NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION 6. SYMBOLIC CTL MODEL CHECKING

Jan Kofroň

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Symbolic CTL model checking using

- OBDD
- Iattices
- fixpoints

MODEL CHECKING

Property specification

MODEL CHECKING

Property specification

- *Lattice L* is structure consisting of partially ordered set S of elements where every two elements have
 - unique supremum (least upper bound or join) and
 - unique infimum (greatest lower bound or meet)
- Set *P*(*S*) of all subsets of *S* forms complete lattice
- Each element $E \in L$ can also be thought as predicate on S
- Greatest element of L is S (\top , true)
- Least element of *L* is \emptyset (\bot , false)
- $\tau : P(S) \mapsto P(S)$ is called predicate transformer

EXAMPLE: SUBSET LATTICE OF {1, 2, 3, 4}

Let $\tau : P(S) \mapsto P(S)$ be predicate transformer

•
$$au$$
 is monotonic $\equiv Q \subseteq R \implies au(Q) \subseteq au(R)$

• Q is fixpoint of
$$\tau \equiv \tau(Q) = Q$$

function LFP(τ : PredicateTransformer): Predicate

$$Q := false$$

$$Q' := \tau(Q)$$
while $Q \neq Q'$ do
$$Q := Q'$$

$$Q' := \tau(Q)$$
end while
$$return(Q)$$
end function

Function Gfp differs just in initialization Q := true

EXAMPLE OF FIXPOINTS

Let $\tau(Q) = Q \cup \{1\}$.

What are fixpoints of τ ?

Let $\tau(Q) = Q \cup \{1\}$.

What are fixpoints of τ ?

EXAMPLE OF FIXPOINTS

Let $\tau(Q) = Q \cup \{1\}$.

What is the least fixpoint of τ ?

EXAMPLE OF FIXPOINTS

Let $\tau(Q) = Q \cup \{1\}$.

What is the least fixpoint of τ ?

- We identify CTL formula f with set/predicate $\{s|M, s \models f\}$ in P(S)
- EG and EU may be characterized as least or greatest fixpoints of an appropriate predicate transformer:
 - EG $q = \nu Z.(q \wedge EX Z)$
 - $E[p \cup q] = \mu Z.(q \vee (p \wedge EXZ))$
- The same holds for EF, AG, AF, AU, however, those operators can be expressed using EG, EU
- Intuitively:
 - least fixpoints correspond to eventualities
 - greatest fixpoints correspond to properties that should hold forever

$$\begin{split} \mathsf{M}, \mathsf{s}_{\mathsf{o}} &\models \mathsf{E}\mathsf{G}\,\mathsf{q} \\ \mathsf{E}\mathsf{G}\,\mathsf{q} &= \nu \mathsf{Z}.(\mathsf{q} \land \mathsf{E}\mathsf{X}\,\mathsf{Z}) \\ \tau(\mathsf{Z}) &= \{\mathsf{s}:\mathsf{s} \models \mathsf{q} \land (\exists \mathsf{t}:\mathsf{s} \to \mathsf{t} \land \mathsf{t} \in \mathsf{Z})\} \end{split}$$

EU AS FIXPOINT

$$\begin{split} &M, s_{o} \models \mathsf{E}[p \cup q] \\ &\mathsf{E}[p \cup q] = \mu Z. (q \lor (p \land \mathsf{EX} Z)) \\ &\tau(Z) = \{s : s \models q\} \lor \{s : s \models p \land (\exists t : s \to t \land t \in Z)\} \end{split}$$

Explicit model checking—e.g., Spin—is linear in size of generated state space

- usually exponential in size of input model
- resulting in state space explosion

Symbolic model checking operates on sets of states in each step of algorithm

can mitigate state-space-explosion impact substantially

QBFs are useful in symbolic CTL model checking

Quantification does not introduce greater expressive power:

•
$$\exists x f \equiv f|_{x=\perp} \lor f|_{x=\top}$$

•
$$\forall x f \equiv f|_{x=\perp} \wedge f|_{x=\top}$$

General approach identical to explicit model checking

- decomposing formula into sub-formulae
- identifying sets of states satisfying particular sub-formulae

Computing states satisfying particular formula types based on manipulation with OBDDs

Computing OBDD(f) for formula f depends on top-most operand

- note that only \neg , \land , \lor , EX, EG, and EU are needed, others can be eliminated
- $f \in AP$: return OBDD defined for f
- $f: \neg g, f \land g, \text{ or } f \lor g$: use logical operation upon OBDD
 - described in previous lecture
- $f = EXg: OBDD \text{ for } \exists \langle v' \rangle (o(\langle v' \rangle) \land R(\langle v \rangle, \langle v' \rangle))$
 - $o(\langle v \rangle)$ stands for OBDD representing states satisfying formula g
- $f = E[f \cup g]$: compute least fixpoint $E[f \cup g] = \mu Z.(g \lor (f \land EXZ))$
 - using LfP procedure
- f = EG f: compute greatest fixpoint $EG f = \nu Z.(f \wedge EX Z)$
 - using GfP procedure

$$AF x = \neg EG (\neg x)$$

$$|$$

$$EG (\neg x)$$

$$|$$

$$\neg x$$

$$|$$

$$x$$

OBDD for states satisfying *x*:

- We have OBDD for states satisfying ¬x and now, we can proceed to EG (¬x) and compute OBDD for it.
- We compute greatest fixpoint of predicate transformer: EG ($\neg x$) : νZ .($\neg x \land EXZ$).
 - computation starts with trivial OBDD for \top (Z).
 - single step: $Z = \neg x \land (\exists x'_o, x'_1 : Z' \land TR)$
 - Z' denotes OBDD Z where all variables get primed ($x \rightarrow x'$)
 - if Z changes, repeat previous step, otherwise fixpoint reached and computation is over

- We have OBDD for states satisfying ¬x and now, we can proceed to EG (¬x) and compute OBDD for it.
- We compute greatest fixpoint of predicate transformer: EG $(\neg x)$: $\nu Z.(\neg x \land EXZ)$.
 - computation starts with trivial OBDD for \top (Z).
 - single step: $Z = \neg x \land (\exists x'_o, x'_1 : Z' \land TR)$
 - Z' denotes OBDD Z where all variables get primed ($x \rightarrow x'$)
 - if Z changes, repeat previous step, otherwise fixpoint reached and computation is over

We have OBDD for states satisfying EG $(\neg x)$ and now, we can trivially compute its negation \neg EG $(\neg x) = AF x$. This corresponds to states oo and 10 of Kripke structure.

- During symbolic CTL model checking, all operation performed just upon OBDDs as application of logical operations and fixpoint computations.
- Usually highly efficient comparing to explicit model checking.