
module DistributedCommit
This is a high-level TLA+ specification of a distributed commit protocol. A set of nodes individ-
ually decide whether they wish to commit or abort a transaction. Second, the transaction will be
committed iff every node wishes to commit.

constant Node set of participating nodes

variable nState state of each participant

Possible states of nodes.

NState
∆
= {“preparing”, “readyCommit”, “readyAbort”, “committed”, “aborted”}

Initially, every node is preparing the transaction.

Init
∆
= nState = [n ∈ Node 7→ “preparing”]

A node decides whether it wishes to commit or abort.

Decide(n)
∆
=

∧ nState[n] = “preparing”
∧ ∨ nState ′ = [nState except ! [n] = “readyCommit”]

∨ nState ′ = [nState except ! [n] = “readyAbort”]

A node may commit only if all nodes wish to do so.

Commit(n)
∆
=

∧ ∀ q ∈ Node : nState[q ] ∈ {“readyCommit”, “committed”}
∧ nState ′ = [nState except ! [n] = “committed”]

A node aborts if some node requests an abort.

Abort(n)
∆
=

∧ ∃ q ∈ Node : nState[q ] ∈ {“readyAbort”, “aborted”}
∧ nState ′ = [nState except ! [n] = “aborted”]

The next-state relation is the disjunction of the above actions.

Next
∆
= ∃n ∈ Node : Decide(n) ∨ Commit(n) ∨Abort(n)

Overall specification.

Spec
∆
= Init ∧2[Next ]nState ∧WFnState(Next)

Check type correctness.

TypeOK
∆
= nState ∈ [Node → NState]

Main safety property: nodes may commit only if all nodes agree.

Safety
∆
=

∀n ∈ Node : nState[n] = “committed” ⇒
∀ q ∈ Node : nState[n] ∈ {“readyCommit”, “committed”}

Non-property: no node may ever commit.

1



NeverCommit
∆
= ∀n ∈ Node : nState[n] 6= “committed”

Liveness property: nodes will eventually commit or abort. (Requires fairness condition on next-

state relation.)

Liveness
∆
= ∀n ∈ Node : 3(nState[n] ∈ {“committed”, “aborted”})

2


