form path condition: P1 ≡ (x < 20) ∧ (x < 10) ∧ (x ≥ 10)

P1 is unsatisfiable→ error path found is spurious→ refinement needed

Predicate to add is computed using interpolation over predicates of P1 : (A, B)

Interpolant is computed for each program location

Predicate for refining abstraction≡ an interpolant before the first inconsistent
transition:

A = (x < 20) ∧ (x < 10)
B = (x ≥ 10)
Interpolant I1 of (A, B) is x < 10

Jan Kofroň: Behaviour Models and Verification 24

EXAMPLE

Path predicates form path condition: P1 ≡ (x < 20) ∧ (x < 10) ∧ (x ≥ 10)

P1 is unsatisfiable→ error path found is spurious→ refinement needed

Predicate to add is computed using interpolation over predicates of P1 : (A, B)

Interpolant is computed for each program location

Predicate for refining abstraction≡ an interpolant before the first inconsistent
transition:

A = (x < 20) ∧ (x < 10)
B = (x ≥ 10)
Interpolant I1 of (A, B) is x < 10

Jan Kofroň: Behaviour Models and Verification 25

EXAMPLE

Path predicates form path condition: P1 ≡ (x < 20) ∧ (x < 10) ∧ (x ≥ 10)

P1 is unsatisfiable→ error path found is spurious→ refinement needed

Predicate to add is computed using interpolation over predicates of P1 : (A, B)

Interpolant is computed for each program location

Predicate for refining abstraction≡ an interpolant before the first inconsistent
transition:

A = (x < 20) ∧ (x < 10)
B = (x ≥ 10)
Interpolant I1 of (A, B) is x < 10

Jan Kofroň: Behaviour Models and Verification 26

EXAMPLE

Model check Boolean program and perform symbolic execution along error path:

x = ?

i f (*)
assume (*) ;

i f (!I_1)
assume (*) ;

a s s e r t (I_1) ;

⇒

Symbolic execution path predicates: {¬(x1 ≥ 20), x1 ≥ 10, x2 = x1/2,¬(x2 < 10)}

Jan Kofroň: Behaviour Models and Verification 27

EXAMPLE

Model check Boolean program and perform symbolic execution along error path:

x = ?

i f (*)
assume (*) ;

i f (!I_1)
assume (*) ;

a s s e r t (I_1) ;

⇒

x = ?

i f (x >= 20)
x = x % 20 ;

i f (x >= 10)
x = x / 2 ;

a s s e r t (x < 10) ;

Symbolic execution path predicates: {¬(x1 ≥ 20), x1 ≥ 10, x2 = x1/2,¬(x2 < 10)}

Jan Kofroň: Behaviour Models and Verification 28

EXAMPLE

Path predicates form path condition:

P2 ≡ ¬(x1 ≥ 20) ∧ ¬(x1 < 10) ∧ x2 = x1/2 ∧ ¬(x2 < 10)

P2 is unsatisfiable→ error path found is spurious→ refinement needed

Predicate to add is computed using interpolation over predicates of P2 : (A, B)

A = ¬(x1 ≥ 20) ∧ ¬(x1 < 10) ∧ x2 = x1/2
B = ¬(x2 < 10)

Interpolant I2 of (A, B) is x < 20

new predicate to be added to refine abstract program

Jan Kofroň: Behaviour Models and Verification 29

EXAMPLE

Path predicates form path condition:

P2 ≡ ¬(x1 ≥ 20) ∧ ¬(x1 < 10) ∧ x2 = x1/2 ∧ ¬(x2 < 10)

P2 is unsatisfiable→ error path found is spurious→ refinement needed

Predicate to add is computed using interpolation over predicates of P2 : (A, B)

A = ¬(x1 ≥ 20) ∧ ¬(x1 < 10) ∧ x2 = x1/2
B = ¬(x2 < 10)

Interpolant I2 of (A, B) is x < 20

new predicate to be added to refine abstract program

Jan Kofroň: Behaviour Models and Verification 30

EXAMPLE

Path predicates form path condition:

P2 ≡ ¬(x1 ≥ 20) ∧ ¬(x1 < 10) ∧ x2 = x1/2 ∧ ¬(x2 < 10)

P2 is unsatisfiable→ error path found is spurious→ refinement needed

Predicate to add is computed using interpolation over predicates of P2 : (A, B)

A = ¬(x1 ≥ 20) ∧ ¬(x1 < 10) ∧ x2 = x1/2
B = ¬(x2 < 10)

Interpolant I2 of (A, B) is x < 20

new predicate to be added to refine abstract program

Jan Kofroň: Behaviour Models and Verification 31

EXAMPLE

Path predicates form path condition:

P2 ≡ ¬(x1 ≥ 20) ∧ ¬(x1 < 10) ∧ x2 = x1/2 ∧ ¬(x2 < 10)

P2 is unsatisfiable→ error path found is spurious→ refinement needed

Predicate to add is computed using interpolation over predicates of P2 : (A, B)

A = ¬(x1 ≥ 20) ∧ ¬(x1 < 10) ∧ x2 = x1/2
B = ¬(x2 < 10)

Interpolant I2 of (A, B) is x < 20

new predicate to be added to refine abstract program

Jan Kofroň: Behaviour Models and Verification 32

EXAMPLE

Model check Boolean program:

x = ?

i f (! I_2)
assume (I_2) ;

i f (! (I_1))
assume (I_2) ;

assume (I_1) ;

a s s e r t (I_1) ;

⇒ None of the four paths violates the assert

condition⇒ the program is safe!

Jan Kofroň: Behaviour Models and Verification 33

TOOLS: SDV AND SLAM

Static Driver Verifier (SDV) fromMicrosoft Research

Employs results of SLAM project—verification engine that uses CEGAR

Purpose: Analysing third party Windows device drivers

Specific rules about proper usage of Windows kernel API

Drivers have feasible code size and a strict environment

https://www.microsoft.com/en-us/research/project/slam/

Jan Kofroň: Behaviour Models and Verification 34

https://www.microsoft.com/en-us/research/project/slam/

TOOLS: BLAST

Blast employs lazy abstraction—abstracting just those parts of state space to

avoid spurious errors

More efficient in terms of memory usage and time consumption

Traverses just fraction of entire state space

http://mtc.epfl.ch/software-tools/blast/index-epfl.php

Jan Kofroň: Behaviour Models and Verification 35

http://mtc.epfl.ch/software-tools/blast/index-epfl.php

	Motivation

