NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

LAB 03 — SPIN EXERCISES

Jan Kofron

FACULTY Department of

OF MATHEMATICS Disgibuteg a';}d

=% AND PHYSICS ependable
) Charles University

RECALL: SPIN

Explicit state model checker

@ Generates all states of the model to verify
Input language - Promela

@ Set of processes with interleaving statements

@ Communicating via global variables and channels

Finite state models only!

Jan Kofrori: Behaviour Models and Verification

EXAMPLE OF PROMELA

bool turn, flag[2];
byte ncrit;

active [2] proctype user()
{
assert(_pid == o || _pid == 1);
again:
flag[_pid] = 1;
turn = _pid;
(flag[1 - _pid] == o || turn == 1 - _pid);
ncrit ++;
assert(ncrit == 1);
/% critical section %/
ncrit - -;
flag[_pid] = o;
goto again;

}

Jan Kofrori: Behaviour Models and Verification 3

GUI FOR SPIN

@ Several implementations
@ The best one (and sort-of official) is iSpin

@ Tcl script, TcITk interpreter required
@ For windows | recommend ActiveTcl
@ Be sure to set paths to both spin.exe and gcc.exe (I used cygwin)

Jan Kofrori: Behaviour Models and Verification 4

EVALUATING SEARCH COMPLEXITY — SIMULATION

How many reachable states does the following naive Promela model generate?

init {
byte i = o0;
do
0= 0+ 1,
od

}

$ spin -p -1 ex1a.pml

Jan Kofrori: Behaviour Models and Verification 5

EVALUATING SEARCH COMPLEXITY — VERIFICATION

Now we verify the model:

$ spin -a exta.pml
$ gcc -0 pan pan.c
$./pan

Jan Kofrori: Behaviour Models and Verification 6

EXERCISE

Estimate how many reachable states there are for the following model.
Draw the complete reachability tree.

#define N 2

init {
chan dummy = [N] of { byte };
do
dummy!85
dummy!170
od
}

Jan Kofrori: Behaviour Models and Verification 7

EXERCISE — EVALUATION

$ spin -m -a ex1ib.pml # use -m to ignore buffer overflow
$ gcc -0 pan pan.c
$./pan

Jan Kofrori: Behaviour Models and Verification 8

EXERCISE — CONTD.

What happens if you set N to 3? Express the number of states as a function of N. Use

the formula to calculate how many states there will be if you set N to 142 Check your
prediction:

$ spin -m -a extib.pml
$ gcc -0 pan pan.c
$./pan

Jan Kofrori: Behaviour Models and Verification 9

COMMENTS ON MEMORY USAGE I.

The efficiency of the conventional reachability analysis is determined by the state

space storage functions. To study this, repeat the last verification run with a smaller
and a bigger hash table for storing reachable states:

$ pan -wio # hash table with 210 slots
$ pan -w20 # hash table with 220 slots

Jan Kofrori: Behaviour Models and Verification

COMMENTS ON MEMORY USAGE II.

Bit-state hashing method
@ Probabilistic approach
@ Uses all available (specified) memory
@ Might miss some states
$ spin -m -a ex.1b.pml
$ gcc -DBITSTATE -o pan pan.c
$./pan

Jan Kofrori: Behaviour Models and Verification

as before
different

EXERCISE: PRODUCER-CONSUMER MODEL

Describe producer/consumer problem in Promela using channels and check the model
for invalid end states (deadlocks) and channels’ buffer overruns

@ i.e, suppose channels are not blocked (messages get lost instead) and you must
control the number of messages within the channel by hand

Jan Kofrori: Behaviour Models and Verification

