MODULE Distributed Commit

This is a high-level TLA+ specification of a distributed commit protocol. A set of nodes individ-
ually decide whether they wish to commit or abort a transaction. Second, the transaction will be
committed iff every node wishes to commit.

CONSTANT Node set of participating nodes
VARIABLE nState state of each participant

Possible states of nodes.

NState = {“preparing”, “readyCommit”, “readyAbort”, “committed”, “aborted” }

Initially, every node is preparing the transaction.

Init = nState = [n € Node — “preparing”]

A node decides whether it wishes to commit or abort.
Decide(n) =
A nState[n] = “preparing”
A V nState’ = [nState EXCEPT ![n] = "readyCommit” |
V nState’ = [nState EXCEPT ![n] = “readyAbort” ]

A node may commit only if all nodes wish to do so.

Commit(n) =
AY q € Node : nStatelq] € {"readyCommit”, “committed” }
A nState’ = [nState EXCEPT ![n] = “committed”]

A node aborts if some node requests an abort.

Abort(n) =
A Jq € Node : nState[q] € {"readyAbort”, “aborted" }
A nState’ = [nState EXCEPT ![n] = “aborted”]

The next-state relation is the disjunction of the above actions.

Next = 3n € Node : Decide(n) vV Commit(n) V Abort(n)

Overall specification.

Spec = Init A O[Next]|nstate N WF pstate (Next)

Check type correctness.

TypeOK = nState € [Node — NState]

Main safety property: nodes may commit only if all nodes agree.
Safety =
V¥ n € Node : nState[n] = “committed” =
V¢ € Node : nState[n] € {“readyCommit”, “committed” }

Non-property: no node may ever commit.



NeverCommit = ¥ n € Node : nState[n] # “committed”

Liveness property: nodes will eventually commit or abort. (Requires fairness condition on next-

state relation.)
Liveness = ¥n € Node : O(nState[n] € {“committed”, “aborted” })




