
NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

5. OBDD, LATTICES AND FIXPOINTS

Jan Kofroň

TODAY

Ordered Binary Decision Diagrams (OBDDs)

Lattices

Fixpoints

Jan Kofroň: Behaviour Models and Verification 2

EXPLICIT VS. SYMBOLIC MODEL CHECKING

Explicit model checking

each particular state of model is explicitly represented in memory

model is explored state-by-state

Symbolic model checking

based on manipulation with Boolean formulae

operates on entire sets of states rather than individual states

usually substantial reduction of time and memory consumption

George Boole (1815 – 1864)

English matematician,

philosopher and logician

Jan Kofroň: Behaviour Models and Verification 3

EXPLICIT VS. SYMBOLIC MODEL CHECKING

Explicit model checking

each particular state of model is explicitly represented in memory

model is explored state-by-state

Symbolic model checking

based on manipulation with Boolean formulae

operates on entire sets of states rather than individual states

usually substantial reduction of time and memory consumption

George Boole (1815 – 1864)

English matematician,

philosopher and logician

Jan Kofroň: Behaviour Models and Verification 4

ORDERED BINARY DECISION DIAGRAMS (OBDD)

Canonical representation for Boolean formulae

often substantially more compact than traditional normal forms (CNF, DNF)

variety of applications:

symbolic simulation

verification of combinational logic

verification of finite-state concurrent systems

Based on binary decision trees

Jan Kofroň: Behaviour Models and Verification 5

BINARY DECISION TREE

Binary tree with edges directed from root to leaves

each node level associated with one particular variable

the same variable ordering on each path from root to leaf

one edge from each node represent>while the other represent⊥
terminal nodes (leaves) correspond to final decision –> or⊥

a1

b1 b1

a2 a2 a2 a2

b2 b2 b2 b2 b2 b2 b2 b2

> ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ >

⊥ >

⊥ > ⊥ >

⊥ > ⊥ > ⊥ > ⊥ >

⊥ > ⊥ > ⊥ > ⊥ > ⊥ > ⊥ > ⊥ > ⊥ >

Jan Kofroň: Behaviour Models and Verification 6

BINARY DECISION TREE

Every Boolean formula can be represented by binary decision tree

Every binary decision tree represents a Boolean formula

To decide upon value of formula upon given variable assignment, proceed from

BDT root to leaf and follow edges according to values assigned to particular

variables

BDTs are not very concise representation of Boolean formulae – essentially same

as truth tables, i.e., exponential in number of variables

Lots of redundancy present in BDT usually

Jan Kofroň: Behaviour Models and Verification 7

BINARY DECISION DIAGRAM

Redundancies in BDT:

Many terminal symbols with just two different values –⊥ and>
Usually several sets of isomorphic sub-trees that can be merged

Two sub-trees are isomorphic if:

their roots represent the same variable

edges originating in them lead to the target states representing the same variables

the edges are pair-wise labelled with the same values

After removal and merge of nodes from two points above, redundant tests – both

edges from node lead to the same target node – can appear and can be removed

Result is not tree anymore, but directed acyclic graph (DAG)

Jan Kofroň: Behaviour Models and Verification 8

REDUCTION OF BDT INTO OBDD

a1

b1 b1

a2 a2 a2 a2

b2 b2 b2 b2 b2 b2 b2 b2

> ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ >

⊥ >

⊥ > ⊥ >

⊥ > ⊥ > ⊥ > ⊥ >

⊥ > ⊥ > ⊥ > ⊥ > ⊥ > ⊥ > ⊥ > ⊥ >

Jan Kofroň: Behaviour Models and Verification 9

REDUCTION OF BDT INTO OBDD

a1

b1 b1

a2

b2 b2

> ⊥

⊥ >

⊥ > > ⊥

⊥ >

⊥
> > ⊥

Jan Kofroň: Behaviour Models and Verification 10

VARIABLE ORDERING

Variable ordering – the order variables are checked on each path from root to leaf –

influences size of OBDD substantially:

a1 < b1 < a2 < b2

a1

b1 b1

a2

b2 b2

> ⊥

⊥ >

⊥ > > ⊥

⊥ >

⊥
> > ⊥

a1 < a2 < b1 < b2

a1

a2 a2

b1 b1 b1 b1

b2 b2

> ⊥

⊥ >

⊥ > ⊥ >

>

⊥
⊥ >

⊥
>

>

⊥

>
⊥

⊥
>

Jan Kofroň: Behaviour Models and Verification 11

VARIABLE ORDERING

For our n-bit comparator, OBDD size ranges from linear (3n+ 2) in optimal case to

exponential (3 ∗ 2n − 1) in worst case

In general finding optimal (w.r.t. OBDD size) ordering is not feasible – even

checking that particular ordering is optimal is NP-complete

There are many functions for which every ordering results exponentially large

OBDD

Fortunately there are heuristics that help

Using OBDD for representation of Boolean functions (and set of states, in turn) is
usually highly efficient:

related variables “close together”

depth-first traversal

dynamic reordering

Jan Kofroň: Behaviour Models and Verification 12

LOGICAL OPERATIONS UPON OBDD

For practical use (to exploit efficiency) we need to perform logical operations just

upon OBDDs, not using their “textual” form

Required operations: restriction, negation, conjunction, and disjunction

other operations (e.g., quantification) can be re-written using just these

Jan Kofroň: Behaviour Models and Verification 13

LOGICAL OPERATIONS – RESTRICTION

Restriction refers to fixing variable to particular value (> or⊥)

f1 : x1 ∨ x2

x1

x2

⊥ >

⊥ >

⊥ >

f1|x1=⊥

⊥ >

x1

x2

⊥ >

>⊥⊥

Jan Kofroň: Behaviour Models and Verification 14

LOGICAL OPERATIONS – RESTRICTION

Restriction refers to fixing variable to particular value (> or⊥)

f1 : x1 ∨ x2

x1

x2

⊥ >

⊥ >

⊥ >

f1|x1=⊥

⊥ >

x1

x2

⊥ >

>

⊥⊥

Jan Kofroň: Behaviour Models and Verification 15

LOGICAL OPERATIONS – RESTRICTION

Restriction refers to fixing variable to particular value (> or⊥)

f1 : x1 ∨ x2

x1

x2

⊥ >

⊥ >

⊥ >

f1|x1=⊥

⊥ >

x1

x2

⊥ >

>⊥⊥

Jan Kofroň: Behaviour Models and Verification 16

LOGICAL OPERATIONS – NEGATION

Performing negation is straightforward by swapping terminals

f1 : x1 ∨ x2

x1

x2

⊥ >

⊥ >

⊥ >

Jan Kofroň: Behaviour Models and Verification 17

LOGICAL OPERATIONS – NEGATION

Performing negation is straightforward by swapping terminals

¬f1 : ¬(x1 ∨ x2)

x1

x2

> ⊥

⊥ >

⊥ >

Jan Kofroň: Behaviour Models and Verification 18

LOGICAL OPERATIONS – GENERAL CASE

Let ∗ be arbitrary binary logical operation, e.g. conjunction

Notation:

f, f′ – Boolean functions to be combined by ∗
v, v′ – roots of OBDDs representing f, f′, respectively

both OBDDs respect the same variable ordering

xv – variable associated with non-terminal vertex v

Jan Kofroň: Behaviour Models and Verification 19

LOGICAL OPERATIONS – GENERAL CASE

If v, v′ are both terminals: f ∗ f = value(v) ∗ value(v′)

If v, v′ are both non-terminals and xv = xv′ :

f ∗ f′ =
(
¬xv ∧ (f|xv=⊥ ∗ f′|xv=⊥)

)
∨
(
xv ∧ (f|xv=> ∗ f′|xv=>)

)
If v is non-terminal and v′ is either non-terminal and xv < x′v or v

′ is terminal:

f ∗ f′ =
(
¬xv ∧ (f|xv=⊥ ∗ f′)

)
∨
(
xv ∧ (f|xv=> ∗ f′)

)
Symmetrically, if v′ is non-terminal and v is either non-terminal and xv > x′v or v is
terminal:

f ∗ f′ =
(
¬x′v ∧ (f ∗ f′|x′v=⊥)

)
∨
(
x′v ∧ (f ∗ f′|x′v=>)

)
Split into sub-problems and solved by recursion

To prevent exponential complexity, dynamic programming to be used yielding

polynomial algorithm

Jan Kofroň: Behaviour Models and Verification 20

LOGICAL OPERATIONS – CONJUNCTION

Conjunction of two OBDDs: f1 ∧ f2 = (x1 ∨ x2) ∧ (x1 ∨ ¬x2)

f1 : x1 ∨ x2

x1

x2

⊥ >

⊥ >

⊥ >

f2 : x1 ∨ ¬x2

x1

x2

⊥ >

⊥ >

> ⊥

f1 ∧ f2

x1

x2

⊥

>

⊥ >⊥

>⊥

Jan Kofroň: Behaviour Models and Verification 21

LOGICAL OPERATIONS – CONJUNCTION

Conjunction of two OBDDs: f1 ∧ f2 = (x1 ∨ x2) ∧ (x1 ∨ ¬x2)

f1 : x1 ∨ x2

x1

x2

⊥ >

⊥ >

⊥ >

f2 : x1 ∨ ¬x2

x1

x2

⊥ >

⊥ >

> ⊥

f1 ∧ f2

x1

x2

⊥

>

⊥

>

⊥

>

⊥

Jan Kofroň: Behaviour Models and Verification 22

LOGICAL OPERATIONS – CONJUNCTION

Conjunction of two OBDDs: f1 ∧ f2 = (x1 ∨ x2) ∧ (x1 ∨ ¬x2)

f1 : x1 ∨ x2

x1

x2

⊥ >

⊥ >

⊥ >

f2 : x1 ∨ ¬x2

x1

x2

⊥ >

⊥ >

> ⊥

f1 ∧ f2

x1

x2

⊥

>

⊥

>

⊥

>

⊥

Jan Kofroň: Behaviour Models and Verification 23

LOGICAL OPERATIONS – CONJUNCTION

Conjunction of two OBDDs: f1 ∧ f2 = (x1 ∨ x2) ∧ (x1 ∨ ¬x2)

f1 : x1 ∨ x2

x1

x2

⊥ >

⊥ >

⊥ >

f2 : x1 ∨ ¬x2

x1

x2

⊥ >

⊥ >

> ⊥

f1 ∧ f2

x1

x2

⊥

>

⊥ >⊥

>

⊥

Jan Kofroň: Behaviour Models and Verification 24

LOGICAL OPERATIONS – CONJUNCTION

Conjunction of two OBDDs: f1 ∧ f2 = (x1 ∨ x2) ∧ (x1 ∨ ¬x2)

f1 : x1 ∨ x2

x1

x2

⊥ >

⊥ >

⊥ >

f2 : x1 ∨ ¬x2

x1

x2

⊥ >

⊥ >

> ⊥

f1 ∧ f2

x1

x2

⊥

>

⊥ >⊥

>

⊥

Jan Kofroň: Behaviour Models and Verification 25

LOGICAL OPERATIONS – CONJUNCTION

Conjunction of two OBDDs: f1 ∧ f2 = (x1 ∨ x2) ∧ (x1 ∨ ¬x2)

f1 : x1 ∨ x2

x1

x2

⊥ >

⊥ >

⊥ >

f2 : x1 ∨ ¬x2

x1

x2

⊥ >

⊥ >

> ⊥

f1 ∧ f2

x1

x2

⊥

>

⊥

>⊥

>⊥

Jan Kofroň: Behaviour Models and Verification 26

LOGICAL OPERATIONS – DISJUNCTION

Disjunction of two OBDDs: f1 ∨ f2 = (x1 ∨ x2) ∨ (x1 ∨ ¬x2)

f1 : x1 ∨ x2

x1

x2

⊥ >

⊥ >

⊥ >

f2 : x1 ∨ ¬x2

x1

x2

⊥ >

⊥ >

> ⊥

f1 ∨ f2

x1

x2

⊥

>
⊥

⊥

>

>

Jan Kofroň: Behaviour Models and Verification 27

LOGICAL OPERATIONS – DISJUNCTION

Disjunction of two OBDDs: f1 ∨ f2 = (x1 ∨ x2) ∨ (x1 ∨ ¬x2)

f1 : x1 ∨ x2

x1

x2

⊥ >

⊥ >

⊥ >

f2 : x1 ∨ ¬x2

x1

x2

⊥ >

⊥ >

> ⊥

f1 ∨ f2

x1

x2

⊥

>
⊥

⊥

>

>

Jan Kofroň: Behaviour Models and Verification 28

LOGICAL OPERATIONS – QUANTIFICATION

Quantification of Boolean formula does not introduce greater expressive power:

∃x : f ↔ f|x=⊥ ∨ f|x=>

∀x : f ↔ f|x=⊥ ∧ f|x=>

However, it is convenient in many cases

Jan Kofroň: Behaviour Models and Verification 29

RELATIONS USING OBDDS

Let Q be n-ary relation over {0, 1}
Q can be represented by OBDD using its characteristic function:

fQ(x1, ..., xn) = 1 ≡ Q(x1, ..., xn)

Let Q be n-ary relation over finite domain D

W.l.o.g. assume D has 2m elements for somem > 0

D can be encoded using bijection: φ : {0, 1}m 7→ D

Define relation Qb of aritym ∗ n: Qb(〈x1〉, ..., 〈xn〉) = Q(φ(〈x1〉), ..., φ(〈xn〉))
〈xi〉 is vector ofm Boolean variables encoding variable xi

Q can be represented as OBDD using characteristic function for Qb

Jan Kofroň: Behaviour Models and Verification 30

KRIPKE STRUCTURE AS OBDDS

LetM = (S, I, R, L) be Kripke structure:

Sets of states S, I: φ : {0, 1}m 7→ S, assuming 2m states for somem

Transition relation R: using characteristic function fRb of Rb(〈x〉, 〈x′〉)
Labelling function L:

in contrast to usual direction of mapping states to subset of atomic proposition

satisfied in particular states, inverse mapping used here

each atomic proposition corresponds to subset of states satisfying it:

Lp = {s ∈ S|p ∈ L(s)}
OBDDs for each one created using its characteristic function

Jan Kofroň: Behaviour Models and Verification 31

KRIPKE STRUCTURE AS OBDDS

x

s1 : 0
s2 : 1

a, b a,¬b

s1 s2

I : ¬x

R : (¬x ∧ x′) ∨ (x ∧ x′) ∨ (x ∧ ¬x′)

L : a 7→ {s1, s2}, b 7→ {s1}

La = {0, 1}, Lb = {0}

Jan Kofroň: Behaviour Models and Verification 32

STEP TO SYMBOLIC CTL MODEL CHECKING

We have Kripke structure represented as OBDDs

but we still do not know how to use them for model checking

We need to define more structures allowing us to model-check

lattices

fixpoints

Jan Kofroň: Behaviour Models and Verification 33

LATTICE

Lattice L is structure consisting of partially ordered set S of elements where every
two elements have

unique supremum (least upper bound or join) and

unique infimum (greatest lower bound or meet)

Set P(S) of all subsets of S forms complete lattice

Each element E ∈ L can also be thought as predicate on S

Greatest element of L is S (>, true)

Least element of L is ∅ (⊥, false)

τ : P(S) 7→ P(S) is called predicate transformer

Jan Kofroň: Behaviour Models and Verification 34

EXAMPLE: SUBSET LATTICE OF {1, 2, 3, 4}

{1,2,3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2} {1,3} {2,3} {1,4} {2,4} {3,4}

{1} {2} {3} {4}

∅

Jan Kofroň: Behaviour Models and Verification 35

FIXPOINTS

Let τ : P(S) 7→ P(S) be predicate transformer

τ ismonotonic ≡ Q ⊆ R =⇒ τ(Q) ⊆ τ(R)

Q is fixpoint of τ ≡ τ(Q) = Q

Jan Kofroň: Behaviour Models and Verification 36

FIXPOINTS

Theorem (Knaster-Tarski): A monotonic predicate transformer τ on P(S) always has

the least fixpoint µZ.τ(Z), and the greatest fixpoint νZ.τ(Z).

µZ.τ(Z) = ∩{Z|τ(Z) ⊆ Z}
νZ.τ(Z) = ∪{Z|τ(Z) ⊇ Z}

Wewrite τ i(Z) to denote i applications of τ to Z:

τ0(Z) = Z

τ i+1(Z) = τ
(
τ i(Z)

)

Jan Kofroň: Behaviour Models and Verification 37

FIXPOINTS

Lemma: If τ is monotonic, then for each i:

τ i(false) ⊆ τ i+1(false)

τ i(true) ⊇ τ i+1(true)

Lemma: If τ is monotonic and S is finite, then:

∃i0 ≥ 0 : ∀i ≥ i0 : τ i(false) = τ i0(false)

∃j0 ≥ 0 : ∀j ≥ j0 : τ j(true) = τ j0(true)

Lemma: If τ is monotonic and S is finite, then:

∃i0 : µZ.τ(Z) = τ i0(false)

∃j0 : νZ.τ(Z) = τ j0(true)

Knaster-Tarski theorem for finite lattices directly follows from these lemmas

Jan Kofroň: Behaviour Models and Verification 38

FIXPOINTS

Kripke structures are finite-state⇒ only finite versions of the theorem needed.

The least and greatest fixpoints of a monotonic predicate transformer can be

computed easily (next lecture)

Jan Kofroň: Behaviour Models and Verification 39

	Ordered Binary Decision Diagrams
	Lattices and fixpoints

