NSWli01: System Behaviour Models and Verification LAB 06 - CTL AND OBDD EXERCISES

Jan Kofroň

FACULTY
OF MATHEMATICS
AND PHYSICS
Charles University
Department of
Distributed and Dependable

Systems

CTL Formulae Equivalence

1. Decide whether

- $f: A G E F p$
- g: EFp
are equivalent CTL formulae. Provide a proof.

CTL Formulae Equivalence

1. Decide whether

- $f: A G E F p$
- g: EFp
are equivalent CTL formulae. Provide a proof.

2. Is any following formula true?

- $f \Longrightarrow g$
- $g \Longrightarrow f$

CTL FORMULAE EqUIVALENCE

1. Decide whether

- $f:(E G q) \vee(E G p \wedge E F q)$
- $g: E(p \cup q)$
are equivalent CTL formulae. Provide a proof.

CTL Formulae Equivalence

1. Decide whether

- $f:(E G q) \vee(E G p \wedge E F q)$
- $g: E(p \cup q)$
are equivalent CTL formulae. Provide a proof.

2. Is any following formula true?

- $f \Longrightarrow g$
- $g \Longrightarrow f$

OBDD Exercises

1. Represent the following Boolean function using OBDD:

- $(a \wedge b \wedge \neg c) \vee((b \wedge c) \wedge(a \vee \neg b))$

Use various variable orderings:

- $a<b<c$
- $b<c<a$

OBDD ExERCISES

1. Represent the following Boolean function using OBDD:

- $(a \wedge b \wedge \neg c) \vee((b \wedge c) \wedge(a \vee \neg b))$

Use various variable orderings:

- $a<b<c$
- $b<c<a$

What is the simplest formula represented by the diagrams?

OBDD Exercises

1. Represent the following Boolean function using OBDD:

- $(a \wedge b \wedge \neg c) \vee((b \wedge c) \wedge(a \vee \neg b))$

Use various variable orderings:

- $a<b<c$
- $b<c<a$

What is the simplest formula represented by the diagrams?
2. Using OBDD, represent $\{4,12\}$ as subset of $\{0 . .15\}$ Use characteristic function: $f(x)=1 \Leftrightarrow x \in S$

OBDD Exercises

1. Represent the following Boolean function using OBDD:

- $(a \wedge b \wedge \neg c) \vee((b \wedge c) \wedge(a \vee \neg b))$

Use various variable orderings:

- $a<b<c$
- $b<c<a$

What is the simplest formula represented by the diagrams?
2. Using OBDD, represent $\{4,12\}$ as subset of $\{0 . .15\}$

Use characteristic function: $f(x)=1 \Leftrightarrow x \in S$
3. Represent subsets of $\{0 . .15\}$:

- $\{15,7\}$
- $\{0,4,13,8,5,12,1,9\}$
- $\{11,0,3,8,2,6,1,7\}$

