
module TwoPhaseCommit
This is a TLA+ specification of the two-phase commit protocol used for distributed data bases.

It models only one instance of the protocol, i .e. for a single transaction.

constant Node set of nodes other than the coordinator

variables
cState, the state of the coordinator

nState, the state of the non-coordinator nodes

committed , nodes that the coordinator knows are OK for committing

msgs messages sent during the protocol

vars
∆
= 〈cState, nState, committed , msgs〉

Possible states of coordinator.

CState
∆
= {“preparing”, “committed”, “aborted”}

Possible states of non-coordinator participants.

NState
∆
= {“preparing”, “readyCommit”, “readyAbort”, “committed”, “aborted”}

Messages sent during the protocol.

Message
∆
=

node informs coordinator about its decision

[kind : {“commit”, “abort”}, node : Node] ∪
coordinator tells nodes whether to commit or abort

[kind : {“doCommit”, “doAbort”}]

commit(n)
∆
= [kind 7→ “commit”, node 7→ n]

abort(n)
∆
= [kind 7→ “abort”, node 7→ n]

doCommit
∆
= [kind 7→ “doCommit”]

doAbort
∆
= [kind 7→ “doAbort”]

The following predicate specifies what values the variables can take during an execution of the

protocol.

TypeOK
∆
=

∧ cState ∈ CState
∧ nState ∈ [Node → NState]
∧ committed ⊆ Node
∧msgs ⊆ Message

The initial state of the protocol.

Init
∆
=

∧ cState = “preparing”
∧ nState = [n ∈ Node 7→ “preparing”]
∧ committed = {}
∧msgs = {}

1



The following action formulas describe the possible transitions of the nodes.

A participant decides and informs the coordinator of its decision.

Decide(n)
∆
=

∧ nState[n] = “preparing”
∧ ∨ ∧ nState ′ = [nState except ! [n] = “readyCommit”]

∧msgs ′ = msgs ∪ {commit(n)}
∨ ∧ nState ′ = [nState except ! [n] = “readyAbort”]
∧msgs ′ = msgs ∪ {abort(n)}

∧ unchanged 〈cState, committed〉

The coordinator receives a new commit decision for some participant. If all participants wish to

commit, it sends an order to commit.

RcvCommit(n)
∆
=

∧ n /∈ committed ∧ commit(n) ∈ msgs
∧ committed ′ = committed ∪ {n}
∧ if committed ′ = Node

then ∧ cState ′ = “committed”
∧msgs ′ = msgs ∪ {doCommit}

else unchanged 〈cState, msgs〉
∧ nState ′ = nState

The coordinator receives an abort decision and sends an order to abort.

RcvAbort(n)
∆
=

∧ abort(n) ∈ msgs
∧ cState ′ = “aborted”
∧msgs ′ = msgs ∪ {doAbort}
∧ unchanged 〈nState, committed〉

A participant receives a commit or abort order from the coordinator.

Execute(n)
∆
=

∧ ∨ doCommit ∈ msgs ∧ nState ′ = [nState except ! [n] = “committed”]
∨ doAbort ∈ msgs ∧ nState ′ = [nState except ! [n] = “aborted”]

∧ unchanged 〈cState, committed , msgs〉

The overall next-state relation is the disjunction of the action formulas defined previously.

Next
∆
=

∃n ∈ Node : Decide(n) ∨ RcvCommit(n) ∨ RcvAbort(n) ∨ Execute(n)

Spec
∆
= Init ∧2[Next ]vars ∧WFvars(Next)

NoConflictingOrders
∆
=

doCommit ∈ msgs ⇒
∧¬(doAbort ∈ msgs)
∧ ∀ q ∈ Node : nState[q ] ∈ {“readyCommit”, “committed”}

2



Correctness properties.

The coordinator never sends both a doCommit and a doAbort message.

CommitOrAbort
∆
= ¬(doCommit ∈ msgs ∧ doAbort ∈ msgs)

The coordinator may commit only if all participants wish to commit and no participant wishes to

abort.

AbortWins
∆
=

doCommit ∈ msgs ⇒
∀n ∈ Node :
∧ commit(n) ∈ msgs ∧ nState[n] ∈ {“readyCommit”, “committed”}
∧ abort(n) /∈ msgs

Terminal
∆
=

∨ cState = “aborted” ∧ ∀n ∈ Node : nState[n] = “aborted”
∨ cState = “committed” ∧ ∀n ∈ Node : nState[n] = “committed”

The protocol may only terminate in a terminal state.

CorrectTermination
∆
= (¬enabled 〈Next〉vars)⇒ Terminal

Liveness
∆
= 3Terminal

Two-phase commitment implements distributed commitment.

DC
∆
= instance DistributedCommit

theorem Spec ⇒ DC !Spec

3


