NSWl101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION 5. OBDD, LATTICES AND FIXPOINTS

Jan Kofroň

FACULTY
of MATHEMATICS
AND PHYSICS
Charles University
Department of
Distributed and Dependable

Systems

TODAY

- Ordered Binary Decision Diagrams (OBDDs)
- Lattices
- Fixpoints

EXPLICIT VS. SYMBOLIC MODEL CHECKING

Explicit model checking

- each particular state of model is explicitly represented in memory
- model is explored state-by-state

Symbolic model checking

- based on manipulation with Boolean formulae
- operates on entire sets of states rather than individual states
- usually substantial reduction of time and memory consumption

EXPLICIT VS. SYMBOLIC MODEL CHECKING

Explicit model checking

- each particular state of model is explicitly represented in m
- model is explored state-by-state

Symbolic model checking

- based on manipulation with Boolean formulae
- operates on entire sets of states rather than individual stat
- usually substantial reduction of time and memory consum

George Boole (1815-1864)
English matematician, philosopher and logician

Ordered Binary Decision Diagrams (OBDD)

Canonical representation for Boolean formulae

- often substantially more compact than traditional normal forms (CNF, DNF)
- variety of applications:
- symbolic simulation
- verification of combinational logic
- verification of finite-state concurrent systems

Based on binary decision trees

BINARY DECISION TREE

Binary tree with edges directed from root to leaves

- each node level associated with one particular variable
- the same variable ordering on each path from root to leaf
- one edge from each node represent T while the other represent \perp
- terminal nodes (leaves) correspond to final decision $-\top$ or \perp

Binary decision tree

- Every Boolean formula can be represented by binary decision tree
- Every binary decision tree represents a Boolean formula
- To decide upon value of formula upon given variable assignment, proceed from BDT root to leaf and follow edges according to values assigned to particular variables
- BDTs are not very concise representation of Boolean formulae - essentially same as truth tables, i.e., exponential in number of variables
- Lots of redundancy present in BDT usually

BINARY DECISION DIAGRAM

Redundancies in BDT:

- Many terminal symbols with just two different values $-\perp$ and T
- Usually several sets of isomorphic sub-trees that can be merged
- Two sub-trees are isomorphic if:
- their roots represent the same variable
- edges originating in them lead to the target states representing the same variables
- the edges are pair-wise labelled with the same values
- After removal and merge of nodes from two points above, redundant tests - both edges from node lead to the same target node - can appear and can be removed

Result is not tree anymore, but directed acyclic graph (DAG)

Reduction of BDT into OBDD

Reduction of BDT into OBDD

Variable ordering

Variable ordering - the order variables are checked on each path from root to leaf influences size of OBDD substantially:

$$
a_{1}<b_{1}<a_{2}<b_{2}
$$

$$
a_{1}<a_{2}<b_{1}<b_{2}
$$

VARIABLE ORDERING

- For our n-bit comparator, OBDD size ranges from linear $(3 n+2)$ in optimal case to exponential $\left(3 * 2^{n}-1\right)$ in worst case
- In general finding optimal (w.r.t. OBDD size) ordering is not feasible - even checking that particular ordering is optimal is NP-complete
- There are many functions for which every ordering results exponentially large OBDD
- Fortunately there are heuristics that help
- Using OBDD for representation of Boolean functions (and set of states, in turn) is usually highly efficient:
- related variables "close together"
- depth-first traversal
- dynamic reordering

LOGICAL OPERATIONS UPON OBDD

- For practical use (to exploit efficiency) we need to perform logical operations just upon OBDDs, not using their "textual" form
- Required operations: restriction, negation, conjunction, and disjunction - other operations (e.g., quantification) can be re-written using just these

LOGICAL OPERATIONS - RESTRICTION

Restriction refers to fixing variable to particular value (T or \perp)

$$
\left.f_{1}\right|_{x_{1}=\perp}
$$

LOGICAL OPERATIONS - RESTRICTION

Restriction refers to fixing variable to particular value (T or \perp)

$$
\left.f_{1}\right|_{x_{1}=\perp}
$$

LOGICAL OPERATIONS - RESTRICTION

Restriction refers to fixing variable to particular value (\rceil or \perp)
$f_{1}: x_{1} \vee x_{2}$

LOGICAL OPERATIONS - NEGATION

Performing negation is straightforward by swapping terminals

$$
f_{1}: x_{1} \vee x_{2}
$$

LOGICAL OPERATIONS - NEGATION

Performing negation is straightforward by swapping terminals

$$
\neg f_{1}: \neg\left(x_{1} \vee x_{2}\right)
$$

LOGICAL OPERATIONS - GENERAL CASE

Let $*$ be arbitrary binary logical operation, e.g. conjunction
Notation:

- f, f^{\prime} - Boolean functions to be combined by *
- v, v^{\prime} - roots of OBDDs representing f, f^{\prime}, respectively
- both OBDDs respect the same variable ordering
- x_{v} - variable associated with non-terminal vertex v

LOGICAL OPERATIONS - GENERAL CASE

- If v, v^{\prime} are both terminals: $f * f=$ value $(v) *$ value $\left(v^{\prime}\right)$
- If v, v^{\prime} are both non-terminals and $x_{v}=x_{v^{\prime}}$:
$f * f^{\prime}=\left(\neg x_{v} \wedge\left(\left.\left.f\right|_{x_{v}=\perp} * f^{\prime}\right|_{x_{v}=\perp}\right)\right) \vee\left(x_{v} \wedge\left(\left.\left.f\right|_{x_{v}=\top} * f^{\prime}\right|_{x_{v}=T}\right)\right)$
- If v is non-terminal and v^{\prime} is either non-terminal and $x_{v}<x_{v}^{\prime}$ or v^{\prime} is terminal: $f * f^{\prime}=\left(\neg x_{v} \wedge\left(\left.f\right|_{x_{v}=\perp} * f^{\prime}\right)\right) \vee\left(x_{v} \wedge\left(\left.f\right|_{x_{v}=T} * f^{\prime}\right)\right)$
- Symmetrically, if v^{\prime} is non-terminal and v is either non-terminal and $x_{v}>x_{v}^{\prime}$ or v is terminal:
$f * f^{\prime}=\left(\neg x_{v}^{\prime} \wedge\left(\left.f * f^{\prime}\right|_{x_{v}^{\prime}=\perp}\right)\right) \vee\left(x_{v}^{\prime} \wedge\left(\left.f * f^{\prime}\right|_{x_{v}^{\prime}=T}\right)\right)$
- Split into sub-problems and solved by recursion
- To prevent exponential complexity, dynamic programming to be used yielding polynomial algorithm

LOGICAL OPERATIONS - CONJUNCTION

Conjunction of two OBDDs: $f_{1} \wedge f_{2}=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right)$

$$
f_{1}: x_{1} \vee x_{2}
$$

$$
f_{2}: x_{1} \vee \neg x_{2}
$$

$$
f_{1} \wedge f_{2}
$$

LOGICAL OPERATIONS - CONJUNCTION

Conjunction of two OBDDs: $f_{1} \wedge f_{2}=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right)$

$$
f_{1}: x_{1} \vee x_{2}
$$

$$
f_{1} \wedge f_{2}
$$

LOGICAL OPERATIONS - CONJUNCTION

Conjunction of two OBDDs: $f_{1} \wedge f_{2}=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right)$

$$
f_{1}: x_{1} \vee x_{2}
$$

$$
f_{2}: x_{1} \vee \neg x_{2}
$$

$$
f_{1} \wedge f_{2}
$$

LOGICAL OPERATIONS - CONJUNCTION

Conjunction of two OBDDs: $f_{1} \wedge f_{2}=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right)$

$$
f_{1}: x_{1} \vee x_{2}
$$

$$
f_{2}: x_{1} \vee \neg x_{2}
$$

$$
f_{1} \wedge f_{2}
$$

LOGICAL OPERATIONS - CONJUNCTION

Conjunction of two OBDDs: $f_{1} \wedge f_{2}=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right)$

$$
f_{1}: x_{1} \vee x_{2}
$$

$$
f_{2}: x_{1} \vee \neg x_{2}
$$

$$
f_{1} \wedge f_{2}
$$

LOGICAL OPERATIONS - CONJUNCTION

Conjunction of two OBDDs: $f_{1} \wedge f_{2}=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right)$

$$
f_{1}: x_{1} \vee x_{2}
$$

$f_{2}: x_{1} \vee \neg x_{2}$

$$
f_{1} \wedge f_{2}
$$

LOGICAL OPERATIONS - DISJUNCTION

Disjunction of two OBDDs: $f_{1} \vee f_{2}=\left(x_{1} \vee x_{2}\right) \vee\left(x_{1} \vee \neg x_{2}\right)$

$$
f_{1}: x_{1} \vee x_{2}
$$

$f_{2}: x_{1} \vee \neg x_{2}$

$$
f_{1} \vee f_{2}
$$

LOGICAL OPERATIONS - DISJUNCTION

Disjunction of two OBDDs: $f_{1} \vee f_{2}=\left(x_{1} \vee x_{2}\right) \vee\left(x_{1} \vee \neg x_{2}\right)$

$$
f_{1}: x_{1} \vee x_{2}
$$

$$
f_{2}: x_{1} \vee \neg x_{2}
$$

$$
f_{1} \vee f_{2}
$$

T

LOGICAL OPERATIONS - QUANTIFICATION

Quantification of Boolean formula does not introduce greater expressive power:

- $\exists x:\left.\left.f \leftrightarrow f\right|_{x=\perp} \vee f\right|_{x=\top}$
- $\forall x:\left.\left.f \leftrightarrow f\right|_{x=\perp} \wedge f\right|_{x=\top}$

However, it is convenient in many cases

Relations using OBDDs

Let Q be n-ary relation over $\{0,1\}$

- Q can be represented by OBDD using its characteristic function:

$$
f_{Q}\left(x_{1}, \ldots, x_{n}\right)=1 \equiv Q\left(x_{1}, \ldots, x_{n}\right)
$$

Let Q be n-ary relation over finite domain D

- W.l.o.g. assume D has 2^{m} elements for some $m>0$
- D can be encoded using bijection: $\phi:\{0,1\}^{m} \mapsto D$
- Define relation Q_{b} of arity $m * n: Q_{b}\left(\left\langle x_{1}\right\rangle, \ldots,\left\langle x_{n}\right\rangle\right)=Q\left(\phi\left(\left\langle x_{1}\right\rangle\right), \ldots, \phi\left(\left\langle x_{n}\right\rangle\right)\right)$
- $\left\langle x_{i}\right\rangle$ is vector of m Boolean variables encoding variable x_{i}
- Q can be represented as OBDD using characteristic function for Q_{b}

Kripke structure as OBDDs

Let $M=(S, I, R, L)$ be Kripke structure:

- Sets of states $S, I: \phi:\{0,1\}^{m} \mapsto S$, assuming 2^{m} states for some m
- Transition relation R : using characteristic function $f_{R_{b}}$ of $R_{b}\left(\langle x\rangle,\left\langle x^{\prime}\right\rangle\right)$
- Labelling function L :
- in contrast to usual direction of mapping states to subset of atomic proposition satisfied in particular states, inverse mapping used here
- each atomic proposition corresponds to subset of states satisfying it: $L_{p}=\{s \in S \mid p \in L(s)\}$
- OBDDs for each one created using its characteristic function

Kripke structure as OBDDs

Step to symbolic CTL MOdel Checking

- We have Kripke structure represented as OBDDs
- but we still do not know how to use them for model checking
- We need to define more structures allowing us to model-check
- lattices
- fixpoints

LATTICE

- Lattice L is structure consisting of partially ordered set S of elements where every two elements have
- unique supremum (least upper bound or join) and
- unique infimum (greatest lower bound or meet)
- Set $P(S)$ of all subsets of S forms complete lattice
- Each element $E \in L$ can also be thought as predicate on S
- Greatest element of L is $S(T$, true)
- Least element of L is $\emptyset(\perp$, false)
- $\tau: \mathrm{P}(\mathrm{S}) \mapsto \mathrm{P}(\mathrm{S})$ is called predicate transformer

EXAMPLE: SubSET LATtice of $\{1,2,3,4\}$

FIXPOINTS

Let $\tau: P(S) \mapsto P(S)$ be predicate transformer

- τ is monotonic $\equiv Q \subseteq R \Longrightarrow \tau(Q) \subseteq \tau(R)$
- Q is fixpoint of $\tau \equiv \tau(\mathrm{Q})=\mathrm{Q}$

FIXPOINTS

Theorem (Knaster-Tarski): A monotonic predicate transformer τ on $P(S)$ always has the least fixpoint $\mu Z . \tau(Z)$, and the greatest fixpoint $\nu Z . \tau(Z)$.

- $\mu Z . \tau(Z)=\cap\{Z \mid \tau(Z) \subseteq Z\}$
- $\nu Z . \tau(Z)=\cup\{Z \mid \tau(Z) \supseteq Z\}$

We write $\tau^{i}(Z)$ to denote i applications of τ to Z :

- $\tau^{0}(Z)=Z$
- $\tau^{i+1}(Z)=\tau\left(\tau^{i}(Z)\right)$

FIXPOINTS

Lemma: If τ is monotonic, then for each i :

- $\tau^{i}($ false $) \subseteq \tau^{i+1}($ false $)$
- $\tau^{i}($ true $) \supseteq \tau^{i+1}$ (true)

Lemma: If τ is monotonic and S is finite, then:

- $\exists \mathrm{i}_{0} \geq 0: \forall \mathrm{i} \geq \mathrm{i}_{0}: \tau^{i}($ false $)=\tau^{i_{0}}($ false $)$
- $\exists j_{0} \geq 0: \forall j \geq j_{0}: \tau^{j}($ true $)=\tau^{j_{0}}($ true $)$

Lemma: If τ is monotonic and S is finite, then:

- $\exists \mathrm{i}_{0}: \mu Z . \tau(Z)=\tau^{\mathrm{i}_{0}}($ false $)$
- $\exists \mathrm{j}_{\mathrm{o}}: \nu Z . \tau(Z)=\tau^{j_{0}}($ true $)$

Knaster-Tarski theorem for finite lattices directly follows from these lemmas

FIXPOINTS

Kripke structures are finite-state \Rightarrow only finite versions of the theorem needed.
The least and greatest fixpoints of a monotonic predicate transformer can be computed easily (next lecture)

