NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

8. Bounded, Infinite-State MC, Compositional Reasoning

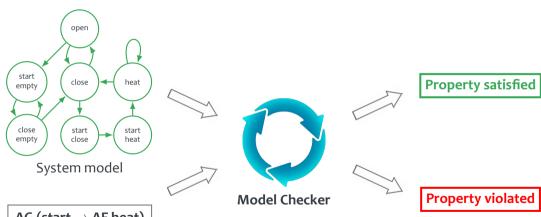
Jan Kofroň

TODAY

- Bounded model checking
- Infinite-state model checking
- Compositional reasoning

Part I: Bounded Model Checking

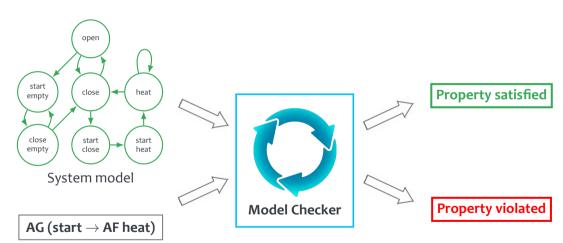
BOUNDED MODEL CHECKING



AG (start \rightarrow AF heat)

Property specification

BOUNDED MODEL CHECKING



Jan Kofroň: Behaviour Models and Verification

Property specification

BOUNDED MODEL CHECKING

- Let $M = \{S, I, R, L\}$ be Kripke structure
- Define predicate $Reach(s, s') \equiv R(s, s')$
- $[M]^k$ contains states reachable in exactly k steps
- Then search for counterexamples formed by *k* states

BOUNDED MODEL CHECKING - PROCEDURE

Input: $M, \neg \varphi$

- 1. k = 0
- 2. Is $\neg \varphi$ satisfiable in $[M]^k$?
 - YES: $M \models \neg \varphi$, terminate
- 3. Is k < threshold?
 - NO: $M \not\models_k \neg \varphi$, terminate
- 4. Increment *k*
- 5. Go to 2.

BOUNDED MODEL CHECKING FOR PROGRAMS

Realized by constructing formula capturing transitions in program

- trying to reach assertion violation, i.e., violation of formula AG (p)
- checking for its satisfiability using SAT/SMT solver
 - SAT/SMT solvers tools for deciding satisfiability of logical formulae
 - satisfying assignment of formulae containing negated property corresponds to counter-example
 - NP-complete problem the hard part of verification


```
1: int i=4;

2: int s=0;

3: while (1) {

4: s+=i;

5: if (i>0)

6: i--;

7: assert(s<10);

8: }
```


First unwind loops up to bound (k).

```
1: int i=4;

2: int s=0;

3: while (1) {

4: s+=i;

5: if (i>0)

6: i--;

7: assert(s<10);

8: }
```

```
1: int i=4;
 2: int s=0;
 3:
 4: S += i:
 5: if (i>0)
 6: i - -;
 7: assert(s<10);
 8: s += i:
 9: if (i>0)
10: i - -:
11: assert(s<10);
. . .
```



```
1: int i=4;
 2: int s=0;
 3:
 4: S += i;
 5: if (i>0)
 6: i - -;
7: assert(s<10);
8: s += i;
 9: if (i>0)
10: i --;
11: assert(s<10);</pre>
```


Transform each line of code into (CNF) formula.

```
f_1: (pc_1 = 1) \land (i_2 = 4) \land (pc_2 = 2)
 1: int i=4;
                                                f_2: (pc_2 = 2) \land (i_3 = i_2) \land (s_3 = 0) \land (pc_3 = 3)
 2: int s=0:
                                                f_3: (pc_3 = 3) \land (i_4 = i_3) \land (s_4 = s_3) \land (pc_4 = 4)
 3:
                                                f_4: (pc_4 = 4) \land (i_5 = i_4) \land (s_5 = s_4 + i_4) \land (pc_5 = 5)
 4: S += i:
                                                f_{\epsilon}: (pc_{\epsilon} = 5) \land (i_{6} = i_{\epsilon}) \land (s_{6} = s_{\epsilon}) \land (pc_{6} = 6)
 5: if (i>0)
                                                f_6: (pc_6 = 6) \land (((i_6 > 0) \land (i_7 = i_6 - 1)) \lor
 6: i - -:
                                                     ((i_6 < 0) \land (i_7 = i_6))) \land (s_7 = s_6) \land (pc_7 = 7)
                                                f_7: (pc_7 = 7) \land (s_7 > 10) \land (pc_8 = 8)
 7: assert(s<10):
                                                f_8: (pc_8 = 8) \land (i_9 = i_8) \land (s_9 = s_8 + i_8) \land (pc_9 = 9)
 8: s += i:
                                                f_0: (pc_0 = 9) \land (i_{10} = i_0) \land (s_{10} = s_0) \land (pc_{10} = 10)
 9: if (i>0)
10: i - -:
                                                f_{10}: (pc_{10} = 10) \land (((i_{10} > 0) \land (i_{11} = i_{10} - 1)) \lor
                                                      ((i_{10} < 0) \land (i_{11} = i_{10}))) \land (s_{11} = s_{10}) \land (pc_{11} = 11)
                                                f_{11}: (pc_{11} = 11) \land (s_{11} > 10) \land (pc_{12} = 12)
11: assert(s<10);
```


Transform each line of code into (CNF) formula.

```
f_1: (pc_1 = 1) \land (i_2 = 4) \land (pc_2 = 2)
 1: int i=4;
                                                f_2: (pc_2 = 2) \land (i_3 = i_2) \land (s_3 = 0) \land (pc_3 = 3)
 2: int s=0:
                                                f_3: (pc_3 = 3) \land (i_4 = i_3) \land (s_4 = s_3) \land (pc_4 = 4)
 3:
                                                f_4: (pc_4 = 4) \land (i_5 = i_4) \land (s_5 = s_4 + i_4) \land (pc_5 = 5)
 4: S += i:
                                                f_{\epsilon}: (pc_{\epsilon} = 5) \land (i_{6} = i_{\epsilon}) \land (s_{6} = s_{\epsilon}) \land (pc_{6} = 6)
 5: if (i>0)
                                                f_6: (pc_6 = 6) \land (((i_6 > 0) \land (i_7 = i_6 - 1)) \lor
 6: i - -:
                                                     ((i_6 < 0) \land (i_7 = i_6))) \land (s_7 = s_6) \land (pc_7 = 7)
                                                f_7: (pc_7 = 7) \land (s_7 > 10) \land (pc_8 = 8)
 7: assert(s<10):
                                                f_8: (pc_8 = 8) \land (i_9 = i_8) \land (s_9 = s_8 + i_8) \land (pc_9 = 9)
 8: s += i:
                                                f_0: (pc_0 = 9) \land (i_{10} = i_0) \land (s_{10} = s_0) \land (pc_{10} = 10)
 9: if (i>0)
10: i - -:
                                                f_{10}: (pc_{10} = 10) \wedge (((i_{10} > 0) \wedge (i_{11} = i_{10} - 1)) \vee
                                                      ((i_{10} < 0) \land (i_{11} = i_{10}))) \land (s_{11} = s_{10}) \land (pc_{11} = 11)
                                                f_{11}: (pc_{11} = 11) \land (s_{11} > 10) \land (pc_{12} = 12)
11: assert(s<10);
```


- Assertion expressions are negated we are searching for violations
- Formula to be checked for satisfiability: $f = \bigwedge_{i=0..k} f_i$
- Found satisfying assignment correspond to violation of original formula
- If *f* is unsatisfiable, there is no violation in *k* steps

BMC APPLICATIONS

- When applied on software, BMC itself cannot prove general absence of assertion violations
 - it is useful to discover them
 - there are extensions to BMC (unbounded model checking) aiming at proving absence of violations
- When applied on pieces of hardware, it can prove their absence
 - number of steps (its upper bound) of particular operations is known

BMC - REMARKS

- Bounds can be useful finding shortest counter-examples
- By including loop invariants (which are difficult to compute, though) into BMC, infinite paths can be verified

Part II: Infinite-State Model Checking

MOTIVATION

- Finite models are sometimes insufficient.
 - Protocols and circuits specification can be parametrized by size of int type (CPU), number of processors in multicore environment, of communicating network nodes,
 ...
- Even though model checking of general infinite-state models is impossible, special cases can be model-checked

INFINITE FAMILIES

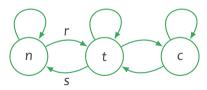
- Infinite family of systems: $\mathcal{F} = \{M_i\}_{i=1}^{\infty}$
- Verification task: assume f to be temporal formula, verify: $\forall i : M_i \models f$
- Generally, this is still undecidable we have to add more assumptions later
- Indexed CTL (ICTL) formula for each system component
 - *i*-th formula applied onto *i*-th component
 - allows for special expressions: $\land_i f(i)$, $\lor_i f(i)$, $\land_{j \neq i} f(j)$, and $\bigvee_{j \neq i} f(j)$

Infinite Families – Token Ring Example

Simple token ring

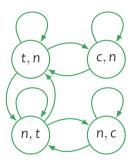
atomic propositions:
 non-critical section, keeping token, critical section, receive token, send token

One process Q originally keeping token (t), several processes P_i originally in state n



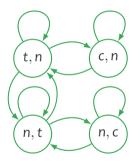
INFINITE FAMILIES – TOKEN RING EXAMPLE

Synchronous composition Q||P with natural synchronization of s and r



INFINITE FAMILIES – TOKEN RING EXAMPLE

Synchronous composition Q||P with natural synchronization of s and r



Generally, token ring family: $\mathcal{F} = \{Q || P_i \}_{i=1}^{\infty}$, desired property: $\bigwedge_i AG(c_i \implies \bigwedge_{i \neq i} \neg c_j)$

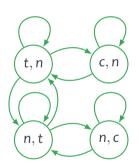
INFINITE FAMILIES

How to prove the property when there are infinitely many *P* processes? We have to find generalizing structure – *invariant*:

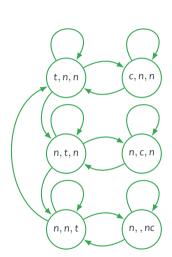
- Let $\mathcal{F} = \{Q | |P_i\}_{i=1}^{\infty}$ be family of structures
- lacktriangle Let \geq be reflexive, transitive relation on structures
- Invariant I is structure such that $\forall i: I \geq M_i$
- Relation \geq determine properties that can be checked:
 - \geq is bisimulation \implies strong preservation: $I \models f \Leftrightarrow M \models f$
 - ullet \geq is simulation preorder \Longrightarrow weak preservation: $I \models f \Longrightarrow M \models f$
 - Similarly for language-level preorder and equivalence

Token ring example: Token rings of size n and 2 are in simulation preorder \implies sufficient to verify just whether $(P||Q) \models f$

INFINITE FAMILIES – TOKEN RING EXAMPLE



$$\begin{aligned} &(t,n) \mapsto (t,n,n) \\ &(c,n) \mapsto (c,n,n) \\ &(n,t) \mapsto (n,t,n) \\ &(n,t) \mapsto (n,n,t) \\ &(n,c) \mapsto (n,c,n) \\ &(n,c) \mapsto (n,n,c) \end{aligned}$$



SYSTEMATIC APPROACH TO FINDING INVARIANTS

Definition: Composition || is monotonic w.r.t. relation $\geq \Leftrightarrow$

$$\forall P_1, P_1', P_2, P_2' : P_1 \geq P_1' \land P_2 \geq P_2' \implies P_1 || P_2 \geq P_1' || P_2'$$

Lemma: Let \geq be a reflexive, transitive relation and let || be a composition operator that is monotonic w.r.t. \geq If $I \geq P$ and $I \geq I||P$, then $\forall i : I \geq P^i$, where $\mathcal{F} = \{P^i\}_{i=1}^{\infty}$.

This is more like:

"This holds once we have the relation" than "How to find the relation"

Finding suitable relation is hard and not possible in algorithmic way – problem is undecidable in general.

Part III: Compositional Reasoning

MOTIVATION

- Efficient verification algorithms can extend applicability of formal methods
- Many systems can be decomposed into parts
 - verifying properties of each part separately
 - if conjunction of parts properties implies overall specification, we are done
 - the entire system never analysed as whole

EXAMPLE - PRODUCER-CONSUMER MODEL

- Three communication-protocol actors: sender, network, receiver
- Overall specification:
 - Data correctly transmitted from sender to receiver
- Partial specifications:
 - Data correctly sent from sender to network
 - Data correctly transmitted via network
 - Data correctly transmitted from network to receiver
- Verification of partial specifications typically much easier
 - sum of state spaces much smaller than state space of entire system (impact of state space explosion mitigated)

ASSUME-GUARANTEE PRINCIPLE

- Verifies each component separately
- Based on specification of
 - Assumptions requirements on behaviour of environment
 - Guarantees provisions offered to environment if assumptions are met
 - environment = the other components
- By combining assumptions and guarantees of particular parts, it is possible to establish correctness of entire system
- Full transition graph never constructed

ASSUME-GUARANTEE FORMALLY

- Formula capturing assume-guarantee principle is triple $\langle g \rangle M \langle f \rangle$ where g, f are temporal formulae and M is program
 - whenever M is part of system satisfying g, system also guarantees f
- Composition of proofs: $(\langle g \rangle M' \langle f \rangle) \wedge (\langle true \rangle M \langle g \rangle) \implies \langle true \rangle M | |M' \langle f \rangle$
- Can be expressed as inference rule:

$$\langle {\sf true}
angle {\sf M} \langle {\sf g}
angle \ \langle {\sf g}
angle {\sf M}' \langle f
angle \ \langle {\sf true}
angle {\sf M} || {\sf M}' \langle f
angle \ \rangle$$

ASSUME-GUARANTEE FORMALLY

Necessary to avoid circular dependencies making reasoning unsound:

$$\frac{ \begin{array}{c} \langle f \rangle \mathsf{M} \langle g \rangle \\ \langle g \rangle \mathsf{M}' \langle f \rangle \end{array}}{ \mathsf{M} || \mathsf{M}' \models f \wedge g}$$

Again: This is not incorrect!

ASSUME-GUARANTEE – APPLICATION TO SOFTWARE COMPONENTS

- Each component specifies not only provided (implemented) interfaces
 - similarly as objects do
- But also required ones
 - in addition to objects
- Syntactic (type) information may or may not consider interface/type inheritance
- Semantic (behaviour) specification usage protocols, restrictions beyond language capabilities, ...
 - can cover various aspects of component functional and extra-functional properties: allowed sequences of messages/calls, timing, reliability, resource usage, security, ...
 - composability verification based on the same principle as syntax: each component should provide at least as much (as good, fast, reliable, ...) as its environment requires

ASSUME-GUARANTEE – APPLICATION TO CODE

- Syntax usually checked by compiler and no additional effort required
- Semantics code annotations (code contracts):
 - at level of functions/methods
 - assumptions preconditions
 - guarantees postconditions
 - usually also invariants loop invariants
- Verification is modular:
 - each function is verified separately whether execution of each function really guarantees its postcondition if precondition is satisfied upon function entry
 - if function is called from within another function, its contract is used
 - precondition checked
 - postcondition is assumed

ASSUME-GUARANTEE - REMARKS

- It is not easy to specify contracts:
 - too weak preconditions make it difficult to guarantee postconditions
 - too strong preconditions are hard to be satisfied by callers
 - too strong postconditions are hard to be proven
 - too weak postconditions usually do not "satisfy" callers
- One has to know and tune...
- There are approaches for real programming languages
 - Spec#, JML, Code Contracts, Nagini, ...
 - backed by verification tools model checkers, SAT/SMT solvers, theorem provers