
NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

9. ABSTRACTIONS AND SYMMETRIES

Jan Kofroň

TODAY

Abstractions

Symmetries and Partial order reduction

Jan Kofroň: Behaviour Models and Verification 2

Part I: Abstractions

Jan Kofroň: Behaviour Models and Verification 3

ABSTRACTIONS

open

start

empty close heat

close

empty
start

close

start

heat

Systemmodel

AG (start→ AF heat)

Property specification

Model Checker

Property satisfied

Property violated

Jan Kofroň: Behaviour Models and Verification 4

ABSTRACTIONS

open

start

empty close heat

close

empty
start

close

start

heat

Systemmodel

AG (start→ AF heat)

Property specification

Model Checker

Property satisfied

Property violated

Jan Kofroň: Behaviour Models and Verification 5

ABSTRACTIONS

Ways to reduce (simplify) state space – optimizations – realized as elimination of some

details of model

Particular abstractions:

Cone of influence reduction

Data abstraction

Jan Kofroň: Behaviour Models and Verification 6

CONE OF INFLUENCE REDUCTION (COIR)

Focus just on variables related to specification, i.e., those in formula to be model

checked

Variables not influencing values of variables in specification can be removed –

they cannot affect whether the spec is valid or not

Jan Kofroň: Behaviour Models and Verification 7

COIR – DEFINITION

Let S be synchronous circuit described by set of equations vi = fi(V)

vi ∈ V

fi are Boolean functions

Let specification contain set of variables V′ ⊆ V

Some x ∈ V′ can depend on y /∈ V′

We define set C ⊇ V′ of interest – C as cone

Jan Kofroň: Behaviour Models and Verification 8

COIR – DEFINITION

The cone of influence C of V′ is the minimal set of variables such that:

V′ ⊆ C, and

∀k, j : (vk ∈ C) ∧ (fk depends on vj) =⇒ vj ∈ C

New (reduced) system is constructed from original by removing all equations whose

left-hand-side variables do not appear in C

Jan Kofroň: Behaviour Models and Verification 9

CORRECTNESS OF REDUCTION

Theorem: Let f be CTL formula andM Kripke structure. LetM′ be Kripke structure
after CoIR ofMwith respect to f. ThenM |= f ⇔ M′ |= f.

Proof idea: Removing variables not in C and adding transitions existing in original

states with identical values.

Jan Kofroň: Behaviour Models and Verification 10

COIR – EXAMPLE

Specification comprising three variables:

v′0 = ¬v0
v′1 = v0 ⊕ v1

v′2 = (v0 ∧ v1)⊕ v2

Corresponding Kripke structureM = (S, I, R, L) over variables V = {v1, ..., vn}:
S = {0, 1}n

I ⊆ S

R =
n∧
i=1

[v′i = fi(V)]

L(s) = {vi|s(vi) = 1, 1 ≤ i ≤ n}

Jan Kofroň: Behaviour Models and Verification 11

ORIGINAL STATE SPACE

0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1

1, 0, 01, 0, 11, 1, 01, 1, 1

Jan Kofroň: Behaviour Models and Verification 12

REDUCED MODEL

Let C = {v1, ..vk} for some k be CoI. Reduced model isM′ = (S′, I′, R′, L′):

S′ = {0, 1}k

I′ = {(d′1, ..d′k)|∃(d1, .., dn) ∈ I : d′i = di, 1 ≤ i ≤ k}

R′ =
k∧
i=1

[v′i = fi(V)]

L′(s′) = {vi|s′(vi) = 1, 1 ≤ i ≤ k}

Jan Kofroň: Behaviour Models and Verification 13

REDUCED STATE SPACE

V′ = {v0} → C = {v0}

V′ = {v1} → C = {v0, v1}

0 1

0, 0 0, 1 1, 0 1, 1

V′ = {v2} → C = {v0, v1, v2} – original state space

Jan Kofroň: Behaviour Models and Verification 14

REDUCED STATE SPACE

V′ = {v0} → C = {v0}

V′ = {v1} → C = {v0, v1}

0 1

0, 0 0, 1 1, 0 1, 1

V′ = {v2} → C = {v0, v1, v2} – original state space

Jan Kofroň: Behaviour Models and Verification 15

REDUCED STATE SPACE

V′ = {v0} → C = {v0}

V′ = {v1} → C = {v0, v1}

0 1

0, 0 0, 1 1, 0 1, 1

V′ = {v2} → C = {v0, v1, v2} – original state space

Jan Kofroň: Behaviour Models and Verification 16

BACK TO PROOF SKETCH

Let B ⊆ S× S′ be defined as follows: ((d1, .., dn), (d
′
1, .., d

′
k)) ∈ B ⇔ di = d′i , ∀1 ≤ i ≤ k

It suffices to show that B is bisimulation

bisimulation impliesM |= f ⇔ M′ |= f

first consider initial states and then all transitions and target states

it is easy to see that it is bisimulation ;-)

Jan Kofroň: Behaviour Models and Verification 17

DATA ABSTRACTION – MOTIVATION

Number of combinations of possible values of (user) input can be enormous

Results in very large or sometimes even infinite (floating point numbers) state

space

Model checking hard or not possible in principle

Solution: Data abstraction

Jan Kofroň: Behaviour Models and Verification 18

DATA ABSTRACTION – PROCEDURE

1. Define abstract domain(s) and map concrete values to abstract ones

2. Create reduced Kripke structure

2.1 Replace concrete AP with abstract AP

2.2 Merge states with same set of AP

3. Model checking

Jan Kofroň: Behaviour Models and Verification 19

1. ABSTRACT DOMAINS

Motivation is to significantly lower number of possible values for selected

variables

Abstraction means hiding some information

Done by mapping each concrete value to abstract one, e.g., integer domain can

be mapped to abstract domain

Note that in Kripke structure data are encoded in (Boolean) atomic propositions

Jan Kofroň: Behaviour Models and Verification 20

DATA ABSTRACTION – EXAMPLE

Let A = {a0, a+, a−} be abstract domain and h(x)mapping (abstraction) function

For int i: h(i) = a0 if i = 0

h(i) = a+ if i > 0

h(i) = a− if i < 0

Corresponding atomic propositions for concrete variables:

h(x) = a0, h(x) = a+, h(x) = a−

Jan Kofroň: Behaviour Models and Verification 21

2. CREATING REDUCED KRIPKE STRUCTURE

1. CreateM′ = (S, I, R, L′) such that it is identical toM except for L – L′ labels states
with abstract atomic propositions

2. Create reduced Kripke structureMr = (Sr, Ir, Rr, Lr):

Sr = {L′(s)|s ∈ S} – merging states with identical set of AP

sr ∈ Ir ⇔ ∃s ∈ S : sr = L′(s) ∧ s ∈ I

(sr, tr) ∈ Rr ⇔ ∃s, t ∈ S : (s, t) ∈ R ∧ sr = L′(s) ∧ tr = L′(t)

Jan Kofroň: Behaviour Models and Verification 22

3. MODEL CHECKING

Perform model checking ofMr

Desired property:Mr |= fr =⇒ M |= f. Does this hold for any CTL formula?

Example: Traffic lights

green

yellowred

Jan Kofroň: Behaviour Models and Verification 23

3. MODEL CHECKING

Perform model checking ofMr

Desired property:Mr |= fr =⇒ M |= f. Does this hold for any CTL formula?

Example: Traffic lights

green

yellowred

Jan Kofroň: Behaviour Models and Verification 24

DATA ABSTRACTION – EXAMPLE

Original atomic propositions AP = {red, yellow, green}, in each state exactly one is true

Abstract domain A = {stop, go}

Mapping function h: h(red) = stop, h(yellow) = stop, h(green) = go

green

yellowred

M

→

go

stopstop

M′

→

go

stop

Mr

Jan Kofroň: Behaviour Models and Verification 25

DATA ABSTRACTION – EXAMPLE

Original atomic propositions AP = {red, yellow, green}, in each state exactly one is true

Abstract domain A = {stop, go}

Mapping function h: h(red) = stop, h(yellow) = stop, h(green) = go

green

yellowred

M

→

go

stopstop

M′

→

go

stop

Mr

Jan Kofroň: Behaviour Models and Verification 26

DATA ABSTRACTION – EXAMPLE

Original atomic propositions AP = {red, yellow, green}, in each state exactly one is true

Abstract domain A = {stop, go}

Mapping function h: h(red) = stop, h(yellow) = stop, h(green) = go

green

yellowred

M

→

go

stopstop

M′

→

go

stop

Mr

Jan Kofroň: Behaviour Models and Verification 27

OUR PROPERTY

Desired property:Mr |= fr =⇒ M |= f. Does this hold for any CTL formula?

NO!

Consider formula AG (red ∧ EX yellow)which is not satisfied in red state.

After abstraction formula reads AG (stop ∧ EX stop) and this formula is satisfied in stop

state ofMr.

So what is it good for?!?

Jan Kofroň: Behaviour Models and Verification 28

OUR PROPERTY

Desired property:Mr |= fr =⇒ M |= f. Does this hold for any CTL formula? NO!

Consider formula AG (red ∧ EX yellow)which is not satisfied in red state.

After abstraction formula reads AG (stop ∧ EX stop) and this formula is satisfied in stop

state ofMr.

So what is it good for?!?

Jan Kofroň: Behaviour Models and Verification 29

OUR PROPERTY

Desired property:Mr |= fr =⇒ M |= f. Does this hold for any CTL formula? NO!

Consider formula AG (red ∧ EX yellow)which is not satisfied in red state.

After abstraction formula reads AG (stop ∧ EX stop) and this formula is satisfied in stop

state ofMr.

So what is it good for?!?

Jan Kofroň: Behaviour Models and Verification 30

DATA ABSTRACTION – JUSTIFICATION

We cannot do arbitrary abstractions – this way we could reduce any KS into one with

just one state and possibly self loop, which is apparently not correct.

Two options:

1. Limit allowed abstractions

only exact abstractions allowed – those congruent with respect to primitive relations

(transition relation, set of initial states)

2. Limit language of formulae

using ACTL – formulae in negative normal form without existential quantification

Jan Kofroň: Behaviour Models and Verification 31

DATA ABSTRACTION – JUSTIFICATION

We cannot do arbitrary abstractions – this way we could reduce any KS into one with

just one state and possibly self loop, which is apparently not correct.

Two options:

1. Limit allowed abstractions

only exact abstractions allowed – those congruent with respect to primitive relations

(transition relation, set of initial states)

2. Limit language of formulae

using ACTL – formulae in negative normal form without existential quantification

Jan Kofroň: Behaviour Models and Verification 32

DATA ABSTRACTION – JUSTIFICATION

We cannot do arbitrary abstractions – this way we could reduce any KS into one with

just one state and possibly self loop, which is apparently not correct.

Two options:

1. Limit allowed abstractions

only exact abstractions allowed – those congruent with respect to primitive relations

(transition relation, set of initial states)

2. Limit language of formulae

using ACTL – formulae in negative normal form without existential quantification

Jan Kofroň: Behaviour Models and Verification 33

DATA ABSTRACTION – JUSTIFICATION

We cannot do arbitrary abstractions – this way we could reduce any KS into one with

just one state and possibly self loop, which is apparently not correct.

Two options:

1. Limit allowed abstractions

only exact abstractions allowed – those congruent with respect to primitive relations

(transition relation, set of initial states)

2. Limit language of formulae

using ACTL – formulae in negative normal form without existential quantification

Jan Kofroň: Behaviour Models and Verification 34

Part II: Symmetries and Partial Order Reduction

Jan Kofroň: Behaviour Models and Verification 35

SYMMETRIES

Concurrent systems often exhibit a lot of symmetry:

memories

caches

buses

Identification of symmetric states can lead to substantial reduction of states space

by checking just one representative of each symmetry group

We need to define what symmetricmeans in particular context/example

property specification

systemmodel

Jan Kofroň: Behaviour Models and Verification 36

SYMMETRIES

From each set of symmetric states just one is picked, and its transitions are taken

into account

Formally, reduction is based on finding quotiens and invariant groups of
automorphisms upon permutations

skipping algebraic theory here for sake of time :-)

Jan Kofroň: Behaviour Models and Verification 37

EXAMPLE – TOKEN RING NETWORK

Token ring of two nodes

t, n c, n

n, t n, c

Reduced model based on

symmetry:

{(t, n), (n, t)} and {(c, n), (n, c)}

t, n c, n

Jan Kofroň: Behaviour Models and Verification 38

EXAMPLE – TOKEN RING NETWORK

We can apply reduction to larger configurations of i nodes

obtaining again two symmetry groups:

{(t, ni), (n, t, ni−1), ..., (ni, t)} and {(c, ni), (n, c, ni−1), ..., (ni, c)}

This results to exactly the same state space

t, ni c, ni

Jan Kofroň: Behaviour Models and Verification 39

EXECUTION SYMMETRY: PARTIAL ORDER REDUCTION

Parallel composition (of processes)

causes exponential growth of state space

If processes do not communicate too

much, majority of states are equivalent

to other states and do not need to be

explored

This means exploring just some paths

from initial to final state

B A||B

A

Jan Kofroň: Behaviour Models and Verification 40

PARTIAL ORDER REDUCTION

Idea:

Before model checking, reduced state graph is constructed

Full state graph is never constructed

Exploiting commutativity of concurrently executed transitions, which result in the

same state when executed in different orders

Formulated by Doron Peled in 1993

The name – Partial Order Reduction:

Early versions were based on the partial order model of the program execution

Better name: Model checking using representatives

Jan Kofroň: Behaviour Models and Verification 41

STATE TRANSITION SYSTEM

It is convenient to formulate the algorithm upon STS rather than Kripke structure

Kripke structureM = (S, I, R, L)

Corresponding STS N = (S, T, S0, L):

S, S0 = I, L – identical to Kripke structure

T is set of transitions: R(s, s′) ⇔ ∃a ∈ T : a(s, s′)
Transitions are labelled

Transitions with the same label are considered the same transition

Jan Kofroň: Behaviour Models and Verification 42

TRANSITIONS

Transition a is enabled in state s⇔ ∃s′ : a(s, s′)
If transition is not enabled, it is disabled

enabled(s) refers to all enabled transition is state s

Transition a is deterministic
⇔ ∀s : a is enabled in s, there exists at most one state s′ : a(s, s′)

We can write s′ = a(s)
Only deterministic systems will be considered

Jan Kofroň: Behaviour Models and Verification 43

REDUCTION ALGORITHM

expand_state (s0)

func t ion expand_state (s) {

work_set = ample (s) ;

while work_set i s not empty {

choose a from work_set

work_set = work_set \ { a }

t = a (s)

i f new(t)

expand_state (t)

create_edge (s , a , t) ;

}

}

Jan Kofroň: Behaviour Models and Verification 44

AMPLE SET: REQUIREMENTS

Systematic way of computing ample sets required

Desired properties of function ample(s):

1. Sufficiently many behaviours must be present in reduced state graph, so that

algorithm provides correct results

2. Reduced state graph should be significantly smaller than full graph

3. Overhead of computing ample(s) must be reasonably small

Important notions are independence and invisibility of transitions

Jan Kofroň: Behaviour Models and Verification 45

INDEPENDENCE

Definition: Independence relation I ⊆ T × T is symmetric, anti-reflexive relation

satisfying following two conditions:

enabledness: a, b ∈ enabled(s) =⇒ a ∈ enabled(b(s))

commutativity: a, b ∈ enabled(s) =⇒ a(b(s)) = b(a(s))

Definition exploits symmetry of relation

Dependency relation D is complement of independence relation I: D = (T × T) \ I

Independence relation to be specified:

obtained either from computational model

or knowledge of modelled system

Even actions that cannot be executed in parallel, e.g., incrementing variable by several

processes, can be independent

Jan Kofroň: Behaviour Models and Verification 46

INDEPENDENCE IN SPIN

Let a, b be transitions performed by different processes. a, b are independent if:

a accesses local variable of its process, b is arbitrary transition

a, b access two different global variables or channels

Also including sending and receiving messages on different channels, and testing

length of different channels

a, b read one global variable (or test length of one channel)

a is send operation on channel chan, b is receive operation on chan, provided that

chan is asynchronous and default behaviour of send is used (i.e., send on full

channel is blocked)

Jan Kofroň: Behaviour Models and Verification 47

INVISIBILITY AND STUTTERING EQUIVALENCE

Definition: Transition is called invisible if both origin and target states satisfy same set

of atomic propositions.

can be restricted to subset of AP

invisible∼ no visible change after executing the transition

Each path can be split into blocks, where each block contains states satisfying the

same set of AP

Definition: Two paths are stuttering equivalent iff they contain the same blocks (w.r.t.

AP) in the same order, possibly differing just in lengths.

minimal length of each block is one

block length is always finite

Jan Kofroň: Behaviour Models and Verification 48

STUTTERING EQUIVALENCE OF STRUCTURES

Two structuresM,M′ (Kripke structures or state transition systems) are stuttering

equivalent iff:

M andM′ have the same set of initial states

for each path σ ofM that starts from initial state s ofM there exists path σ′ ofM′

from the same initial state s such that σ ∼st σ
′

for each path σ′ ofM′ that starts from initial state s ofM′ there exists path σ ofM

from the same initial state s such that σ′ ∼st σ

Jan Kofroň: Behaviour Models and Verification 49

STUTTERING EQUIVALENCE IN LTL

LTL formula is invariant under stuttering iff for each pair of paths π and π′ such that

π ∼st π
′ : π |= f ⇔ π′ |= f.

We denote LTL without next operator by LTL−X

Theorem: Any LTL−X property is invariant under stuttering.

Theorem: Every LTL property that is invariant under stuttering can be expressed in

LTL−X.

Theorem: LetM,M′ be two stuttering equivalent structures. Then, for every LTL−X

property f, and every initial state s:M, s |= f ⇔ M′, s |= f.

Idea: Partial Order Reduction generates stuttering equivalent structure and

model-checks just this smaller structure

Jan Kofroň: Behaviour Models and Verification 50

PARTIAL ORDER REDUCTION FOR LTL−X

Independence and invisibility are not enough, reduction has to address cycles and

postponing transitions forever

State s is fully expanded iff ample(s) = enabled(s)

Four conditions to be satisfied by ample(s) function:

C0. ample(s) = ∅ ⇔ enabled(s) = ∅
C1. Along every path in full state graph that starts at s it holds that transition

dependent on transition in ample(s) cannot be executed without transition in

ample(s) occurring first

C2. If s is not fully expanded, then every a ∈ ample(s) is invisible

C3. Cycle is not allowed if it contains state in which some transition a is enabled, but is

never included in ample(s) for any state s of the cycle

Jan Kofroň: Behaviour Models and Verification 51

POR IN JAVA PATHFINDER

Java PathFinder is explicit code model checker for Java programs

In principle special virtual machine executing “all” possible thread interleavings and

“trying” all specified (random) input values

Since there are exponentially (in size and number of threads) many thread

interleavings, switch only when it makes sense:

For example, sequential update of local variables cannot affect other threads

Consider just interesting instruction as re-scheduling points:

scheduling-relevant instructions

non-deterministic instructions

Jan Kofroň: Behaviour Models and Verification 52

POR IN JAVA PATHFINDER

Only about 10% are scheduling-relevant instructions:

synchronization (monitorEnter, monitorExit, invokeX on synchronized methods)

field access (putX, getX)

array element access (Xaload, Xastore)

thread instructions (start, sleep, yield, join)

object methods (wait, notify)

Jan Kofroň: Behaviour Models and Verification 53

	Abstractions
	Cone of influence
	Data abstraction
	Symmetries

