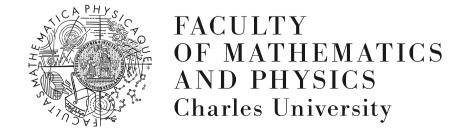
NSWI101: System Behaviour Models And Verification 10. Stochastic Model Checking

Jan Kofroň



MOTIVATION

In some cases absolute absence of errors is infeasible

- failures of particular parts of system
- non-deterministic behaviour of users
- **...**

It might be useful to determine level of reliability in terms of probability

- frequency of errors
- time to recovery
- throughput
- mean waiting time
- **=** ...

TODAY

Stochastic Model Checking

Lecture based on M. Kwiatkowska et al.: Stochastic Model Checking

http://www.prismmodelchecker.org/papers/sfmo7.pdf

STOCHASTIC MODEL CHECKING

- Not only validity of certain properties
 - but also probability of reaching states/paths
- → Need for special language
 - PCTL = Probabilistic Computational Tree Logic
 - CSL = Continuous Stochastic Logic
- Discrete-time Markov Chains (DTMC) are used as models for discrete time analysis
- Continuous-time Markov Chains (CTMC) are used for continuous time analysis

DISCRETE-TIME MARKOV CHAINS

DISCRETE-TIME MARKOV CHAINS

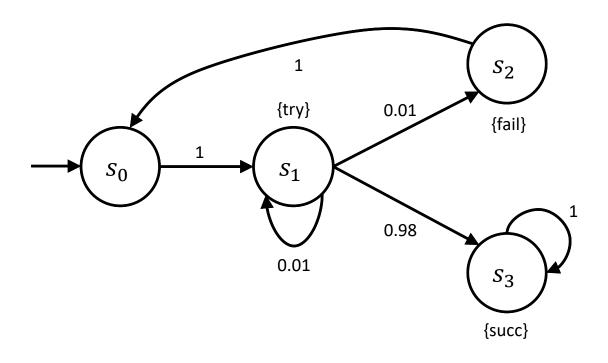
Definition: A labelled DTMC D is a tuple $(S, \bar{s}, \mathbf{P}, L)$ where:

- *S* is finite set of states
- $\bar{s} \in S$ is initial state
- P: $S \times S \to [0,1]$ is transition probability matrix where $\sum_{s' \in S} \mathbf{P}(s,s') = 1$ for all $s \in S$
- $L: S \to 2^{AP}$ is labelling function assigning to each state set L(s) of atomic propositions

DISCRETE-TIME MARKOV CHAINS

- Sum of probabilities of transitions originating in each state must be 1!
- Terminating states can be modelled by self-loop with probability 1

EXAMPLE



$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Notions

- Path is non-empty sequence $s_0s_1s_2$... where $s_i \in S$ and $\forall i \geq 0$: $P(s_i, s_{i+1}) > 0$
- Path can be finite or infinite
- $Path^{D}(s)$ set of **infinite** paths in D starting at s
 - this is default meaning of paths
- $Path_{fin}^{D}(s)$ set of **finite** paths in D starting at s

PATH PROBABILITY

Probability for finite path $\omega_{fin} \in P_{fin}^D(s)$:

$$P_{S}(\omega_{fin}) = \begin{cases} 1 \\ \prod_{i=0}^{n-1} P(\omega(i), \omega(i+1)) \end{cases}$$

if n = 0

otherwise

where n is length of ω_{fin}

Cylinder set $C(\omega_{fin}) \subseteq Path^D(s)$:

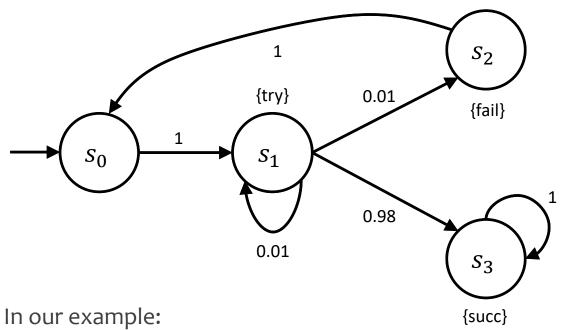
$$C(\omega_{fin}) \stackrel{\text{def}}{=} \{ \omega \in Path^D(s) | \omega_{fin} \text{ is a prefix of } \omega \}$$

PROBABILITY MEASURE

Probability measure Pr_s is function defined as:

$$Pr_{S}\left(C(\omega_{fin})\right) = P_{S}(\omega_{fin}) \text{ for all } \omega_{fin} \in Path_{fin}^{D}(S)$$

PROBABILITY MEASURE - EXAMPLE



$$Pr_{s_0}(C(s_0s_1s_1s_1)) = 1.00 \cdot 0.01 \cdot 0.01 = 0.0001$$

 $Pr_{s_0}(C(s_0s_1s_1s_2)) = 1.00 \cdot 0.01 \cdot 0.01 = 0.0001$
 $Pr_{s_0}(C(s_0s_1s_1s_3)) = 1.00 \cdot 0.01 \cdot 0.98 = 0.0098$
 $Pr_{s_0}(C(s_0s_1s_2s_0)) = 1.00 \cdot 0.01 \cdot 1.00 = 0.01$
 $Pr_{s_0}(C(s_0s_1s_3s_3)) = 1.00 \cdot 0.98 \cdot 1.00 = 0.98$

PROBABILISTIC COMPUTATIONAL TREE LOGIC (PCTL)

PROBABILISTIC COMPUTATIONAL TREE LOGIC (PCTL)

- Extension of CTL
- Syntax:

```
\Phi ::= true \mid a \mid \neg \Phi \mid \Phi \land \Phi \mid P_{\sim p}[\phi] \qquad \text{(state formula)} \phi ::= X\Phi \mid \Phi U^{\leq k} \Phi \text{, where} \qquad \text{(path formula)} a \text{ is atomic proposition} \sim \in \{<, \leq, \geq, >\} p \in [0,1] k \in \mathbb{N} \cup \infty
```

- ... plus common (derived) facts:
 - $false \equiv \neg true$

SEMANTICS OF PCTL

$$s \vDash true \text{ for all } s \in S$$

$$s \vDash a \iff a \in L(s)$$

$$s \vDash \neg \Phi \iff s \nvDash \Phi$$

$$s \vDash \Phi \land \Psi \iff s \vDash \Phi \land s \vDash \Psi$$

$$s \vDash P_{\sim p}[\phi] \iff Prob^{D}(s,\phi) \sim p$$

$$\omega \vDash X\Phi \iff \omega(1) \vDash \Phi$$

$$\omega \vDash \phi U^{\leq k} \psi \iff \exists i \in \mathbb{N}: (i \leq k \land \omega(i) \vDash \psi \land \forall j < i: (\omega(j) \vDash \phi))$$
where $Prob^{D}(s,\phi) \stackrel{\text{def}}{=} Pr_{s}\{\omega \in Path^{D}(s) \mid \omega \vDash \phi\}$

COMMON CTL OPERATORS

CTL *F* and *G* operators:

$$\begin{split} P_{\sim p}[F\;\Phi] &\equiv P_{\sim p}[true\;U^{\leq \infty}\Phi] \\ P_{\sim p}[F^{\leq k}\;\Phi] &\equiv P_{\sim p}[true\;U^{\leq k}\;\Phi] \\ G\;\Phi &\equiv \neg F \neg \Phi \\ G^{\leq k}\;\Phi &\equiv \neg F^{\leq k} \neg \Phi \end{split}$$

NEGATION

- Syntax does not allow for negation of path formulae
- However, it holds:

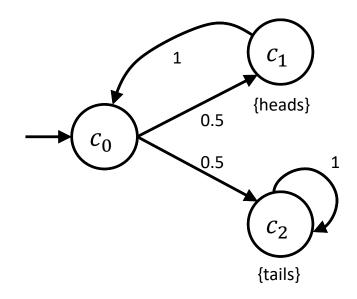
$$P_{\sim p}[G \ \Phi] \equiv P_{\approx 1-p}[F \ \neg \Phi]$$

$$P_{\sim p}[G^{\leq k} \ \Phi] \equiv P_{\approx 1-p}[F^{\leq k} \ \neg \Phi]$$

where
$$\overline{\leq} \equiv >, \overline{\leq} \equiv \geq, \overline{>} \equiv <$$

QUANTIFIERS

- $P_{\sim p}[\cdot]$ is probabilistic analogue to path quantifiers:
 - $\blacksquare EF\Phi \equiv P_{>0}[F \Phi]$
 - But: $AF\Phi$ is **NOT** the same as $P_{\geq 1}[F\Phi]$



 c_0 satisfies $P_{\geq 1}[F \ tails]$ c_0 does **NOT** satisfy $AF \ tails$

EXAMPLES OF PCTL PROPERTIES

- $P_{\geq 0.4}[X \ delivered]$
 - probability that message gets delivered in next step is at least 0.4
- $init \rightarrow P_{\leq 0}[F\ error]$
 - error state is not reachable from any init state
- $P_{\geq 0.9}[\neg down\ U\ served]$
 - probability that server does not go down before request gets served is at least 0.9
- $P_{\leq 0.1}[\neg done\ U^{\leq 10}\ fault]$
 - probability that error occurs before protocol is done and within 10 steps is less than 0.1

Model Checking PCTL

- Based on CTL model checking algorithm
 - 1. decomposing formula into sub-formulae
 - 2. in bottom-up manner finding set of states satisfying particular sub-formulae
 - 3. the set of states for the input formula at root

Special handling of the P formulae

ХФ

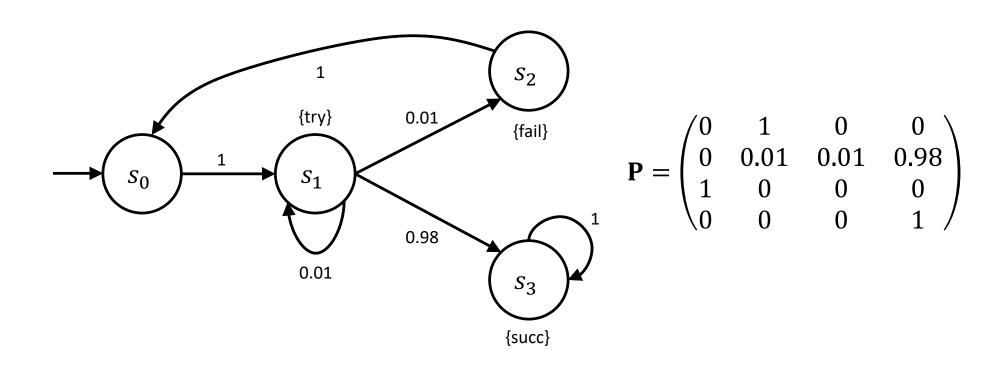
• For $P_{\sim p}[X \Phi]$ we need to compute $Prob^D(s, X \Phi)$ for each state s:

$$Prob^{D}(s, X\Phi) = \sum_{s' \in Sat(\Phi)} \mathbf{P}(s, s')$$

where $Sat(\Phi)$ is set of states satisfying Φ

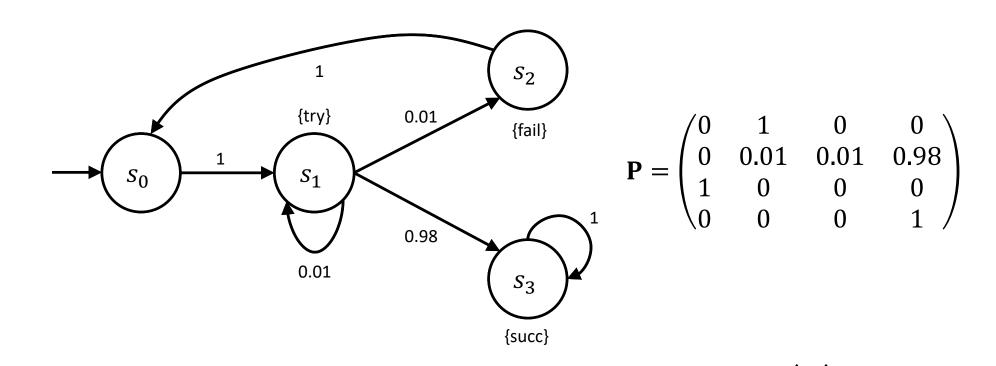
- Let $\underline{\Phi}(s) = \begin{cases} 1 & if \ s \in \operatorname{Sat}(\Phi) \\ 0 & otherwise \end{cases}$
- $\underline{Prob^D}(X\Phi) = \mathbf{P} \cdot \underline{\Phi}$
 - Vector with probabilities for particular states

$X\Phi$ – EXAMPLE



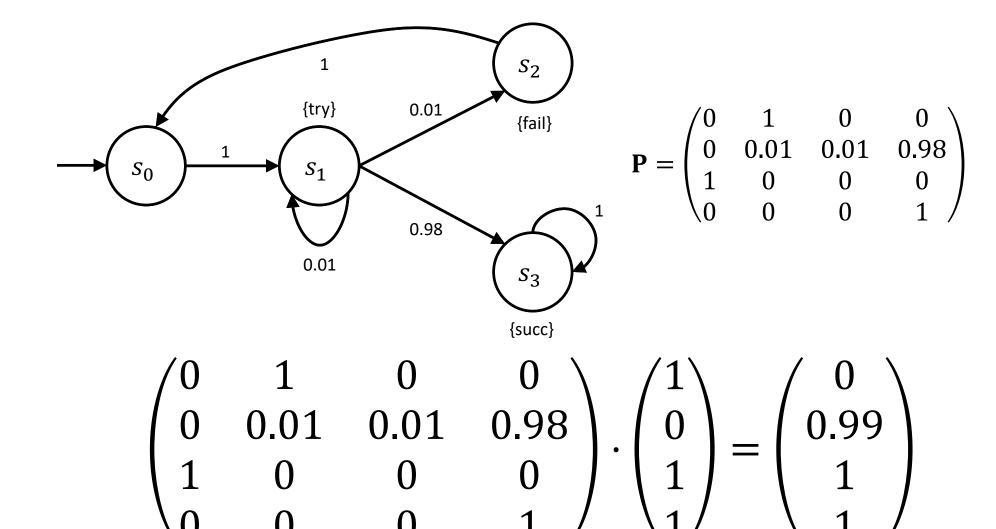
$$P_{\geq 0.9}[X(\neg try \lor succ)]$$

$X\Phi$ – EXAMPLE



$$Sat(\neg try \lor succ) = \{s_0, s_2, s_3\} \rightarrow \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$

$X\Phi$ – EXAMPLE



$\Phi U^{\leq k} \Psi - \operatorname{FOR} k \neq \infty$

For $P_{\sim p}[\Phi U^{\leq k} \Psi]$ we need to compute $Prob^D(s, \Phi U^{\leq k} \Psi)$ for each state s:

$$Prob^{D}(s, \Phi U^{\leq k} \Psi) =$$

$$=\begin{cases} 1 & if \ s \in Sat(\Psi) \\ 0 & if \ k = 0 \ or \ s \in Sat(\neg \Phi \land \neg \Psi) \\ \sum_{s' \in S} \mathbf{P}(s, s') \cdot Prob^{D}(s', \Phi U^{\leq k-1} \Psi) & \text{otherwise} \end{cases}$$

where $Sat(\Phi)$ is set of states satisfying Φ

$\Phi U^{\leq k} \Psi - \text{FOR } k \neq \infty$

Definition: For any DTMC $D = (S, \bar{s}, \mathbf{P}, L)$ and PCTL formula Φ , let $D[\Phi] = (S, \bar{s}, \mathbf{P}[\Phi], L)$ where, if $s \not\models \Phi$, then $\mathbf{P}[\Phi](s, s') = \mathbf{P}(s, s')$ for all $s' \in S$, and if $s \models \Phi$, then $\mathbf{P}[\Phi](s, s) = 1$ and $\mathbf{P}[\Phi](s, s') = 0$ for all $s' \neq s$.

Then it holds:

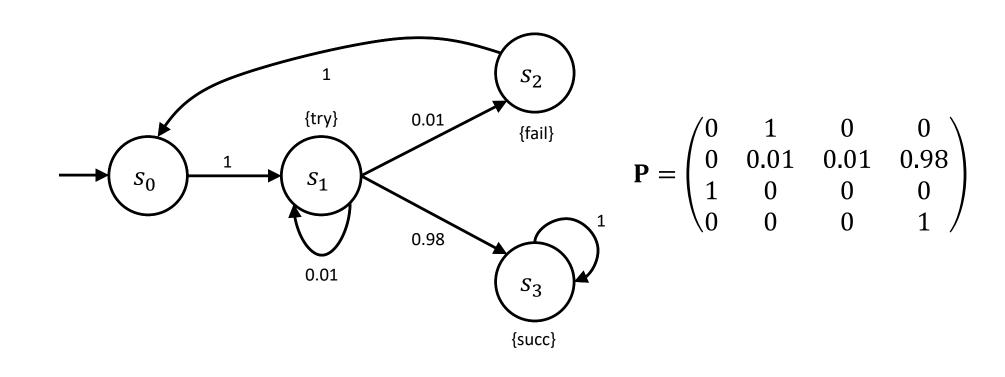
$$Prob^{D}(s, \Phi U^{\leq k} \Psi) = \sum_{s' \models \Psi} \pi_{s,k}^{D[\neg \Phi \lor \Psi]}(s')$$

$\Phi U^{\leq k} \Psi - \operatorname{FOR} k \neq \infty$

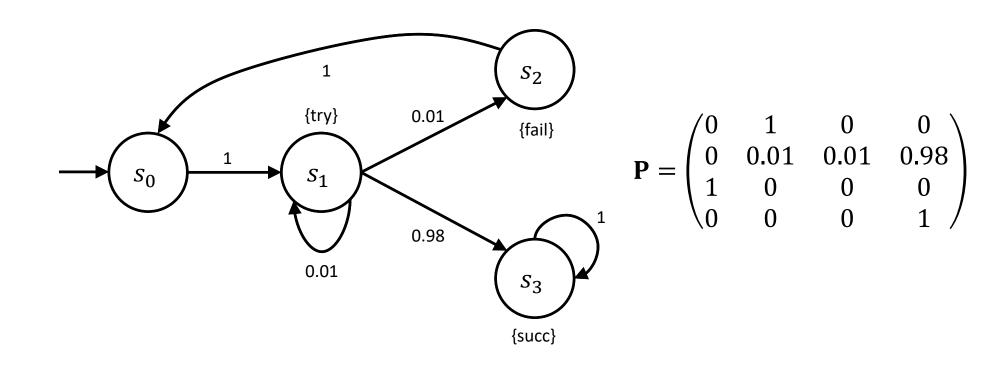
Vector of probabilities $\underline{Prob^D}(\Phi \ U^{\leq k} \ \Psi)$ can be computed as: $\underline{Prob^D}(\Phi \ U^{\leq k} \ \Psi) = (\mathbf{P}[\neg \Phi \lor \Psi])^k \cdot \underline{\Psi}$

Usually computed in iterative way

lacksquare but can be pre-computed for particular k

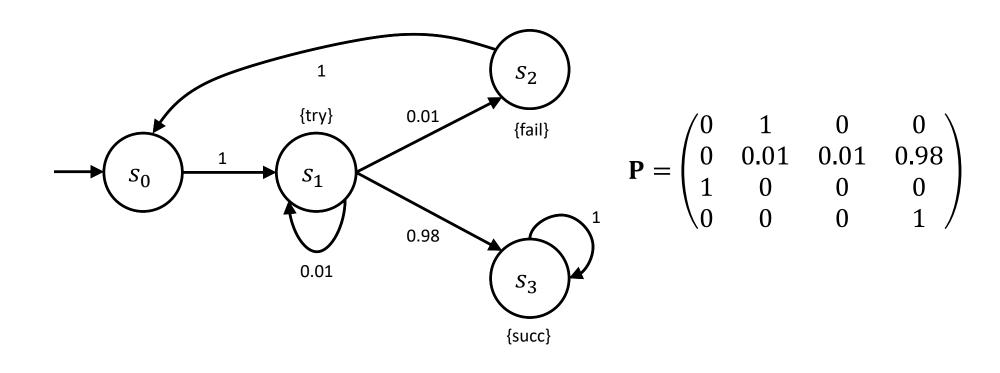


$$\mathbf{P}_{>0.98}[F^{\leq 2}succ] = \mathbf{P}_{>0.98}[true\ U^{\leq 2}succ]$$

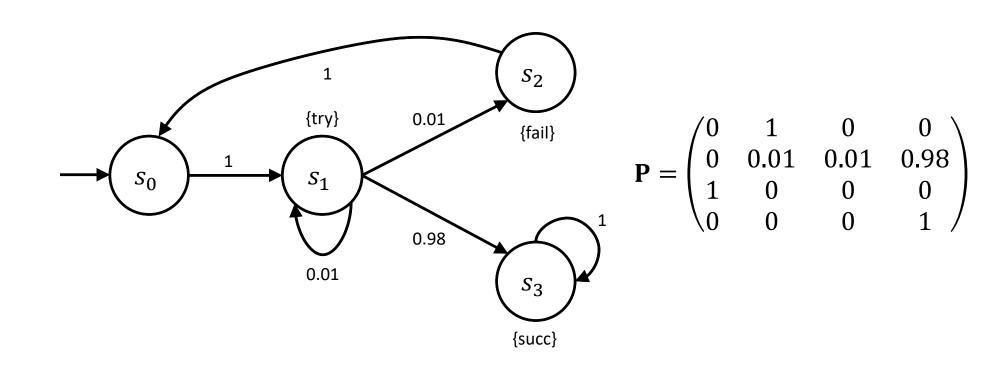


$$Sat(true) = \{s_0, s_1, s_2, s_3\}, \quad Sat(succ) = \{s_3\}$$

$$\mathbf{P}[\neg true \lor succ] = \mathbf{P}$$



$$\underline{Prob}^{D}(\Phi \ U^{\leq 0}\Psi) = succ = [0,0,0,1]
\underline{Prob}^{D}(\Phi \ U^{\leq 1}\Psi) = \mathbf{P}[\neg true \lor succ] \cdot \underline{Prob}^{D}(\Phi \ U^{\leq 0} \ \Psi) = [0,0.98,0,1]
\underline{Prob}^{D}(\Phi \ U^{\leq 2}\Psi) = \mathbf{P}[\neg true \lor succ] \cdot \underline{Prob}^{D}(\Phi \ U^{\leq 1} \ \Psi) = [\mathbf{0}.\mathbf{98},\mathbf{0}.\mathbf{9898},\mathbf{0},\mathbf{1}]$$



$$\underline{Prob}^{D}(\Phi U^{\leq 2} \Psi) = [\mathbf{0.98}, \mathbf{0.9898}, \mathbf{0.1}]$$

Hence $Sat(P_{>0.98}[F^{\leq 2}succ]) = \{s_1, s_3\}$

$\Phi U^{\leq k} \Psi - \operatorname{FOR} k = \infty$

- For brevity, instead of $U^{\leq \infty}$ we just write U
- We need to compute $Prob^{D}(s, \Phi U \Psi)$ for each state s:

$$Prob^{D}(s, \Phi \ U \ \Psi) == \begin{cases} 1 & if \ s \in Sat(\Psi) \\ 0 & if \ s \in Sat(\neg \Phi \land \neg \Psi) \\ \sum_{s' \in S} \mathbf{P}(s, s') \cdot Prob^{D}(s', \Phi \ U \ \Psi) & \text{otherwise} \end{cases}$$

$\Phi U^{\leq k} \Psi - \operatorname{FOR} k = \infty$

This system of equations can have many solutions – we convert it to one with just one solution

The following sets are computed using fixpoint algorithm (similar to CTL case, using complement on sets):

$$Sat(P_{\leq 0}[\Phi \ U \ \Psi]) = \{s \in S \mid Prob^{D}(s, \Phi \ U \ \Psi) = 0\}$$

 $Sat(P_{\geq 1}[\Phi \ U \ \Psi]) = \{s \in S \mid Prob^{D}(s, \Phi \ U \ \Psi) = 1\}$

$\Phi U^{\leq k} \Psi - \operatorname{FOR} k = \infty$

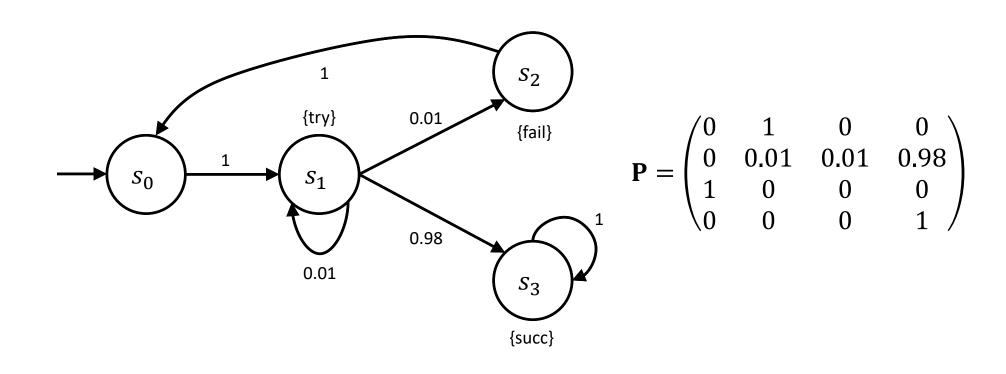
Resulting system of equation then reads:

$$Prob^{D}(s, \Phi U \Psi) =$$

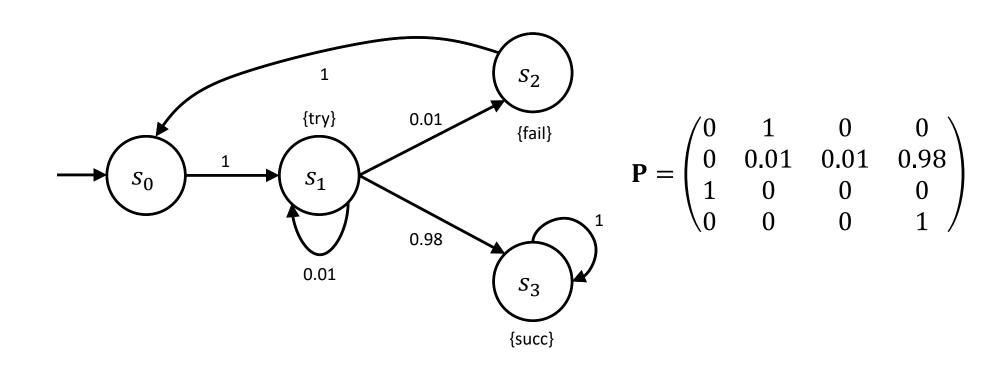
$$= \begin{cases} 1 & if \ s \in Sat(P_{\geq 1}[\Phi \ U \ \Psi]) \\ 0 & if \ s \in Sat(P_{\leq 0}[\Phi \ U \ \Psi]) \\ \sum_{s' \in S} \mathbf{P}(s, s') \cdot Prob^{D}(s', \Phi \ U \ \Psi) & \text{otherwise} \end{cases}$$

Having computed sets for probabilities 0 and 1, we can restrict computation to rest of states

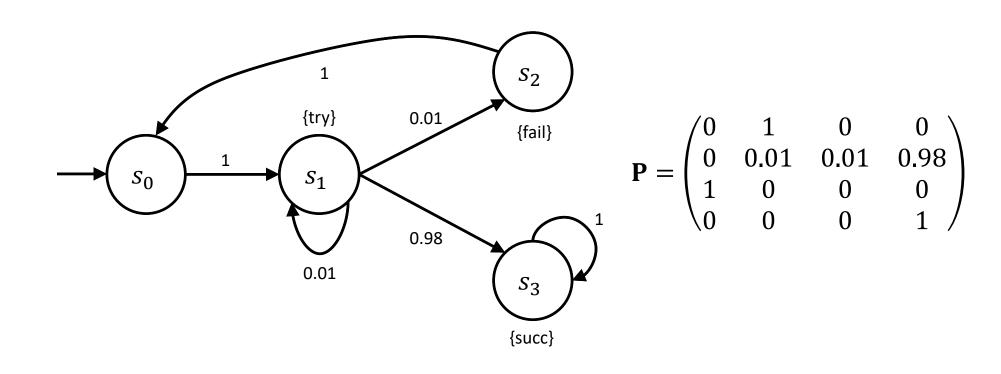
Optimization



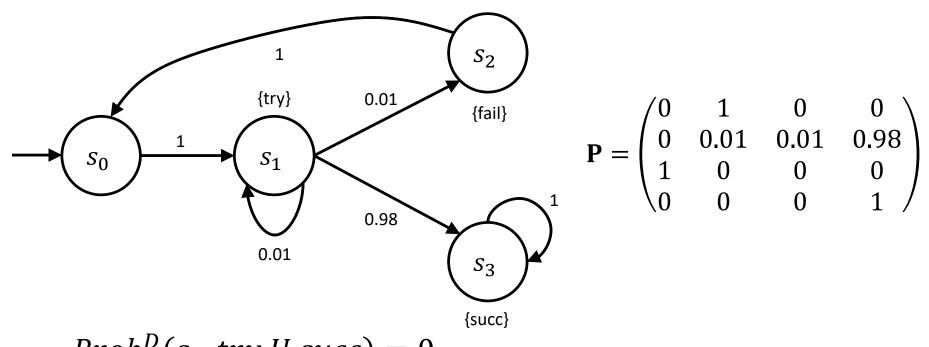
 $P_{>0.99}[try\ U\ succ]$



$$Sat(try) = \{s_1\}, \quad Sat(succ) = \{s_3\}$$

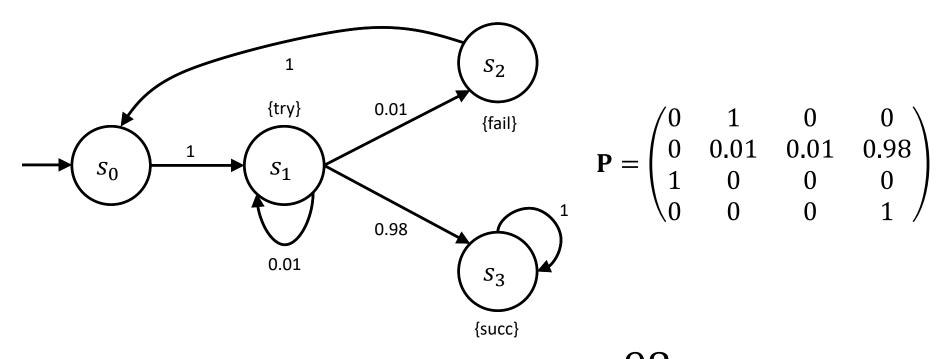


$$Sat(P_{\leq 0}[try\ U\ succ]) = \{s_0, s_2\}, \qquad Sat(P_{\geq 1}[try\ U\ succ]) = \{s_3\}$$

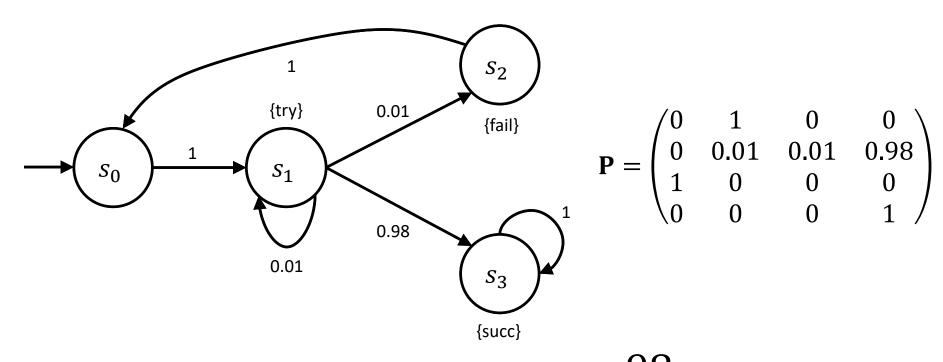


$$Prob^{D}(s_{0}, try\ U\ succ) = 0$$

 $Prob^{D}(s_{1}, try\ U\ succ) = 0.01 \cdot Prob^{D}(s_{1}, try\ U\ succ) + 0.01 \cdot Prob^{D}(s_{2}, try\ U\ succ) + 0.98 \cdot Prob^{D}(s_{3}, try\ U\ succ)$
 $Prob^{D}(s_{2}, try\ U\ succ) = 0$
 $Prob^{D}(s_{3}, try\ U\ succ) = 1$



$$\underline{Prob}^{D}(try\ U\ succ) = (0, \frac{98}{99}, 0, 1)$$



$$\underline{Prob}^{D}(try\ U\ succ) = (0, \frac{98}{99}, 0, 1)$$

 $P_{>0.99}[try\ U\ succ]$ is satisfied in s_3

EXTENDING DTMC AND PCTL WITH REWARDS

DTMC and PCTL can be extended by rewards (or costs)

- specification of cost for transition
- reasoning about cost of particular computation, e.g., satisfying PCTL property, restricting to computations with cost less than k, \dots

CONTINUOUS-TIME MARKOV CHAINS

CONTINUOUS-TIME MARKOV CHAINS

Transitions are supposed to occur at real time

contrary to DTMC where they occur at discrete time steps

CTMC allow to reason about different properties

- Continuous Stochastic Logic (CSL) is used instead of PCTL
- very close to PCTL including time specifications
- support for specification of time intervals

CONTINUOUS-TIME MARKOV CHAINS

Instead of probability matrix of DTMC, we have transition rate matrix (of real numbers)

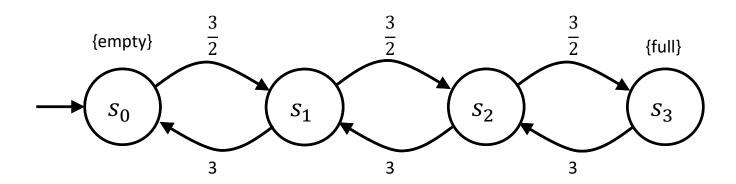
- assigns rates to each pair of states
- rates determine the probability of the transition
- exponential distribution probability of transition (s, s') within t time units, if $\mathbf{R}(s, s') > 0$ equals

$$1 - e^{-\mathbf{R}(s,s') \cdot t}$$

Exit rate E(s) of state s is given by:

$$E(s) \stackrel{\text{def}}{=} \sum_{s' \in S} \mathbf{R}(s, s')$$

CTMC - EXAMPLE



$$\mathbf{R} = \begin{pmatrix} 0 & \frac{3}{2} & 0 & 0 \\ 3 & 0 & \frac{3}{2} & 0 \\ 0 & 3 & 0 & \frac{3}{2} \\ 0 & 0 & 3 & 0 \end{pmatrix}$$

$$\mathbf{P^{emb}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \frac{2}{3} & 0 & \frac{1}{3} & 0 \\ 0 & \frac{2}{3} & 0 & \frac{1}{3} \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

PRISM - PROBABILISTIC MODEL CHECKER

- Allows for checking DTMC, CTMC and other types of models
- Uses simple dedicated input language
- http://www.prismmodelchecker.org

```
// Two process mutual exclusion

mdp

module M1

    x : [0..2] init 0;

    [] x=0 -> 0.8: (x'=0) + 0.2: (x'=1);
    [] x=1 & y!=2 -> (x'=2);
    [] x=2 -> 0.5: (x'=2) + 0.5: (x'=0);

endmodule

module M2

    y : [0..2] init 0;

    [] y=0 -> 0.8: (y'=0) + 0.2: (y'=1);
    [] y=1 & x!=2 -> (y'=2);
    [] y=2 -> 0.5: (y'=2) + 0.5: (y'=0);

endmodule
```

