Modeling and Verifying
Distributed Algorithms Using TLA*

http://d3s.mff.cuni.cz
Courtesy of Stephan Merz
Department of .
Distributed and https://members.loria.fr/Stephan.Merz/
Dependable

S=Ee FACULTY
: OF MATIHEMATICS
4 AND PHYSICS

)

Charles University

https://members.loria.fr/Stephan.Merz/

LESLIE LAMPORT HTTP://WWW.LAMPORT .ORG/

PhD 1972 (Brandeis University), Mathematics
@ Mitre Corporation, 1962—65
Marlboro College, 1965-69
Massachusets Computer Associates, 1970-77
SRl International, 1977-85

© 06 0 ¢

Digital Equipment Corporation / Compagq,
1985-2001

Microsoft Research, since 2001

©

Pioneer of distributed algorithms Turing Award 2013

@ Natl. Acad. of Sciences, PODC Influential Paper, ACM SIGOPS Hall of Fame (3x),
LICS Award, John v. Neumann medal, E.W. Dijkstra Prize, ...

http://www.lamport.org/

TLA* As A FORMAL METHOD

@ Mathematical language for modeling systems

o represent data structures as sets and functions
o specify system dynamics and properties using temporal logic

@ TLAT tools available from the TLA* Toolbox

o TLC: explicit-state model checking
@ TLAPS: interactive theorem proving
o PlusCal: algorithmic language, generates TLA* specification

@ Intended for high-level models

o designs of distributed and concurrent algorithms
o no link to actual implementations (so far)

@ Obijective: think about your design before you start implementing

INDUSTRIAL APPLICATIONS

@ Amazon
o Web services
o https://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-
services-uses-formal-methods/fulltext
@ OpenComRTOS
o OS usedinESA Rosetta spacecraft
o https://www.springer.com/gp/book/9781441997357
9 Intel

o Cache coherence protocol
o https://dl.acm.org/doi/10.1145/1391469.1391675

TLA*: INFORMAL INTRODUCTION

Example: an hour clock

‘ MODULE HourClock
EXTENDS Naturals

VARIABLE hr
| |
" HCini £ hr e (0.23)

HCnxt = hr' =IF hr = 23 THEN 0 ELSE hr + 1
HCsafe = HCini A O[HCnxt],

THEOREM HCsafe — OHCini

HOUR CLOCK AS TRANSITION SYSTEM

The hour clock gives rise to the following transition system:

@ all states are initial
@ stuttering and “tick” actions
@ all states reachable, no deadlocks

HOUR CcLOCK
s © 5.0 2 © s
The module HourClock contains declarations and definitions
@ hr astate variable
@ HCini a state predicate
@ HCnxt an action (built from hr and hr’)
@ HCsafe atemporal formula specifying that

o theinitial state satisfies HCini
o every transition satisfies HCnxt or leaves hr unchanged

Module HourClock also asserts a theorem: HCsafe — OHCini
This invariant can be verified using TLC, the TLA* model checker.
Note:

@ the hour clock may eventually stop ticking
@ it must not fail in any other way

HOUR cLOCK

A TLA™* formula

Init A O[Next], @

specifies the initial states and the allowed transitions of a system.
It allows for transitions that do not change v: stuttering transitions.
Infinite stuttering can be excluded by asserting fairness conditions.
For example,

HC = HCini A o[HCnxt],, A WEhrHCnxt
specifies an hour clock that never stops ticking.

plasil
Sticky Note

[Next]v = Next \/ {v`= v)

[HCnxt]hr = HCnxt \/ (hr` = hr)

OUTLINE
e 8 2 @ 2 @ e

Distributed Commitment

PROBLEM STATEMENT

Distributed commitment.
A set of nodes has to agree whether to commit or abort a transaction.
@ Initially, each node decides if it wishes to commit or abort.

@ The transaction is committed if all nodes wish to commit. Otherwise, it is
aborted.

PROBLEM STATEMENT

Distributed commitment.
A set of nodes has to agree whether to commit or abort a transaction.
@ Initially, each node decides if it wishes to commit or abort.

@ The transaction is committed if all nodes wish to commit. Otherwise, it is
aborted.

Control flow of each node
preparing

— T~

proposeCommit proposeAbort

PROBLEM STATEMENT

Distributed commitment.
A set of nodes has to agree whether to commit or abort a transaction.
@ Initially, each node decides if it wishes to commit or abort.

@ The transaction is committed if all nodes wish to commit. Otherwise, it is
aborted.

Control flow of each node
preparing

N

proposeCommit proposeAbort

all nodes some node
are ready wants to abort
to commit

committed aborted

A FIRST TLA* SPECIFICATION

@ Write a bird’s eyes view specification
o describe just how the participants’ states may change
o consider an observer that has complete information

o don’t care about distributed implementability

A FIRST TLA* SPECIFICATION

@ Write a bird’s eyes view specification
o describe just how the participants’ states may change
@ consider an observer that has complete information

o don’t care about distributed implementability

@ We’'ll later “localize” the specification
o the central view usually results in the simplest specification
o document the externally visible behavior, however it is achieved

o adistributed algorithm will implement the centralized specification

BIRD’S EYES SPECIFICATIONIN TLA*

S reparing

« ~
proposeCommit WOseAbort
MODULE DistributedCommit N

CONSTANT Node committed aborted
VARIABLE nState
Init = nState = [n € Node — “preparing’]
Decide(n) =
V nState[n] = “preparing” A nState’ = [nState EXCEPT ![n] = “proposeCommit’]
V nState[n] = “preparing” A nState’ = [nState EXCEPT ![n] = “proposeAbort’]
Commit(n) =
AV g € Node : nState[q] € {“proposeCommit”, “committed”}
A nState’ = [nState EXCEPT ![n] = “committed”] @
Abort(n) =
A 3q € Node : nState|q] € {“proposeAbort”, “aborted”}
A nState’ = [nState EXCEPT ![n] = “aborted”]

Next = 3n e Node : Decide(n) v Commit(n) \/ Abort(n)

Spec = Init A O[Next] ystate

plasil
Sticky Note
/\nState[n]="proposeCommit" /\ nState' =
[nState EXCEPT ![n] = "committed"]

REMARKS ON THE TLA™* SPECIFICATION

@ Data model

o parameter Node represents the set of nodes
o variable nState models the state of each participant
o represented as a function (a.k.a. array) mapping nodes to states

20

REMARKS ON THE TLA™* SPECIFICATION

@ Data model

o parameter Node represents the set of nodes
o variable nState models the state of each participant
o represented as a function (a.k.a. array) mapping nodes to states

@ State-based specification

o main formula Spec describes set of executions
o execution (behavior): infinite sequence of states
o state: assigns values to variables @

21

plasil
Sticky Note
do not forget that we use LTL !

REMARKS ON THE TLA* SPECIFICATION

@ Data model

o parameter Node represents the set of nodes
o variable nState models the state of each participant
o represented as a function (a.k.a. array) mapping nodes to states

@ State-based specification

o main formula Spec describes set of executions
o execution (behavior): infinite sequence of states
o state: assigns values to variables

@ Describing a state machine in TLA* Init A O[Next],

o formula Init expresses initial condition
o Decide(n), Commit(n), Abort(n) represent node transitions
o transition relation Next: disjunction of individual transitions

22

VALUES IN TLA*

@ TLAT is an untyped, set-based formalism
o we don’t have to specify that Node is a set
o infact, every value of TLA" is a set

@ even numbers and strings are sets
— but we don’t care what the elements of these sets are

o (not just) in this respect, TLA* follows classical mathematics

26

VALUES IN TLA*

@ TLAT is an untyped, set-based formalism
o we don’t have to specify that Node is a set
o infact, every value of TLA" is a set

@ even numbers and strings are sets
— but we don’t care what the elements of these sets are

o (not just) in this respect, TLA* follows classical mathematics
@ What about type errors?

o “silly” expressions such as 42 + {} are accepted by the parser
o the value of such expressions is not specified
o TLC will report an error when it tries to evaluate a silly expression

@ Deemed acceptable: specifications are short (200—800 lines)

27

WHICH OF THE FOLLOWING FORMULAS ARE TRUE?

@ VneNat:n>0 false: 0 € Nat

QO dkeNat:k+k=7 false: k + k is even, for all k € Nat
Q@ VneNat:n+n=4=nxn=4 true:n+n=4=n=2

@ dneNat:n+n=4=n=3 true,e.g.1+1+£4

@ Vx € {}: “Dublin” = “Nancy” true: trivial quantifier range

O Ixe{}:x=x false: no x € {}

0 -(Axe S:P(x))=(Vx e S:—=P(x))true

@ 0+-0=1 unspecified

QO 42 Axyz unspecified

@ The last two formulas are “silly”: TLC will raise an exception

o silly formulas are not illegal: they may occur as sub-expressions
o YneNat:n#0=n+n=1 @

plasil
Sticky Note
This is not silly formula though

FUNCTIONAL VALUES
O

@ Functions in TLA™

programming mathematics
array function
index set 0.. N function domain (any set)

array selection a|/] function application a(/i)

28

FUNCTIONAL VALUES
O

@ Functions in TLA™

programming mathematics

array function

index set 0.. N function domain (any set)
array selection a|/] function application a(/i)

o TLA* is mathematics, but writes a[i] for function application
o parentheses are used for operator application, e.g. Decide(p)

29

FUNCTIONAL VALUES
O

@ Functions in TLA™

programming mathematics

array function

indexset 0..N function domain (any set)
array selection a|/] function application a(/i)

o TLA* is mathematics, but writes a[i] for function application
o parentheses are used for operator application, e.g. Decide(p)

@ Notations used with functions

[S—T] set of functions with domain S and values in T
DOMAIN f domain of function f
[x € S—e] function mapping every x € Sto e

[f EXCEPT ![x] =e] [y € DOMAIN f — IF y = x THEN e ELSE f[]]
(a:>x) @@ (b:>y) finite function mapping ato x, bto y (module TLC)

30

plasil
Cross-Out

plasil
Inserted Text
this should be f[y]

FUNCTIONAL VALUES
O

@ Functions in TLA™

programming mathematics

array function

indexset 0..N function domain (any set)
array selection a|/] function application a(/i)

o TLA* is mathematics, but writes a[i] for function application
o parentheses are used for operator application, e.g. Decide(p)

@ Notations used with functions

[S—T] set of functions with domain S and values in T
DOMAIN f domain of function f
[x € S—e] function mapping every x € Sto e

[f EXCEPT ![x] =e] [y € DOMAIN f — IF y = x THEN e ELSE f[]]
(a:>x) @@ (b:>y) finite function mapping ato x, bto y (module TLC)

o refer to previous value: [f EXCEPT ![x] = @+ 1]

31

plasil
Cross-Out

plasil
Inserted Text
this should be f[y]

SPECIFYING ACTIONS

@ Actions must completely specify the successor states

o relation between pre-state and post-state (primed variables)
o write v/ = v (a.k.a. UNCHANGED V) if variable v doesn’t change

@ Basic format of an action definition

A(p) = A guard(p, V) * pre-condition
A vy =expi(p, V) * variable update
A vy € expa(p, V) * non-determinism

A UNCHANGED (vj, ..., Vn)

o guard: state predicate, determines when action can be taken
o exp;: state function, computes new value(s) of variable v;
o more complicated actions: case distinction, quantifiers, . ..

32

How To SPECIFY FUNCTION UPDATES

@ Cannot define action Commit(n) as

AV q € Node : nState[q] € {“readyCommit”, “committed”}
A nState[n]’ = “committed”

o does not specify nState[q]’ forq # n
o does not even say that nState’ is a function

33

How To SPECIFY FUNCTION UPDATES

@ Cannot define action Commit(n) as

AV q € Node : nState[q] € {“readyCommit”, “committed”}
A nState[n]’ = “committed”

o does not specify nState[q]’ forq # n
o does not even say that nState’ is a function

@ The new value of the function must be specified completely

o in general, write nState’ = [q € Node — .. | |

o use EXCEPT expression if only one (or a few) values are updated @

nState’ = [nState EXCEPT ![n] = “committed”]

34

plasil
Sticky Note
EXCEPT ![n]= ... , ![m] =...

plasil
Highlight

VERIFYING PROPERTIES OF DISTRIBUTED COMMITMENT

@ Type correctness

NState = {“preparing”, “proposeCommit’, “proposeAbort’, “committed”, “aborted”}
TypeOK = nState e [Node — NState)

@ Nodes can commit only if all accept

Agreement = Yp € Node : nState[p] = “committed”
= Vq € Node : nState[q] € {“proposeCommit’, “committed”}

35

VERIFYING PROPERTIES OF DISTRIBUTED COMMITMENT

@ Type correctness

NState = {“preparing”, “proposeCommit’, “proposeAbort’, “committed”, “aborted”}
TypeOK = nState e [Node — NState)

@ Nodes can commit only if all accept

Agreement = Yp € Node : nState[p] = “committed”
= Vq € Node : nState[q] € {“proposeCommit’, “committed”}

@ These properties are easily verified using the TLC model checker
o create finite model by instantiating parameter Node
o for example: Node + {1,2,3,4,5}
o can also use model values: Node «+ {alice, bob, charlie}
o check invariants TypeOK, Agreement

36

Lesson: Deadlock & Liveness in DistributedCommit
L ® 8 8

® Assume

Commit(n) ==
/\\A g \in Node : nState[q] \in {"readyCommit", "committed"}
/\nState[n]="readyCommit" /\ nState' = [nState EXCEPT ![n] = "committed"]

® |f Spec == Init /\ [][Next] nState
= Deadlock reached
= Liveness violated (stuttering: nState ‘ = nState)

® |f Spec == Init /\ [][Next] nState /\ WF_nState(Next)

= Deadlock reached
= Liveness preserved

® Note: Deadlock means ~ [] ENABLED Next

= j.e. at this point Spec == Init /\ (nState ‘ = nState) is the only option

= Desirable here, since to goal (all nodes aborted or committed) is reached and infinite
traces are needed by LTL definition ([], <>, ...)

Lesson: Safety and Liveness in DistributedCommit

a5
®. 8

® Safety — nothing bad happens
= Spec =>[] invariant.

® j.e.invariant is to be valid in all states

= Agreement == \A n\in Node : nState[n] = "committed" => \A g \in Node :
nState[q] \in {"readyCommit", "committed"}

® |iveness —something good happens eventually

= Spec => Liveness
°* Liveness typically a temporal formula of the form

<L [][<>L <>[1L []l(P=><>Q), (and combinations)
= Liveness == \A n \in Node : <>(nState[n] \in {"committed", "aborted"})

* By convention: [J(P=><>Q) =P ~>Q (“leads to”)

TLC basics

®®® 8

® Explicit state model checker

= |t checks a model (instance) of a specification

* Determined by Spec, choice of constants, and other
parameters

= How it checks a model:

°* [t begins by generating all states satisfying the initial predicate
Init.

* Then, for each state s it generates every possible next-state t
such that the pair {s,t) satisfies Next and the Fairness
constraints, looking for a state where an invariant is violated.

® Finally, it checks temporal properties over the state space
(determined by distinct t states) .

TLC basics (cont.)

* Symmetry Reduction

= Sometimes exact data values are irrelevant
® DistributedCommit: identities of participant nodes
* Never use operation other than (dis-)equality checking

= |[nstantiate these values by (sets of) model values
®* Model values: anonymous constants, different from each other
* |[nstantiated Node by {a,b,c,d,e} rather than {1,2,3,4,5}
® Optionally: declare these as symmetry sets
® TLC identifies states that differ w.r.t permutation of symmetry sets

of states: N=3 71 23
N=5 1055 61

N=7 16511 127

OUTLINE
e 8 2 @ 2 @ e

The Two-Phase Commitment Protocol

37

IMPLEMENTING DISTRIBUTED COMMITMENT

e 82 © 2 © e
@ The current specification cannot be directly implemented

@ nodes in a distributed system cannot access states of other nodes
o introduce explicit communication by message passing

38

IMPLEMENTING DISTRIBUTED COMMITMENT

@ The current specification cannot be directly implemented
@ nodes in a distributed system cannot access states of other nodes
o introduce explicit communication by message passing

@ Standard solution: two-phase commitment
o make use of a coordinator who centralizes agreement

alice bob charlie coordinator

IMPLEMENTING DISTRIBUTED COMMITMENT

@ The current specification cannot be directly implemented
@ nodes in a distributed system cannot access states of other nodes
o introduce explicit communication by message passing

@ Standard solution: two-phase commitment
o make use of a coordinator who centralizes agreement

alice bob charlie coordinator

“commit”

|
I ——

% “commit”
s

IMPLEMENTING DISTRIBUTED COMMITMENT

@ The current specification cannot be directly implemented
@ nodes in a distributed system cannot access states of other nodes
o introduce explicit communication by message passing

@ Standard solution: two-phase commitment
o make use of a coordinator who centralizes agreement

alice bob charlie coordinator

“commit”

|
I ——

% “commit”
s

“doAbort”
doAbort

y/

41

MODELING COMMUNICATION IN TLA*

@ TLA™* has no built-in primitives for message passing

@ no unique, generally accepted communication model
@ message loss and duplication, ordering guarantees etc.

@ Use a variable that explicitly models the communication network

o for example: sets vs. sequences for (un)ordered communication
o different communication models can be provided by libraries

@ For two-phase commit protocol

o represent messages as records of message kind and additional data
o represent network as set of messages: no ordering is assumed
o messages are sent once, assume no message loss

42

TLA* RECORDS AND TUPLES

@ A TLAT record corresponds to a structin C

o represented as a function whose domain is a set of strings
o arecord with two fields: [name — “fred”, age — 23]
o equals (“name”:> “fred”) @@ (“age”:> 23)

43

TLA* RECORDS AND TUPLES

@ A TLAT record corresponds to a structin C

o represented as a function whose domain is a set of strings
o arecord with two fields: [name — “fred”, age — 23]
o equals (“name”:> “fred”) @@ (“age”:> 23)

@ Notation used with records

o set of records of certain shape: [name : STRING, age: 0..120]
o record access: rec.name abbreviates rec[name’|
o record update: [rec EXCEPT l.age = @ + 1]

44

TLA* RECORDS AND TUPLES
O

@ A TLA™ record corresponds to a structin C
o represented as a function whose domain is a set of strings
o arecord with two fields: [name — “fred”, age — 23]
o equals (“name”:> “fred”) @@ (“age”:> 23)

@ Notation used with records

o set of records of certain shape: [name : STRING, age: 0..120]
o record access: rec.name abbreviates rec[name’|
o record update: [rec EXCEPT l.age = @ + 1]

@ n-tuples (sequences) are also represented as functions
(42, {}, “abc”) is a function with domain 1..3

o () denotes the empty tuple

o use function application for projection, e.g. seq|[2]

cf. frequent idiom in action definitions UNCHANGED (x, y, 2) |

©

©

45

Functions Versus Operators

@ What's the difference between F(x) and f[x]?
F(x) = e(x) vs. flxeS] = e(x)

» functions have a fixed domain, operators do not

» operators are not values: cannot be stored in variables @

Stephan Merz (INRIA Nancy) Modeling and Verifying Distributed Algorithr

April 2017

44 /61

plasil
Sticky Note
f[n] \in T and f \in T both correct
 + can be recursive

F(n) \in T correct but F \in T incorrect
 + cannot be recursive

(Recursive) Function Definitions

e A function definition can be written f[x € S] = e(x)
» recursive definitions: e(x) may contain f
fact[x € Nat] = 1F x = 0 THEN 1 ELSE x * fact[x — 1]

» such functions are well-defined if termination is ensured

Stephan Merz (INRIA Nancy) Modeling and Verifying Distributed Algorithr April 2017 43 / 61

Two-PHASE COMMIT IN TLA™* (1)

MODULE TwoPhaseCommit

CONSTANT Node

VARIABLES cState, nState, committed, msgs

vars = (cState, nState, committed, msgs)

Message = [kind : {“commit’, “abort’}, node : Node]
U [kind : {“doCommit’, “doAbort’} |

commit(n) = [kind — “commit’, node — n]

abort(n) = [kind — “abort’, node — n]

doCommit = | kind — “doCommit’]

doAbort = [kind — “doAbort’]

46

Two-PHASE COMMIT IN TLA* (1)

[MODULE TwoPhaseCommit
CONSTANT Node
VARIABLES cState, nState, committed, msgs
vars = (cState, nState, committed, msgs)
Message = [kind : {“commit’, “abort’}, node : Node] @
U [kind : {*doCommit”, “doAbort”} |
commit(n) = [kind — “commit’, node — n]
abort(n) = [kind — “abort’, node — n]
doCommit = [kind — “doCommit’]
doAbort = [kind — “doAbort’]

Init = A cState = “preparing” A nState = [n € Node — “preparing”]
A committed = {} A msgs = {}
Decide(n) = A nState[n] = “preparing”
AV A nState’ = [nState EXCEPT ![n] = “proposeCommit’]
A msgs’ = msgs U {commit(n)}
V A nState’ = [nState EXCEPT ![n] = “proposeAbort’]
A msas’ = msags U {abort(n)} 47

plasil
Sticky Note
set of records !

Two-PHASE COMMIT IN TLA* (2)

RcvCommit(n) = A n ¢ committed A commit(n) € msgs
A committed’ = committed U {n} A nState’ = nState
A IF committed’ = Node
THEN cState’ = “committed” A msgs’ = msgs U {doCommit}
ELSE UNCHANGED (cState, msgs)

RcvAbort(n) = A abort(n) € msgs A cState’ = “aborted”

A msgs’ = msgs U {doAbort}
A UNCHANGED (nState, committed)

Execute(n) = AV A doCommit € msgs
A nState’ = [nState EXCEPT ![n] = “committed”]
V A doAbort € msgs
A nState’ = [nState EXCEPT ![n] = “aborted”]
A UNCHANGED (cState, committed, msgs)
(

{
Next = 3n € Node : Decide(n) v RevCommit(n) v RevAbort(n) v Execute(n)

l Spec = Init A O[Next]yars

48

EXERCISE: VERIFYING PROPERTIES OF THE PROTOCOL

@ State the following properties as TLA* formulas

o type correctness: variables take expected values
o the coordinator does not send conflicting orders

o if a “doCommit” message has been sent then

1. all participants are in state “readyCommit” or “committed”
2. no “abort” message has been sent

@ Use the TLC model checker

o verify the above properties for finite instances
o note the size of the corresponding state spaces

@ Check deadlock freedom and explain the result

49

VERIFYING IMPLEMENTATION

@ Specifications and properties are both TLA* formulas
o consider theorems of the following forms

Spec = Prop Impl = Spec

o every execution of Spec satisfies property Prop
o every execution of Impl/ corresponds to an execution of Spec

50

VERIFYING IMPLEMENTATION

@ Specifications and properties are both TLA* formulas
o consider theorems of the following forms

Spec = Prop Impl = Spec

o every execution of Spec satisfies property Prop
o every execution of Impl/ corresponds to an execution of Spec

@ Two-phase commit implements distributed commitment

DC = INSTANCE DistributedCommit
THEOREM Spec = DC!Spec

o enter DC!Spec as a temporal property and run TLC
o TLC verifies that the implementation is correct

51

IMPLEMENTATION AS IMPLICATION

@ How can this be true?

o TwoPhaseCommit uses more variables than DistributedCommit
o every action of DistributedCommit changes variable nState
o actions like RevCommit of TwoPhaseCommit leave nState unchanged

52

IMPLEMENTATION AS IMPLICATION
O

@ How can this be true?
o TwoPhaseCommit uses more variables than DistributedCommit
o every action of DistributedCommit changes variable nState
o actions like RevCommit of TwoPhaseCommit leave nState unchanged

@ TLA™ specification do not fix the state space

o formulas are interpreted over all (infinitely many) variables
o of course, only the variables of interest are constrained
@ may compare specifications using different sets of variables

53

plasil
Highlight

IMPLEMENTATION AS IMPLICATION

@ How can this be true?
o TwoPhaseCommit uses more variables than DistributedCommit
o every action of DistributedCommit changes variable nState
o actions like RevCommit of TwoPhaseCommit leave nState unchanged

@ TLA™ specification do not fix the state space
o formulas are interpreted over all (infinitely many) variables
o of course, only the variables of interest are constrained
@ may compare specifications using different sets of variables

@ TLA™ formulas are insensitive to finite stuttering
o cannot observe changes to variables other than those of interest
o O[Next]vars : all transitions satisfy Next or leave vars unchanged
o DC!Spec allows arbitrary steps that do not change nState
54

plasil
Highlight

OUTLINE
e 8 2 @ 2 @ e

Liveness Properties

55

SAFETY VS. LIVENESS

@ So far we have only specified what may (not) happen
Init A\ O[Next]vars

o executions must start in a state satisfying predicate Init
o all transitions that change vars must respect action Next

56

SAFETY VS. LIVENESS

@ So far we have only specified what may (not) happen
Init A\ O[Next]vars

o executions must start in a state satisfying predicate Init
o all transitions that change vars must respect action Next

@ These formulas assert safety properties

o safety: nothing bad ever happens
o a system that does nothing never does something bad
o the above specification allows for (even infinite) stuttering

57

SAFETY VS. LIVENESS

@ So far we have only specified what may (not) happen
Init A\ O[Next]vars

o executions must start in a state satisfying predicate Init
o all transitions that change vars must respect action Next

@ These formulas assert safety properties

o safety: nothing bad ever happens
o a system that does nothing never does something bad
o the above specification allows for (even infinite) stuttering

@ A full specification should also say what must happen

o liveness: something good happens eventually
o cannot tell that it’s false by looking at a finite prefix
o example: participants will eventually commit or abort

58

Box AND DIAMOND

@ O (“box”) means “alwayj

o 0O(nState € [Node —gtate]) state invariant
o O[A]vars action invariant

@ < (“diamond”) means “eventu
o Vp € Node : & (nState[p| € mitted”, “aborted”})

o dp € Node : ©(Decide(p)) vars
o (A)e means AN (€ #e)

@ Combinations
o P~Q 2 o(P=0Q) Piseventually followed by Q
o OOF Fis true infinitely often
o <oOF F eventually stays true (is false only finitely often)
o note: —OF = O—F, =OF = 0-F, similar for 0[A], and ¢(A),

59

plasil
Sticky Note
G

plasil
Sticky Note
F

ENABLEDNESS OF ACTIONS

e 82 © 2 © e
@ Executions specified by Init A O[Next|,ars may stop

o i.e., perform only transitions satisfying UNCHANGED vars
o this may happen even if some action could be taken

60

ENABLEDNESS OF ACTIONS

@ Executions specified by Init A O[Next|,ars may stop
o i.e., perform only transitions satisfying UNCHANGED vars
o this may happen even if some action could be taken

@ Enabledness of an action A at state s
o there exists some state such that (s, t) satisfies A

61

ENABLEDNESS OF ACTIONS

@ Executions specified by Init A O[Next]yars may stop
o i.e., perform only transitions satisfying UNCHANGED vars
o this may happen even if some action could be taken

@ Enabledness of an action A at state s
o there exists some state such that (s, t) satisfies A

RcvCommit(n) =
A n ¢ committed A commit(n) € msgs
A committed’ = committed U {n} A nState’ = nState
A IF committed’ = Node THEN A cState’ = “committed”
A msgs’ = msgs U {doCommit}
ELSE UNCHANGED (cState, msgs)

o enabled if n ¢ committed and commit(n) € msgs

62

ENABLEDNESS OF ACTIONS

@ Executions specified by Init A O[Next]yars may stop
o i.e., perform only transitions satisfying UNCHANGED vars
o this may happen even if some action could be taken

@ Enabledness of an action A at state s
o there exists some state such that (s, t) satisfies A

RcvCommit(n) =
A n ¢ committed A commit(n) € msgs
A committed’ = committed U {n} A nState’ = nState
A IF committed’ = Node THEN A cState’ = “committed”
A msgs’ = msgs U {doCommit}
ELSE UNCHANGED (cState, msgs)

o enabled if n ¢ committed and commit(n) € msgs
@ ENABLED A = Jvars': A (quantification over all primed variables)

63

FAIRNESS HYPOTHESES

@ Express that an action must occur if it is sufficiently often enabled

o different interpretations of “sufficiently often”
o temporal logic is useful for making this precise
o note: finite stuttering is still allowed

64

FAIRNESS HYPOTHESES

@ Express that an action must occur if it is sufficiently often enabled

o different interpretations of “sufficiently often”
o temporal logic is useful for making this precise
o note: finite stuttering is still allowed

@ Weak fairness WF45(A)

o if (A)vars is continuously enabled then it eventually occurs
o in symbols: O(OENABLED (A)yars = < (A)vars)

65

FAIRNESS HYPOTHESES

@ Express that an action must occur if it is sufficiently often enabled

o different interpretations of “sufficiently often”
o temporal logic is useful for making this precise
o note: finite stuttering is still allowed

@ Weak fairness WF45(A)

o if (A)vars is continuously enabled then it eventually occurs
o in symbols: O(OENABLED (A)yars = < (A)vars)

@ Strong fairness SFy4s(A)

o if (A)vars is repeatedly enabled then it eventually occurs
o in symbols: O(OOENABLED (A)yars = <(A)vars)
o note: (A)yars may also be disabled repeatedly

66

WEAK FAIRNESS VS. STRONG FAIRNESS

@ SFyars(A) implies WF 45(A)
o the assumption for (A)yars Occurring is weaker
@ hence strong fairness is a stronger condition

67

WEAK FAIRNESS VS. STRONG FAIRNESS

@ SFyars(A) implies WF 45(A)
o the assumption for (A)yars Occurring is weaker
@ hence strong fairness is a stronger condition

@ Standard form of TLA™ specifications
Init/\ D[NeXt] vars A (Vi € w WFvars(A(i)) N (Vj S S . SFvars(B(j))

o actions A(f), B(j) occur as disjuncts of Next
o WEF: the system should not stop when the action may occur
o SF: the action should eventually be performed,
even if a different action is possible
o no fairness: the action is not required to occur
(e.g., a request from the environment)

68

WEAK FAIRNESS VS. STRONG FAIRNESS .

@ SFyars(A) implies WF 45(A)
o the assumption for (A)yars Occurring is weaker
@ hence strong fairness is a stronger condition

@ Standard form of TLA™ specifications
Init/\ D[NeXt] vars A (Vi € w WFvars(A(i)) N (Vj S S . SFvars(B(j))

o actions A(f), B(j) occur as disjuncts of Next
o WEF: the system should not stop when the action may occur
o SF: the action should eventually be performed,
even if a different action is possible
o no fairness: the action is not required to occur
(e.g., a request from the environment)

@ Choosing appropriate fairness conditions can be tricky!

69

plasil
Sticky Note
prosim vyhodit zminku o WF a SF

LIVENESS CHECKING FOR TwWO-PHASE COMMIT

@ Simple fairness hypothesis WEyars(Next) |

o stop only if no action can be performed
o usually the weakest reasonable fairness condition
o other choices are possible, such as

Vn € Node : A WF4rs(Decide(n)) A WF s (Execute(n))
A WEyars(RevCommit(n)) A WFyars(RevAbort(n))

70

LIVENESS CHECKING FOR TwWO-PHASE COMMIT

@ Simple fairness hypothesis WEFvars(Next) |

o stop only if no action can be performed
o usually the weakest reasonable fairness condition
o other choices are possible, such as

Vn € Node : A WF4rs(Decide(n)) A WF s (Execute(n))
A WEyars(RevCommit(n)) A WFyars(RevAbort(n))

@ \Verify liveness properties
o each participant will eventually abort or commit

Liveness = ¥n e Node : &(nState[n] € {*committed”, “aborted”})

o similarly, add fairness condition WF,,gs4c(Next) to DC!Spec
o verify that implementation still holds

71

SUuMMING UP

@ Specify algorithms as state machines

o initial condition, next-state relation, possibly fairness
o use the model checker for gaining confidence
o check non-properties and analyze counter-examples

@ Look for high-level abstractions

o model data using sets and functions
o exploit the power of mathematics for crisp definitions
o focus on high-level design, do not try to mimic the source code

@ Verify correctness by refinement when you can

o high-level specification describes intended behavior
o gradually introduce implementation detail

73

0 Modeling Systems in TLA*

Q System Verification

e The TLA* Language

Q The PlusCal Algorithm Language
e Refinement in TLA*

@ V2X Case Study in TLA*

e Conclusion

«4Or «Fr «=Er «=)» DA

Modeling Algorithms: TLA™ vs. Pseudo-Code

@ TLA™: algorithms specified by logical formulas

» data model represented in set theory

» fair state machine specified in temporal logic

Stephan Merz (INRIA Nancy) TLA" Tutorial Twente, September 2014 59 / 100

Modeling Algorithms: TLA™ vs. Pseudo-Code

@ TLA™: algorithms specified by logical formulas

» data model represented in set theory

» fair state machine specified in temporal logic

e Conventional descriptions of algorithms by pseudo-code

» familiar presentations, using imperative-style language
» (obviously) effective for conveying algorithmic ideas

» neither executable nor mathematically precise

@ PlusCal: pseudo-code flavor, but precise and more expressive

Stephan Merz (INRIA Nancy) TLA" Tutorial Twente, September 2014 59 /100

PlusCal: Elements of an Algorithm Language

e Language for modeling algorithms, not programming

e High-level abstractions, precise semantics

@ Familiar control structure + non-determinism

@ Concurrency: indicate grain of atomicity

Stephan Merz (INRIA Nancy) TLA™" Tutorial Twente, September 2014 60 / 100

PlusCal: Elements of an Algorithm Language

e Language for modeling algorithms, not programming
e High-level abstractions, precise semantics

» use TLA™ expressions for modeling data
» simple translation of PlusCal to TLA* specification

@ Familiar control structure + non-determinism

@ Concurrency: indicate grain of atomicity

Stephan Merz (INRIA Nancy) TLA" Tutorial Twente, September 2014 60 / 100

PlusCal: Elements of an Algorithm Language

e Language for modeling algorithms, not programming
e High-level abstractions, precise semantics
» use TLA™ expressions for modeling data

» simple translation of PlusCal to TLA* specification

@ Familiar control structure + non-determinism

» flavor of imperative language: assignment, loop, conditional, ...

» special constructs for non-deterministic choice

either { A}or{B} withxe S{A}

@ Concurrency: indicate grain of atomicity

Stephan Merz (INRIA Nancy) TLA" Tutorial Twente, September 2014

60 / 100

PlusCal: Elements of an Algorithm Language

e Language for modeling algorithms, not programming
e High-level abstractions, precise semantics
» use TLA™ expressions for modeling data

» simple translation of PlusCal to TLA* specification

@ Familiar control structure + non-determinism

» flavor of imperative language: assignment, loop, conditional, ...

» special constructs for non-deterministic choice
either { A}or{B} withxe S{A}
@ Concurrency: indicate grain of atomicity

> statements may be labeled req: try[self] := TRUE; J

» statements between two labels are executed atomically

Stephan Merz (INRIA Nancy) TLA" Tutorial Twente, September 2014

60 / 100

Example: Alternating-Bit Protocol in PlusCal

[MODULE AlternatingBit

EXTENDS Naturals, Sequences
CONSTANT Data
noData = CHOOSE x : x ¢ Data

(>(->(->(->{-

—-algorithm AlternatingBit {
variables sndC = (), ackC = ();
process (send = “sender”)

process (rcv = “receiver”)
process (err = “error”)

}

****)

* BEGIN TRANSLATION
* END TRANSLATION

Stephan Merz (INRIA Nancy) TLA™" Tutorial Twente, September 2014 61 /100

Example: Alternating-Bit Protocol in PlusCal

[MODULE AlternatingBit ‘
EXTENDS Naturals, Sequences
CONSTANT Data PlusCal algorithm embedded J
L "
noData = CHOOSE x : x ¢ Data 7380 DIL/AL o il

(>(->(->(->{-

—-algorithm AlternatingBit {
variables sndC = (), ackC = ();
process (send = “sender”)

process (rcv = “receiver”)
process (err = “error”)

}

****)

* BEGIN TRANSLATION
* END TRANSLATION

Stephan Merz (INRIA Nancy) TLA™" Tutorial Twente, September 2014 61 /100

Example: Alternating-Bit Protocol in PlusCal

[MODULE AlternatingBit ‘
EXTENDS Naturals, Sequences
CONSTANT Data PlusCal algorithm embedded J
L "
noData = CHOOSE x : x ¢ Data 7380 DIL/AL o il

(>(->(->(->{-

—-algorithm AlternatingBit {
variables sndC = (), ackC = (); global variable declarations J

process (send = “sender”)

process (rcv = “receiver”)
process (err = “error”)

}

****)

* BEGIN TRANSLATION
* END TRANSLATION

Stephan Merz (INRIA Nancy) TLA™" Tutorial Twente, September 2014 61 /100

Example: Alternating-Bit Protocol in PlusCal

MODULE AlternatingBit |
EXTENDS Naturals, Sequences

CONSTANT Data PlusCal algorithm embedded J
1 +

noData = CHOOSE x : x ¢ Data within TLA™ module

(>(->(->(->{-

—-algorithm AlternatingBit {
variables sndC = (), ackC = (); global variable declarations J

process (send = “sender”)

process (rcv = “receiver”) three parallel processes —
code to be filled in

process (err = “error”)

}

****)

* BEGIN TRANSLATION
* END TRANSLATION

Stephan Merz (INRIA Nancy) TLA™" Tutorial Twente, September 2014 61 /100

Example: Alternating-Bit Protocol in PlusCal

[MODULE AlternatingBit ‘
EXTENDS Naturals, Sequences
CONSTANT Data PlusCal algorithm embedded J
) +
noData = CHOOSE x : x ¢ Data 7380 DIL/AL o il

(>(->(->(->{-

—-algorithm AlternatingBit {
variables sndC = (), ackC = (); global variable declarations J

process (send = “sender”)

process (rcv = “receiver”) three parallel processes —
code to be filled in

process (err = “error”)

}

****)
* BEGIN TRANSLATION PlusCal translator generates
* END TRANSLATION TLA" specification here J

Stephan Merz (INRIA Nancy) TLA™" Tutorial Twente, September 2014 61 /100

PlusCal Code of Sender Process

process (send = “sender”)
variables sending = noData, sBit = 0, lastAck = 0; {
s0: while (TRUE) {
with (d € Data) { sending := d; sBit := 1 — sBit };
s1: while (lastAck # sBit) {
either {
sndC := Append(sndC, (sending, sBit));
}or {
await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);
Fh}

} *end process send

Stephan Merz (INRIA Nancy) TLA™" Tutorial Twente, September 2014

62 /100

PlusCal Code of Sender Process

process (send = “sender”)
variables sending = noData, sBit = 0, lastAck = 0; { initialize local variables |
s0: while (TRUE) {
with (d € Data) { sending := d; sBit := 1 — sBit };
s1: while (lastAck # sBit) {
either {
sndC := Append(sndC, (sending, sBit));
}or {
await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);
P}

} *end process send

Stephan Merz (INRIA Nancy) TLA™" Tutorial Twente, September 2014 62 /100

PlusCal Code of Sender Process

process (send = “sender”)

variables sending = noData, sBit = 0, lastAck = 0; { initialize local variables |
s0: while (TRUE) {
with (d € Data) { sending := d; sBit := 1 — sBit }; Prepare new data)
s1: while (lastAck # sBit) {
either {
sndC := Append(sndC, (sending, sBit));
}or {

await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);
Fh}

} *end process send

Stephan Merz (INRIA Nancy) TLA™" Tutorial Twente, September 2014 62 /100

PlusCal Code of Sender Process

process (send = “sender”)

variables sending = noData, sBit = 0, lastAck = 0; { initialize local variables |
s0: while (TRUE) {
with (d € Data) { sending := d; sBit := 1 — sBit }; Prepare new data J
s1: while (lastAck # sBit) {
either {
sndC := Append(sndC, (sending, sBit)); while not acknowledged,
}or { either (re)send data or
. receive acknowledgement
await (Len(ackC) > 0);

lastAck := Head(ackC); ackC := Tail(ackC);
P}

} *end process send

Stephan Merz (INRIA Nancy) TLA" Tutorial Twente, September 2014 62 /100

PlusCal Code of Sender Process

process (send = “sender”)

variables sending = noData, sBit = 0, lastAck = 0; { initialize local variables |
s0: while (TRUE) {
with (d € Data) { sending := d; sBit := 1 — sBit }; Prepare new data J
s1: while (lastAck # sBit) {
either {
sndC := Append(sndC, (sending, sBit)); while not acknowledged,
}or { either (re)send data or
await (Len(ackC) > 0); receive acknowledgement

lastAck := Head(ackC); ackC := Tail(ackC);
P}

} *end process send

o Familiar “look and feel” of imperative code

Stephan Merz (INRIA Nancy) TLA" Tutorial Twente, September 2014 62 /100

PlusCal Code of Other Processes

process (rcv = “receiver”)
variables rcvd = noData, rBit = 0; {
r0: while (TRUE) {
rl: await (Len(sndC) > 0);
with (d = Head(sndC)[1], b = Head(sndC)[2]) {
sndC := Tuil(sndC); ackC := Append(ackC, b);
if (b # rBit) { rcvd :=d; rBit :==b; }
b}

} *end process rcv

Stephan Merz (INRIA Nancy) TLA™" Tutorial Twente, September 2014 63 / 100

PlusCal Code of Other Processes

process (rco = “receiver”)
variables rcod = noData, rBit = 0; {
r0: while (TRUE) {
rl: await (Len(sndC) > 0);
with (d = Head(sndC)[1], b = Head(sndC)[2]) {
sndC := Tuil(sndC); ackC := Append(ackC, b);
if (b # rBit) { rcvd :=d; rBit :==b; }
b}

} *end process rcv

Stephan Merz (INRIA Nancy) TLA" Tutorial

receive data item and

send acknowledgement J

record new data item

J

Twente, September 2014

63 / 100

PlusCal Code of Other Processes

process (rco = “receiver”)
variables rcod = noData, rBit = 0; {
r0: while (TRUE) {
rl: await (Len(sndC) > 0); . ‘
with (d = Head(sndC)[1], b = Head(sndC)[2]) { gifzzfdfzf)‘;’lfd’zgfn t J
sndC := Tuil(sndC); ackC := Append(ackC, b);
if (b # rBit) { rcod := d; rBit := b; } record new data item |
b}

} *end process rcv

process (err = “error”) {
e0: while (TRUE) {

either {
await (Len(sndC) > 0); sndC := Tail(sndC); drop message from
} the data or the acknow-
}or{ ledgement channel

await (Len(ackC) > 0); ackC := Tail(ackC);

b}

} *end process err

Stephan Merz (INRIA Nancy) TLA™" Tutorial Twente, September 2014 63 / 100

Translation to TLA™: System State

@ TLAT" variables

» variables corresponding to those declared in PlusCal algorithm

» “program counter” stores current point of program execution

VARIABLES sndC, ackC, pc, sending, sBit, lastAck, rcvd, rBit
ProcSet = {“sender’} U {“receiver’} U {“error’
Init =
A sndC = () AackC = ()
A sending = noData A sBit = 0 A lastAck = 0
A rcvd = noData A rBit = 0
A pc = [self € ProcSet — CASE self = “sender” — “s0”
O self = “receiver” — “r0”
O self = “error” — “e0”]

Stephan Merz (INRIA Nancy) TLA™" Tutorial Twente, September 2014

64 / 100

Translation to TLA*: Transitions

s1: while (lastAck # sBit) {
either {
sndC := Append(sndC, (sending, sBit));
}or{
await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);

b}

i3

sl

Stephan Merz (INRIA Nancy) TLA" Tutorial Twente, September 2014 65 / 100

Translation to TLA*: Transitions

s1: while (lastAck # sBit) {
either {
sndC := Append(sndC, (sending, sBit));
}or{
await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);

2

sl
A pc[‘sender’] = “s1” }}

A TF lastAck # sBit
THEN A V A sndC' = Append(sndC, (sending, sBit))
A UNCHANGED (ackC, lastAck)
V A Len(ackC) > 0
A lastAck’ = Head(ackC)
A ackC' = Tail (ackC)
A sndC' = sndC
A pc’ = [pc EXCEPT ![“sender’] = “s1”]
ELSE A pc’ = [pc EXCEPT ![*sender’| = “s0”]
A UNCHANGED (sndC, ackC, last Ack)
A UNCHANGED (sending, sBit, rcud, rBit)

Fairly direct translation from PlusCal block to TLA™" action

Stephan Merz (INRIA Nancy) TLA™" Tutorial Twente, September 2014

65 / 100

Translation to TLA™: Tying It All Together

@ Define the transition relation of the algorithm
» transition relation of process: disjunction of individual transitions
» overall next-state relation: disjunction of processes
» generalizes to multiple instances of same process type
send = s0V sl rev = 10V rl err = ¢0
Next = send \/ rco V err

Stephan Merz (INRIA Nancy) TLA™" Tutorial Twente, September 2014 66 / 100

Translation to TLA™: Tying It All Together

@ Define the transition relation of the algorithm
» transition relation of process: disjunction of individual transitions

» overall next-state relation: disjunction of processes
» generalizes to multiple instances of same process type

send = s0V sl rco = r0Vrl err = €0

Next = send \/ rco V err
@ Define the overall TLA* specification

Spec 2 Init A O[Next]vars

Stephan Merz (INRIA Nancy) TLA" Tutorial Twente, September 2014 66 / 100

Translation to TLA™: Tying It All Together

@ Define the transition relation of the algorithm

» transition relation of process: disjunction of individual transitions

» overall next-state relation: disjunction of processes
» generalizes to multiple instances of same process type

send = s0V sl rco = r0Vrl err = €0
Next = send V rcoVerr

@ Define the overall TLA* specification
Spec 2 Init A O[Next]vars

@ Extension: fairness conditions per process or label

fair process (send = “sender”) Spec = ... A WFEyys(send)
s+ while (lastAck # sBit) ... Spec = ... ASFyus(s1)

Stephan Merz (INRIA Nancy) TLA" Tutorial Twente, September 2014

66 / 100

PlusCal: Summing Up

@ A gateway drug for programmers (C. Newcombe, Amazon)

» retain familiar look and feel of pseudo-code
» high level of abstraction due to TLA™ expression language
» simple translation to TLA* fixes formal semantics

» standard TLA™ tool set provides verification capabilities

Stephan Merz (INRIA Nancy) TLA™" Tutorial Twente, September 2014 67 / 100

	Distributed Commitment
	The Two-Phase Commitment Protocol
	Liveness Properties
	More On [+]Expressions
	Model Checking Large Specifications
	Summing Up
	Case Study: Distributed Computation Of A Spanning Tree

