MODULE TwoPhaseCommit

This is a TLA+ specification of the two-phase commit protocol used for distributed data bases.
It models only one instance of the protocol, i.e. for a single transaction.

CONSTANT Node set of nodes other than the coordinator

VARIABLES
cState, the state of the coordinator
nState, the state of the non-coordinator nodes

committed, nodes that the coordinator knows are OK for committing
msgs messages sent during the protocol

vars = (cState, nState, committed, msgs)

Possible states of coordinator.

CState = {“preparing”, “committed”, “aborted” }

Possible states of non-coordinator participants.
N

NState = {“preparing”, “readyCommit”, “readyAbort”, “committed”, “aborted” }

Messages sent during the protocol.

Message =
node informs coordinator about its decision
[kind : {"commit”, “abort”}, node : Node] U

coordinator tells nodes whether to commit or abort

[kind : {"doCommit”, “doAbort” }]

commit(n) = [kind — “commit”, node — n)
abort(n) = [kind — “abort”, node — n]
doCommit = [kind — “doCommit”]

doAbort = [kind — “doAbort”]

The following predicate specifies what values the variables can take during an execution of the
protocol.
TypeOK =

A cState € CState

A nState € [Node — NState]

A committed C Node

A msgs € Message

The initial state of the protocol.
Init =
A cState = "preparing”
A nState = [n € Node — “preparing”]
A committed = {}
A msgs = {}



The following action formulas describe the possible transitions of the nodes.

A participant decides and informs the coordinator of its decision.
Decide(n) =
A nState|n] = “preparing”
A V A nState’ = [nState EXCEPT ![n] = “readyCommit”]
A msgs’ = msgs U { commit(n)}
V' A nState’ = [nState EXCEPT ![n] = "readyAbort”]
A msgs’ = msgs U {abort(n)}
A UNCHANGED (cState, committed)

The coordinator receives a new commit decision for some participant. If all participants wish to
commit, it sends an order to commit.
RevCommit(n) =
An & committed A commit(n) € msgs
A committed’ = committed U {n}
AIF committed’ = Node
THEN A cState’ = “committed”
A msgs’ = msgs U {doCommit}
ELSE UNCHANGED (cState, msgs)
A nState’ = nState

The coordinator receives an abort decision and sends an order to abort.
RevAbort(n) =

A abort(n) € msgs

A cState’ = “aborted”

A msgs’ = msgs U {doAbort}

A UNCHANGED (nState, committed)

A participant receives a commit or abort order from the coordinator.

Ezecute(n) =
AV doCommit € msgs A nState’ = [nState EXCEPT ![n] = “committed”]
V doAbort € msgs A nState’ = [nState EXCEPT ![n] = “aborted"]
A UNCHANGED (cState, committed, msgs)

The overall next-state relation is the disjunction of the action formulas defined previously.

Next =
dn € Node : Decide(n) V RecvCommit(n) V RcvAbort(n) V Ezecute(n)

Spec 2 Init A O[Next]pars A WE o (Neat)

NoConflictingOrders =
doCommit € msgs =
A —(doAbort € msgs)
AY q € Node : nStatelq] € {"readyCommit", “committed” }



Correctness properties.

The coordinator never sends both a doCommit and a doAbort message.

CommitOrAbort = —(doCommit € msgs A doAbort € msgs)

The coordinator may commit only if all participants wish to commit and no participant wishes to
abort.

AbortWins =
doCommit € msgs =
Vn € Node :
A commit(n) € msgs A nState[n] € {"readyCommit”, “committed” }
A abort(n) ¢ msgs

Terminal =
V cState = “aborted” AV n € Node : nState[n] = "aborted”
V cState = “committed” AV n € Node : nState[n] = “committed”

The protocol may only terminate in a terminal state.

CorrectTermination = (~ENABLED (Next), )= Terminal

vars

. A .
Liveness = < Terminal

Two-phase commitment implements distributed commitment.

DC 2 INSTANCE DistributedCommit

THEOREM Spec = DC'! Spec




