
http://d3s.mff.cuni.cz

Modeling and Verifying
Distributed Algorithms Using TLA+

Courtesy of Stephan Merz

https://members.loria.fr/Stephan.Merz/

https://members.loria.fr/Stephan.Merz/

LESLIE LAMPORT HTTP://WWW.LAMPORT.ORG/

PhD 1972 (Brandeis University), Mathematics

Mitre Corporation, 1962–65

Marlboro College, 1965–69

Massachusets Computer Associates, 1970–77

SRI International, 1977–85

Digital Equipment Corporation / Compaq,
1985–2001

Microsoft Research, since 2001

Pioneer of distributed algorithms Turing Award 2013
Natl. Acad. of Sciences, PODC Influential Paper, ACM SIGOPS Hall of Fame (3x),
LICS Award, John v. Neumann medal, E.W. Dijkstra Prize, . . .

honorary doctorates (Rennes, Kiel, Lausanne, Lugano, Nancy)
2

http://www.lamport.org/

TLA+ AS A FORMAL METHOD

Mathematical language for modeling systems
represent data structures as sets and functions
specify system dynamics and properties using temporal logic

TLA+ tools available from the TLA+ Toolbox
TLC: explicit-state model checking
TLAPS: interactive theorem proving
PlusCal: algorithmic language, generates TLA+ specification

Intended for high-level models
designs of distributed and concurrent algorithms
no link to actual implementations (so far)

Objective: think about your design before you start implementing

3

INDUSTRIAL APPLICATIONS

Amazon
Web services
https://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-
services-uses-formal-methods/fulltext

OpenComRTOS
OS usedinESA Rosetta spacecraft
https://www.springer.com/gp/book/9781441997357

Intel
Cache coherence protocol
https://dl.acm.org/doi/10.1145/1391469.1391675

4

TLA+: INFORMAL INTRODUCTION

Example: an hour clock
MODULE HourClock

EXTENDS Naturals
VARIABLE hr

HCini ∆
= hr ∈ (0..23)

HCnxt ∆
= hr ′ = IF hr = 23 THEN 0 ELSE hr + 1

HCsafe ∆
= HCini ∧2[HCnxt]hr

THEOREM HCsafe→ 2HCini

5

HOUR CLOCK AS TRANSITION SYSTEM

The hour clock gives rise to the following transition system:

m m m m m m m m m m m m0 1 2 3 4 5 6 7 8 9 10 11

� �
? ? ? ? ? ? ? ? ? ? ? ?
- - - - - - - - - - -

mmmmmmmmmmmm 121314151617181920212223 � �� �� �� �� �� �� �� �� �� �� �� � 666666666666

�����������

�
�9

�
�
:

all states are initial
stuttering and “tick” actions
all states reachable, no deadlocks

6

HOUR CLOCK

The module HourClock contains declarations and definitions

hr a state variable

HCini a state predicate

HCnxt an action (built from hr and hr ′)

HCsafe a temporal formula specifying that

the initial state satisfies HCini
every transition satisfies HCnxt or leaves hr unchanged

Module HourClock also asserts a theorem: HCsafe→ 2HCini
This invariant can be verified using TLC, the TLA+ model checker.
Note:

the hour clock may eventually stop ticking
it must not fail in any other way

7

HOUR CLOCK

A TLA+ formula

Init ∧2[Next]v

specifies the initial states and the allowed transitions of a system.
It allows for transitions that do not change v : stuttering transitions.
Infinite stuttering can be excluded by asserting fairness conditions.
For example,

HC ∆
= HCini ∧2[HCnxt]hr ∧WFhrHCnxt

specifies an hour clock that never stops ticking.

8

plasil
Sticky Note

[Next]v = Next \/ {v`= v)

[HCnxt]hr = HCnxt \/ (hr` = hr)

OUTLINE

Distributed Commitment

The Two-Phase Commitment Protocol

Liveness Properties

More On TLA+ Expressions

Model Checking Large Specifications

Summing Up

Case Study: Distributed Computation Of A Spanning Tree

13

PROBLEM STATEMENT

Distributed commitment.
A set of nodes has to agree whether to commit or abort a transaction.

Initially, each node decides if it wishes to commit or abort.
The transaction is committed if all nodes wish to commit. Otherwise, it is
aborted.

Control flow of each node

preparing

proposeCommit
proposeAbort

committed
aborted

all nodes
are ready
to commit

some node
wants to abort

14

PROBLEM STATEMENT

Distributed commitment.
A set of nodes has to agree whether to commit or abort a transaction.

Initially, each node decides if it wishes to commit or abort.
The transaction is committed if all nodes wish to commit. Otherwise, it is
aborted.

Control flow of each node

preparing

proposeCommit
proposeAbort

committed
aborted

all nodes
are ready
to commit

some node
wants to abort

15

PROBLEM STATEMENT

Distributed commitment.
A set of nodes has to agree whether to commit or abort a transaction.

Initially, each node decides if it wishes to commit or abort.
The transaction is committed if all nodes wish to commit. Otherwise, it is
aborted.

Control flow of each node

preparing

proposeCommit
proposeAbort

committed
aborted

all nodes
are ready
to commit

some node
wants to abort

16

A FIRST TLA+ SPECIFICATION

Write a bird’s eyes view specification

describe just how the participants’ states may change

consider an observer that has complete information

don’t care about distributed implementability

We’ll later “localize” the specification

the central view usually results in the simplest specification

document the externally visible behavior, however it is achieved

a distributed algorithm will implement the centralized specification

17

A FIRST TLA+ SPECIFICATION

Write a bird’s eyes view specification

describe just how the participants’ states may change

consider an observer that has complete information

don’t care about distributed implementability

We’ll later “localize” the specification

the central view usually results in the simplest specification

document the externally visible behavior, however it is achieved

a distributed algorithm will implement the centralized specification

18

BIRD’S EYES SPECIFICATION IN TLA+

MODULE DistributedCommit
CONSTANT Node
VARIABLE nState
Init ∆

= nState = [n ∈ Node 7→ “preparing”]

Decide(n) ∆
=

∨ nState[n] = “preparing”∧ nState′ = [nState EXCEPT ![n] = “proposeCommit”]
∨ nState[n] = “preparing”∧ nState′ = [nState EXCEPT ![n] = “proposeAbort”]

Commit(n) ∆
=

∧ ∀ q ∈ Node : nState[q] ∈ {“proposeCommit”, “committed”}
∧ nState′ = [nState EXCEPT ![n] = “committed”]

Abort(n) ∆
=

∧ ∃ q ∈ Node : nState[q] ∈ {“proposeAbort”, “aborted”}
∧ nState′ = [nState EXCEPT ![n] = “aborted”]

Next ∆
= ∃ n ∈ Node : Decide(n) ∨Commit(n) ∨ Abort(n)

Spec ∆
= Init ∧2[Next]nState

preparing

proposeCommit proposeAbort

committed aborted

19

plasil
Sticky Note
/\nState[n]="proposeCommit" /\ nState' =
[nState EXCEPT ![n] = "committed"]

REMARKS ON THE TLA+ SPECIFICATION

Data model
parameter Node represents the set of nodes
variable nState models the state of each participant
represented as a function (a.k.a. array) mapping nodes to states

State-based specification
main formula Spec describes set of executions
execution (behavior): infinite sequence of states
state: assigns values to variables

Describing a state machine in TLA+ Init ∧2[Next]v
formula Init expresses initial condition
Decide(n), Commit(n), Abort(n) represent node transitions
transition relation Next : disjunction of individual transitions

20

REMARKS ON THE TLA+ SPECIFICATION

Data model
parameter Node represents the set of nodes
variable nState models the state of each participant
represented as a function (a.k.a. array) mapping nodes to states

State-based specification
main formula Spec describes set of executions
execution (behavior): infinite sequence of states
state: assigns values to variables

Describing a state machine in TLA+ Init ∧2[Next]v
formula Init expresses initial condition
Decide(n), Commit(n), Abort(n) represent node transitions
transition relation Next : disjunction of individual transitions

21

plasil
Sticky Note
do not forget that we use LTL !

REMARKS ON THE TLA+ SPECIFICATION

Data model
parameter Node represents the set of nodes
variable nState models the state of each participant
represented as a function (a.k.a. array) mapping nodes to states

State-based specification
main formula Spec describes set of executions
execution (behavior): infinite sequence of states
state: assigns values to variables

Describing a state machine in TLA+ Init ∧2[Next]v
formula Init expresses initial condition
Decide(n), Commit(n), Abort(n) represent node transitions
transition relation Next : disjunction of individual transitions

22

VALUES IN TLA+

TLA+ is an untyped, set-based formalism

we don’t have to specify that Node is a set
in fact, every value of TLA+ is a set
even numbers and strings are sets
– but we don’t care what the elements of these sets are
(not just) in this respect, TLA+ follows classical mathematics

What about type errors?

“silly” expressions such as 42 + {} are accepted by the parser
the value of such expressions is not specified
TLC will report an error when it tries to evaluate a silly expression

Deemed acceptable: specifications are short (200 – 800 lines)

26

VALUES IN TLA+

TLA+ is an untyped, set-based formalism

we don’t have to specify that Node is a set
in fact, every value of TLA+ is a set
even numbers and strings are sets
– but we don’t care what the elements of these sets are
(not just) in this respect, TLA+ follows classical mathematics

What about type errors?

“silly” expressions such as 42 + {} are accepted by the parser
the value of such expressions is not specified
TLC will report an error when it tries to evaluate a silly expression

Deemed acceptable: specifications are short (200 – 800 lines)

27

WHICH OF THE FOLLOWING FORMULAS ARE TRUE?

∀ n ∈ Nat : n > 0 false: 0 ∈ Nat

∃ k ∈ Nat : k + k = 7 false: k + k is even, for all k ∈ Nat

∀ n ∈ Nat : n + n = 4⇒ n ∗ n = 4 true: n + n = 4⇒ n = 2

∃ n ∈ Nat : n + n = 4⇒ n = 3 true, e.g. 1 + 1 6= 4

∀ x ∈ {} : “Dublin” = “Nancy” true: trivial quantifier range

∃ x ∈ {} : x = x false: no x ∈ {}
¬(∃ x ∈ S : P(x)) ≡ (∀ x ∈ S : ¬P(x))true

0÷ 0 = 1 unspecified

42∧ “xyz” unspecified

The last two formulas are “silly”: TLC will raise an exception
silly formulas are not illegal: they may occur as sub-expressions
∀ n ∈ Nat : n 6= 0⇒ n÷ n = 1

12

plasil
Sticky Note
This is not silly formula though

FUNCTIONAL VALUES

Functions in TLA+

programming mathematics

array function
index set 0 ..N function domain (any set)
array selection a[i] function application a(i)

TLA+ is mathematics, but writes a[i] for function application
parentheses are used for operator application, e.g. Decide(p)

Notations used with functions
[S → T] set of functions with domain S and values in T
DOMAIN f domain of function f
[x ∈ S 7→ e] function mapping every x ∈ S to e
[f EXCEPT ![x] = e] [y ∈ DOMAIN f 7→ IF y = x THEN e ELSE f [x]]
(a :> x) @@ (b :> y) finite function mapping a to x , b to y (module TLC)

refer to previous value: [f EXCEPT ![x] = @+ 1]

28

FUNCTIONAL VALUES

Functions in TLA+

programming mathematics

array function
index set 0 ..N function domain (any set)
array selection a[i] function application a(i)

TLA+ is mathematics, but writes a[i] for function application
parentheses are used for operator application, e.g. Decide(p)

Notations used with functions
[S → T] set of functions with domain S and values in T
DOMAIN f domain of function f
[x ∈ S 7→ e] function mapping every x ∈ S to e
[f EXCEPT ![x] = e] [y ∈ DOMAIN f 7→ IF y = x THEN e ELSE f [x]]
(a :> x) @@ (b :> y) finite function mapping a to x , b to y (module TLC)

refer to previous value: [f EXCEPT ![x] = @+ 1]

29

FUNCTIONAL VALUES

Functions in TLA+

programming mathematics

array function
index set 0 ..N function domain (any set)
array selection a[i] function application a(i)

TLA+ is mathematics, but writes a[i] for function application
parentheses are used for operator application, e.g. Decide(p)

Notations used with functions
[S → T] set of functions with domain S and values in T
DOMAIN f domain of function f
[x ∈ S 7→ e] function mapping every x ∈ S to e
[f EXCEPT ![x] = e] [y ∈ DOMAIN f 7→ IF y = x THEN e ELSE f [x]]
(a :> x) @@ (b :> y) finite function mapping a to x , b to y (module TLC)

refer to previous value: [f EXCEPT ![x] = @+ 1]

30

plasil
Cross-Out

plasil
Inserted Text
this should be f[y]

FUNCTIONAL VALUES

Functions in TLA+

programming mathematics

array function
index set 0 ..N function domain (any set)
array selection a[i] function application a(i)

TLA+ is mathematics, but writes a[i] for function application
parentheses are used for operator application, e.g. Decide(p)

Notations used with functions
[S → T] set of functions with domain S and values in T
DOMAIN f domain of function f
[x ∈ S 7→ e] function mapping every x ∈ S to e
[f EXCEPT ![x] = e] [y ∈ DOMAIN f 7→ IF y = x THEN e ELSE f [x]]
(a :> x) @@ (b :> y) finite function mapping a to x , b to y (module TLC)

refer to previous value: [f EXCEPT ![x] = @+ 1]

31

plasil
Cross-Out

plasil
Inserted Text
this should be f[y]

SPECIFYING ACTIONS

Actions must completely specify the successor states

relation between pre-state and post-state (primed variables)
write v ′ = v (a.k.a. UNCHANGED v) if variable v doesn’t change

Basic format of an action definition

A(p) ∆
= ∧ guard(p,~v) * pre-condition
∧ v ′1 = exp1(p,~v) * variable update
∧ v ′2 ∈ exp2(p,~v) * non-determinism
∧ UNCHANGED 〈v3, . . . , vn〉

guard : state predicate, determines when action can be taken
expi : state function, computes new value(s) of variable vi

more complicated actions: case distinction, quantifiers, . . .

32

HOW TO SPECIFY FUNCTION UPDATES

Cannot define action Commit(n) as

∧ ∀ q ∈ Node : nState[q] ∈ {“readyCommit”, “committed”}
∧ nState[n]′ = “committed”

does not specify nState[q]′ for q 6= n
does not even say that nState′ is a function

The new value of the function must be specified completely

in general, write nState′ = [q ∈ Node 7→ . . .]

use EXCEPT expression if only one (or a few) values are updated

nState′ = [nState EXCEPT ![n] = “committed”]

33

HOW TO SPECIFY FUNCTION UPDATES

Cannot define action Commit(n) as

∧ ∀ q ∈ Node : nState[q] ∈ {“readyCommit”, “committed”}
∧ nState[n]′ = “committed”

does not specify nState[q]′ for q 6= n
does not even say that nState′ is a function

The new value of the function must be specified completely

in general, write nState′ = [q ∈ Node 7→ . . .]

use EXCEPT expression if only one (or a few) values are updated

nState′ = [nState EXCEPT ![n] = “committed”]

34

plasil
Sticky Note
EXCEPT ![n]= ... , ![m] =...

plasil
Highlight

VERIFYING PROPERTIES OF DISTRIBUTED COMMITMENT

Type correctness

NState ∆
= {“preparing”, “proposeCommit”, “proposeAbort”, “committed”, “aborted”}

TypeOK ∆
= nState ∈ [Node→ NState]

Nodes can commit only if all accept

Agreement ∆
= ∀p ∈ Node : nState[p] = “committed”

⇒ ∀q ∈ Node : nState[q] ∈ {“proposeCommit”, “committed”}

These properties are easily verified using the TLC model checker
create finite model by instantiating parameter Node
for example: Node← {1,2,3,4,5}
can also use model values: Node← {alice, bob, charlie}
check invariants TypeOK , Agreement

35

VERIFYING PROPERTIES OF DISTRIBUTED COMMITMENT

Type correctness

NState ∆
= {“preparing”, “proposeCommit”, “proposeAbort”, “committed”, “aborted”}

TypeOK ∆
= nState ∈ [Node→ NState]

Nodes can commit only if all accept

Agreement ∆
= ∀p ∈ Node : nState[p] = “committed”

⇒ ∀q ∈ Node : nState[q] ∈ {“proposeCommit”, “committed”}

These properties are easily verified using the TLC model checker
create finite model by instantiating parameter Node
for example: Node← {1,2,3,4,5}
can also use model values: Node← {alice, bob, charlie}
check invariants TypeOK , Agreement

36

Lesson: Deadlock & Liveness in DistributedCommit

Assume
Commit(n) ==

/\ \A q \in Node : nState[q] \in {"readyCommit", "committed"}
/\nState[n]="readyCommit" /\ nState' = [nState EXCEPT ![n] = "committed"]

If Spec == Init /\ [][Next]_nState
Deadlock reached
Liveness violated (stuttering: nState ‘ = nState)

If Spec == Init /\ [][Next]_nState /\ WF_nState(Next)
Deadlock reached
Liveness preserved

Note: Deadlock means ~ [] ENABLED Next
i.e. at this point Spec == Init /\ (nState ‘ = nState) is the only option
Desirable here, since to goal (all nodes aborted or committed) is reached and infinite
traces are needed by LTL definition ([], <>, …)

J 4

Lesson: Safety and Liveness in DistributedCommit

7

Safety – nothing bad happens
Spec => [] invarianti

i.e. invariant is to be valid in all states
Agreement == \A n \in Node : nState[n] = "committed" => \A q \in Node :
nState[q] \in {"readyCommit", "committed"}

Liveness – something good happens eventually
Spec => Liveness

Liveness typically a temporal formula of the form
<> L, []<> L, <>[] L, [](P => <> Q), (and combinations)

Liveness == \A n \in Node : <>(nState[n] \in {"committed", "aborted"})

By convention: [](P => <> Q) = P ~>Q (“leads to”)

TLC basics

Explicit state model checker
It checks a model (instance) of a specification

Determined by Spec, choice of constants, and other
parameters

How it checks a model:
It begins by generating all states satisfying the initial predicate
Init.
Then, for each state s it generates every possible next‐state t
such that the pair〈s,t〉satisfies Next and the Fairness
constraints, looking for a state where an invariant is violated.
Finally, it checks temporal properties over the state space
(determined by distinct t states) .

5

TLC basics (cont.)

Symmetry Reduction
Sometimes exact data values are irrelevant
DistributedCommit: identities of participant nodes
Never use operation other than (dis‐)equality checking

Instantiate these values by (sets of) model values
Model values: anonymous constants, different from each other
Instantiated Node by {a,b,c,d,e} rather than {1,2,3,4,5}
Optionally: declare these as symmetry sets
TLC identifies states that differ w.r.t permutation of symmetry sets

of states:

6

No symmetry symmetry

N=3 71 23

N=5 1055 61

N=7 16511 127

OUTLINE

Distributed Commitment

The Two-Phase Commitment Protocol

Liveness Properties

More On TLA+ Expressions

Model Checking Large Specifications

Summing Up

Case Study: Distributed Computation Of A Spanning Tree

37

IMPLEMENTING DISTRIBUTED COMMITMENT

The current specification cannot be directly implemented
nodes in a distributed system cannot access states of other nodes
introduce explicit communication by message passing

Standard solution: two-phase commitment
make use of a coordinator who centralizes agreement

alice bob charlie coordinator

“commit”

“abort” “commit”

“doAbort”

38

IMPLEMENTING DISTRIBUTED COMMITMENT

The current specification cannot be directly implemented
nodes in a distributed system cannot access states of other nodes
introduce explicit communication by message passing

Standard solution: two-phase commitment
make use of a coordinator who centralizes agreement

alice bob charlie coordinator

“commit”

“abort” “commit”

“doAbort”

39

IMPLEMENTING DISTRIBUTED COMMITMENT

The current specification cannot be directly implemented
nodes in a distributed system cannot access states of other nodes
introduce explicit communication by message passing

Standard solution: two-phase commitment
make use of a coordinator who centralizes agreement

alice bob charlie coordinator

“commit”

“abort” “commit”

“doAbort”

40

IMPLEMENTING DISTRIBUTED COMMITMENT

The current specification cannot be directly implemented
nodes in a distributed system cannot access states of other nodes
introduce explicit communication by message passing

Standard solution: two-phase commitment
make use of a coordinator who centralizes agreement

alice bob charlie coordinator

“commit”

“abort” “commit”

“doAbort”

41

MODELING COMMUNICATION IN TLA+

TLA+ has no built-in primitives for message passing

no unique, generally accepted communication model

message loss and duplication, ordering guarantees etc.

Use a variable that explicitly models the communication network

for example: sets vs. sequences for (un)ordered communication

different communication models can be provided by libraries

For two-phase commit protocol

represent messages as records of message kind and additional data

represent network as set of messages: no ordering is assumed

messages are sent once, assume no message loss

42

TLA+ RECORDS AND TUPLES

A TLA+ record corresponds to a struct in C
represented as a function whose domain is a set of strings
a record with two fields: [name 7→ “fred”, age 7→ 23]
equals (“name” :> “fred”) @@ (“age” :> 23)

Notation used with records
set of records of certain shape: [name : STRING, age : 0 ..120]
record access: rec.name abbreviates rec[“name”]
record update: [rec EXCEPT !.age = @+ 1]

n-tuples (sequences) are also represented as functions
〈42, {}, “abc”〉 is a function with domain 1 ..3
〈〉 denotes the empty tuple
use function application for projection, e.g. seq[2]

cf. frequent idiom in action definitions UNCHANGED 〈x , y , z〉

43

TLA+ RECORDS AND TUPLES

A TLA+ record corresponds to a struct in C
represented as a function whose domain is a set of strings
a record with two fields: [name 7→ “fred”, age 7→ 23]
equals (“name” :> “fred”) @@ (“age” :> 23)

Notation used with records
set of records of certain shape: [name : STRING, age : 0 ..120]
record access: rec.name abbreviates rec[“name”]
record update: [rec EXCEPT !.age = @+ 1]

n-tuples (sequences) are also represented as functions
〈42, {}, “abc”〉 is a function with domain 1 ..3
〈〉 denotes the empty tuple
use function application for projection, e.g. seq[2]

cf. frequent idiom in action definitions UNCHANGED 〈x , y , z〉

44

TLA+ RECORDS AND TUPLES

A TLA+ record corresponds to a struct in C
represented as a function whose domain is a set of strings
a record with two fields: [name 7→ “fred”, age 7→ 23]
equals (“name” :> “fred”) @@ (“age” :> 23)

Notation used with records
set of records of certain shape: [name : STRING, age : 0 ..120]
record access: rec.name abbreviates rec[“name”]
record update: [rec EXCEPT !.age = @+ 1]

n-tuples (sequences) are also represented as functions
〈42, {}, “abc”〉 is a function with domain 1 ..3
〈〉 denotes the empty tuple
use function application for projection, e.g. seq[2]

cf. frequent idiom in action definitions UNCHANGED 〈x , y , z〉

45

Functions Versus Operators

What’s the difference between F(x) and f [x]?

F(x) ∆
= e(x) vs. f [x ∈ S] ∆

= e(x)

I functions have a fixed domain, operators do not
I operators are not values: cannot be stored in variables

When should you prefer one over the other?
I must use functions for values manipulated by the specification

; analogous to arrays in programming
I must use operators if you cannot specify the domain

; e.g., operators applicable to arbitrary sequences or sets

Operators (and functions) can be passed as arguments

IsPartialOrder(S, R(,))
∆
= ∧ ∀x ∈ S : R(x, x)
∧ ∀x, y ∈ S : R(x, y) ∧ R(y, x)⇒ x = y
∧ ∀x, y, z ∈ S : R(x, y) ∧ R(y, z)⇒ R(x, z)

Stephan Merz (INRIA Nancy) Modeling and Verifying Distributed Algorithms Using TLA+ April 2017 44 / 61

plasil
Sticky Note
f[n] \in T and f \in T both correct
 + can be recursive

F(n) \in T correct but F \in T incorrect
 + cannot be recursive

(Recursive) Function Definitions

A function definition can be written f [x ∈ S] ∆
= e(x)

I recursive definitions: e(x) may contain f

fact[x ∈ Nat] ∆
= IF x = 0 THEN 1 ELSE x ∗ fact[x− 1]

I such functions are well-defined if termination is ensured

Exercise: define an operator for inserting an integer into a sorted
sequence of integers

(a) using a recursive function
(b) using only elementary TLA+ constructs

In practice, specifications contain few recursive functions

Stephan Merz (INRIA Nancy) Modeling and Verifying Distributed Algorithms Using TLA+ April 2017 43 / 61

TWO-PHASE COMMIT IN TLA+ (1)

MODULE TwoPhaseCommit
CONSTANT Node
VARIABLES cState,nState, committed ,msgs
vars ∆

= 〈cState,nState, committed ,msgs〉
Message ∆

= [kind : {“commit”, “abort”}, node : Node]

∪ [kind : {“doCommit”, “doAbort”}]
commit(n) ∆

= [kind 7→ “commit”, node 7→ n]
abort(n) ∆

= [kind 7→ “abort”, node 7→ n]
doCommit ∆

= [kind 7→ “doCommit”]
doAbort ∆

= [kind 7→ “doAbort”]

Init ∆
= ∧ cState = “preparing”∧ nState = [n ∈ Node 7→ “preparing”]
∧ committed = {} ∧msgs = {}

Decide(n) ∆
= ∧ nState[n] = “preparing”
∧ ∨ ∧ nState′ = [nState EXCEPT ![n] = “proposeCommit”]
∧ msgs′ = msgs ∪ {commit(n)}
∨ ∧ nState′ = [nState EXCEPT ![n] = “proposeAbort”]
∧ msgs′ = msgs ∪ {abort(n)}

∧ UNCHANGED 〈cState, commit〉

46

TWO-PHASE COMMIT IN TLA+ (1)

MODULE TwoPhaseCommit
CONSTANT Node
VARIABLES cState,nState, committed ,msgs
vars ∆

= 〈cState,nState, committed ,msgs〉
Message ∆

= [kind : {“commit”, “abort”}, node : Node]

∪ [kind : {“doCommit”, “doAbort”}]
commit(n) ∆

= [kind 7→ “commit”, node 7→ n]
abort(n) ∆

= [kind 7→ “abort”, node 7→ n]
doCommit ∆

= [kind 7→ “doCommit”]
doAbort ∆

= [kind 7→ “doAbort”]

Init ∆
= ∧ cState = “preparing”∧ nState = [n ∈ Node 7→ “preparing”]
∧ committed = {} ∧msgs = {}

Decide(n) ∆
= ∧ nState[n] = “preparing”
∧ ∨ ∧ nState′ = [nState EXCEPT ![n] = “proposeCommit”]
∧ msgs′ = msgs ∪ {commit(n)}
∨ ∧ nState′ = [nState EXCEPT ![n] = “proposeAbort”]
∧ msgs′ = msgs ∪ {abort(n)}

∧ UNCHANGED 〈cState, commit〉
47

plasil
Sticky Note
set of records !

TWO-PHASE COMMIT IN TLA+ (2)

RcvCommit(n) ∆
= ∧ n /∈ committed ∧ commit(n) ∈ msgs
∧ committed ′ = committed ∪ {n} ∧ nState′ = nState
∧ IF committed ′ = Node

THEN cState′ = “committed”∧msgs′ = msgs ∪ {doCommit}
ELSE UNCHANGED 〈cState,msgs〉

RcvAbort(n) ∆
= ∧ abort(n) ∈ msgs ∧ cState′ = “aborted”
∧ msgs′ = msgs ∪ {doAbort}
∧ UNCHANGED 〈nState, committed〉

Execute(n) ∆
= ∧ ∨ ∧ doCommit ∈ msgs

∧ nState′ = [nState EXCEPT ![n] = “committed”]
∨ ∧ doAbort ∈ msgs
∧ nState′ = [nState EXCEPT ![n] = “aborted”]

∧ UNCHANGED 〈cState, committed ,msgs〉
Next ∆

= ∃n ∈ Node : Decide(n) ∨RcvCommit(n) ∨RcvAbort(n) ∨ Execute(n)
Spec ∆

= Init ∧2[Next]vars

48

EXERCISE: VERIFYING PROPERTIES OF THE PROTOCOL

State the following properties as TLA+ formulas

type correctness: variables take expected values

the coordinator does not send conflicting orders

if a “doCommit” message has been sent then
1. all participants are in state “readyCommit” or “committed”
2. no “abort” message has been sent

Use the TLC model checker

verify the above properties for finite instances

note the size of the corresponding state spaces

Check deadlock freedom and explain the result

49

VERIFYING IMPLEMENTATION

Specifications and properties are both TLA+ formulas
consider theorems of the following forms

Spec ⇒ Prop Impl ⇒ Spec

every execution of Spec satisfies property Prop
every execution of Impl corresponds to an execution of Spec

Two-phase commit implements distributed commitment

DC ∆
= INSTANCE DistributedCommit

THEOREM Spec ⇒ DC!Spec

enter DC!Spec as a temporal property and run TLC
TLC verifies that the implementation is correct

50

VERIFYING IMPLEMENTATION

Specifications and properties are both TLA+ formulas
consider theorems of the following forms

Spec ⇒ Prop Impl ⇒ Spec

every execution of Spec satisfies property Prop
every execution of Impl corresponds to an execution of Spec

Two-phase commit implements distributed commitment

DC ∆
= INSTANCE DistributedCommit

THEOREM Spec ⇒ DC!Spec

enter DC!Spec as a temporal property and run TLC
TLC verifies that the implementation is correct

51

IMPLEMENTATION AS IMPLICATION

How can this be true?
TwoPhaseCommit uses more variables than DistributedCommit
every action of DistributedCommit changes variable nState
actions like RcvCommit of TwoPhaseCommit leave nState unchanged

TLA+ specification do not fix the state space
formulas are interpreted over all (infinitely many) variables
of course, only the variables of interest are constrained
may compare specifications using different sets of variables

TLA+ formulas are insensitive to finite stuttering
cannot observe changes to variables other than those of interest
2[Next]vars : all transitions satisfy Next or leave vars unchanged
DC!Spec allows arbitrary steps that do not change nState

52

IMPLEMENTATION AS IMPLICATION

How can this be true?
TwoPhaseCommit uses more variables than DistributedCommit
every action of DistributedCommit changes variable nState
actions like RcvCommit of TwoPhaseCommit leave nState unchanged

TLA+ specification do not fix the state space
formulas are interpreted over all (infinitely many) variables
of course, only the variables of interest are constrained
may compare specifications using different sets of variables

TLA+ formulas are insensitive to finite stuttering
cannot observe changes to variables other than those of interest
2[Next]vars : all transitions satisfy Next or leave vars unchanged
DC!Spec allows arbitrary steps that do not change nState

53

plasil
Highlight

IMPLEMENTATION AS IMPLICATION

How can this be true?
TwoPhaseCommit uses more variables than DistributedCommit
every action of DistributedCommit changes variable nState
actions like RcvCommit of TwoPhaseCommit leave nState unchanged

TLA+ specification do not fix the state space
formulas are interpreted over all (infinitely many) variables
of course, only the variables of interest are constrained
may compare specifications using different sets of variables

TLA+ formulas are insensitive to finite stuttering
cannot observe changes to variables other than those of interest
2[Next]vars : all transitions satisfy Next or leave vars unchanged
DC!Spec allows arbitrary steps that do not change nState

54

plasil
Highlight

OUTLINE

Distributed Commitment

The Two-Phase Commitment Protocol

Liveness Properties

More On TLA+ Expressions

Model Checking Large Specifications

Summing Up

Case Study: Distributed Computation Of A Spanning Tree

55

SAFETY VS. LIVENESS

So far we have only specified what may (not) happen

Init ∧2[Next]vars

executions must start in a state satisfying predicate Init
all transitions that change vars must respect action Next

These formulas assert safety properties
safety: nothing bad ever happens
a system that does nothing never does something bad
the above specification allows for (even infinite) stuttering

A full specification should also say what must happen
liveness: something good happens eventually
cannot tell that it’s false by looking at a finite prefix
example: participants will eventually commit or abort

56

SAFETY VS. LIVENESS

So far we have only specified what may (not) happen

Init ∧2[Next]vars

executions must start in a state satisfying predicate Init
all transitions that change vars must respect action Next

These formulas assert safety properties
safety: nothing bad ever happens
a system that does nothing never does something bad
the above specification allows for (even infinite) stuttering

A full specification should also say what must happen
liveness: something good happens eventually
cannot tell that it’s false by looking at a finite prefix
example: participants will eventually commit or abort

57

SAFETY VS. LIVENESS

So far we have only specified what may (not) happen

Init ∧2[Next]vars

executions must start in a state satisfying predicate Init
all transitions that change vars must respect action Next

These formulas assert safety properties
safety: nothing bad ever happens
a system that does nothing never does something bad
the above specification allows for (even infinite) stuttering

A full specification should also say what must happen
liveness: something good happens eventually
cannot tell that it’s false by looking at a finite prefix
example: participants will eventually commit or abort

58

BOX AND DIAMOND

2 (“box”) means “always”
2(nState ∈ [Node→ PState]) state invariant
2[A]vars action invariant

3 (“diamond”) means “eventually”
∀p ∈ Node : 3(nState[p] ∈ {“committed”, “aborted”})
∃p ∈ Node : 3〈Decide(p)〉vars

〈A〉e means A∧ (e′ 6= e)

Combinations
P ; Q ∆

= 2(P ⇒ 3Q) P is eventually followed by Q
23F F is true infinitely often
32F F eventually stays true (is false only finitely often)
note: ¬2F ≡ 3¬F , ¬3F ≡ 2¬F , similar for 2[A]v and 3〈A〉v

59

plasil
Sticky Note
G

plasil
Sticky Note
F

ENABLEDNESS OF ACTIONS

Executions specified by Init ∧2[Next]vars may stop
i.e., perform only transitions satisfying UNCHANGED vars
this may happen even if some action could be taken

Enabledness of an action A at state s
there exists some state t such that 〈s, t〉 satisfies A

RcvCommit(n) ∆
=

∧ n /∈ committed ∧ commit(n) ∈ msgs
∧ committed ′ = committed ∪ {n} ∧ nState′ = nState
∧ IF committed ′ = Node THEN ∧ cState′ = “committed”

∧ msgs′ = msgs ∪ {doCommit}
ELSE UNCHANGED 〈cState,msgs〉

enabled if n /∈ committed and commit(n) ∈ msgs

ENABLED A ∆
= ∃ vars′ : A (quantification over all primed variables)

60

ENABLEDNESS OF ACTIONS

Executions specified by Init ∧2[Next]vars may stop
i.e., perform only transitions satisfying UNCHANGED vars
this may happen even if some action could be taken

Enabledness of an action A at state s
there exists some state t such that 〈s, t〉 satisfies A

RcvCommit(n) ∆
=

∧ n /∈ committed ∧ commit(n) ∈ msgs
∧ committed ′ = committed ∪ {n} ∧ nState′ = nState
∧ IF committed ′ = Node THEN ∧ cState′ = “committed”

∧ msgs′ = msgs ∪ {doCommit}
ELSE UNCHANGED 〈cState,msgs〉

enabled if n /∈ committed and commit(n) ∈ msgs

ENABLED A ∆
= ∃ vars′ : A (quantification over all primed variables)

61

ENABLEDNESS OF ACTIONS

Executions specified by Init ∧2[Next]vars may stop
i.e., perform only transitions satisfying UNCHANGED vars
this may happen even if some action could be taken

Enabledness of an action A at state s
there exists some state t such that 〈s, t〉 satisfies A

RcvCommit(n) ∆
=

∧ n /∈ committed ∧ commit(n) ∈ msgs
∧ committed ′ = committed ∪ {n} ∧ nState′ = nState
∧ IF committed ′ = Node THEN ∧ cState′ = “committed”

∧ msgs′ = msgs ∪ {doCommit}
ELSE UNCHANGED 〈cState,msgs〉

enabled if n /∈ committed and commit(n) ∈ msgs

ENABLED A ∆
= ∃ vars′ : A (quantification over all primed variables)

62

ENABLEDNESS OF ACTIONS

Executions specified by Init ∧2[Next]vars may stop
i.e., perform only transitions satisfying UNCHANGED vars
this may happen even if some action could be taken

Enabledness of an action A at state s
there exists some state t such that 〈s, t〉 satisfies A

RcvCommit(n) ∆
=

∧ n /∈ committed ∧ commit(n) ∈ msgs
∧ committed ′ = committed ∪ {n} ∧ nState′ = nState
∧ IF committed ′ = Node THEN ∧ cState′ = “committed”

∧ msgs′ = msgs ∪ {doCommit}
ELSE UNCHANGED 〈cState,msgs〉

enabled if n /∈ committed and commit(n) ∈ msgs

ENABLED A ∆
= ∃ vars′ : A (quantification over all primed variables)

63

FAIRNESS HYPOTHESES

Express that an action must occur if it is sufficiently often enabled
different interpretations of “sufficiently often”
temporal logic is useful for making this precise
note: finite stuttering is still allowed

Weak fairness WFvars(A)
if 〈A〉vars is continuously enabled then it eventually occurs
in symbols: 2(2ENABLED 〈A〉vars ⇒ 3〈A〉vars)

Strong fairness SFvars(A)
if 〈A〉vars is repeatedly enabled then it eventually occurs
in symbols: 2(23ENABLED 〈A〉vars ⇒ 3〈A〉vars)

note: 〈A〉vars may also be disabled repeatedly

64

FAIRNESS HYPOTHESES

Express that an action must occur if it is sufficiently often enabled
different interpretations of “sufficiently often”
temporal logic is useful for making this precise
note: finite stuttering is still allowed

Weak fairness WFvars(A)
if 〈A〉vars is continuously enabled then it eventually occurs
in symbols: 2(2ENABLED 〈A〉vars ⇒ 3〈A〉vars)

Strong fairness SFvars(A)
if 〈A〉vars is repeatedly enabled then it eventually occurs
in symbols: 2(23ENABLED 〈A〉vars ⇒ 3〈A〉vars)

note: 〈A〉vars may also be disabled repeatedly

65

FAIRNESS HYPOTHESES

Express that an action must occur if it is sufficiently often enabled
different interpretations of “sufficiently often”
temporal logic is useful for making this precise
note: finite stuttering is still allowed

Weak fairness WFvars(A)
if 〈A〉vars is continuously enabled then it eventually occurs
in symbols: 2(2ENABLED 〈A〉vars ⇒ 3〈A〉vars)

Strong fairness SFvars(A)
if 〈A〉vars is repeatedly enabled then it eventually occurs
in symbols: 2(23ENABLED 〈A〉vars ⇒ 3〈A〉vars)

note: 〈A〉vars may also be disabled repeatedly

66

WEAK FAIRNESS VS. STRONG FAIRNESS

SFvars(A) implies WFvars(A)
the assumption for 〈A〉vars occurring is weaker
hence strong fairness is a stronger condition

Standard form of TLA+ specifications

Init ∧2[Next]vars ∧ (∀i ∈ W : WFvars(A(i)) ∧ (∀j ∈ S : SFvars(B(j))

actions A(i), B(j) occur as disjuncts of Next
WF: the system should not stop when the action may occur
SF: the action should eventually be performed,
even if a different action is possible
no fairness: the action is not required to occur
(e.g., a request from the environment)

Choosing appropriate fairness conditions can be tricky!

67

WEAK FAIRNESS VS. STRONG FAIRNESS

SFvars(A) implies WFvars(A)
the assumption for 〈A〉vars occurring is weaker
hence strong fairness is a stronger condition

Standard form of TLA+ specifications

Init ∧2[Next]vars ∧ (∀i ∈ W : WFvars(A(i)) ∧ (∀j ∈ S : SFvars(B(j))

actions A(i), B(j) occur as disjuncts of Next
WF: the system should not stop when the action may occur
SF: the action should eventually be performed,
even if a different action is possible
no fairness: the action is not required to occur
(e.g., a request from the environment)

Choosing appropriate fairness conditions can be tricky!

68

WEAK FAIRNESS VS. STRONG FAIRNESS

SFvars(A) implies WFvars(A)
the assumption for 〈A〉vars occurring is weaker
hence strong fairness is a stronger condition

Standard form of TLA+ specifications

Init ∧2[Next]vars ∧ (∀i ∈ W : WFvars(A(i)) ∧ (∀j ∈ S : SFvars(B(j))

actions A(i), B(j) occur as disjuncts of Next
WF: the system should not stop when the action may occur
SF: the action should eventually be performed,
even if a different action is possible
no fairness: the action is not required to occur
(e.g., a request from the environment)

Choosing appropriate fairness conditions can be tricky!

69

plasil
Sticky Note
prosim vyhodit zminku o WF a SF

LIVENESS CHECKING FOR TWO-PHASE COMMIT

Simple fairness hypothesis WFvars(Next)

stop only if no action can be performed
usually the weakest reasonable fairness condition
other choices are possible, such as

∀n ∈ Node : ∧WFvars(Decide(n)) ∧WFvars(Execute(n))
∧WFvars(RcvCommit(n)) ∧WFvars(RcvAbort(n))

Verify liveness properties
each participant will eventually abort or commit

Liveness ∆
= ∀n ∈ Node : 3(nState[n] ∈ {“committed”, “aborted”})

similarly, add fairness condition WFnState(Next) to DC!Spec
verify that implementation still holds

70

LIVENESS CHECKING FOR TWO-PHASE COMMIT

Simple fairness hypothesis WFvars(Next)

stop only if no action can be performed
usually the weakest reasonable fairness condition
other choices are possible, such as

∀n ∈ Node : ∧WFvars(Decide(n)) ∧WFvars(Execute(n))
∧WFvars(RcvCommit(n)) ∧WFvars(RcvAbort(n))

Verify liveness properties
each participant will eventually abort or commit

Liveness ∆
= ∀n ∈ Node : 3(nState[n] ∈ {“committed”, “aborted”})

similarly, add fairness condition WFnState(Next) to DC!Spec
verify that implementation still holds

71

SUMMING UP

Specify algorithms as state machines
initial condition, next-state relation, possibly fairness
use the model checker for gaining confidence
check non-properties and analyze counter-examples

Look for high-level abstractions
model data using sets and functions
exploit the power of mathematics for crisp definitions
focus on high-level design, do not try to mimic the source code

Verify correctness by refinement when you can
high-level specification describes intended behavior
gradually introduce implementation detail

73

Outline

1 Modeling Systems in TLA+

2 System Verification

3 The TLA+ Language

4 The PlusCal Algorithm Language

5 Refinement in TLA+

6 V2X Case Study in TLA+

7 Conclusion

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 58 / 100

Modeling Algorithms: TLA+ vs. Pseudo-Code

TLA+: algorithms specified by logical formulas

I data model represented in set theory

I fair state machine specified in temporal logic

Conventional descriptions of algorithms by pseudo-code

I familiar presentations, using imperative-style language

I (obviously) effective for conveying algorithmic ideas

I neither executable nor mathematically precise

PlusCal: pseudo-code flavor, but precise and more expressive

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 59 / 100

Modeling Algorithms: TLA+ vs. Pseudo-Code

TLA+: algorithms specified by logical formulas

I data model represented in set theory

I fair state machine specified in temporal logic

Conventional descriptions of algorithms by pseudo-code

I familiar presentations, using imperative-style language

I (obviously) effective for conveying algorithmic ideas

I neither executable nor mathematically precise

PlusCal: pseudo-code flavor, but precise and more expressive

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 59 / 100

PlusCal: Elements of an Algorithm Language

Language for modeling algorithms, not programming

High-level abstractions, precise semantics

I use TLA+ expressions for modeling data
I simple translation of PlusCal to TLA+ specification

Familiar control structure + non-determinism

I flavor of imperative language: assignment, loop, conditional, . . .
I special constructs for non-deterministic choice

either { A } or { B } with x ∈ S { A }

Concurrency: indicate grain of atomicity

I statements may be labeled req: try[self] := TRUE;

I statements between two labels are executed atomically

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 60 / 100

PlusCal: Elements of an Algorithm Language

Language for modeling algorithms, not programming

High-level abstractions, precise semantics

I use TLA+ expressions for modeling data
I simple translation of PlusCal to TLA+ specification

Familiar control structure + non-determinism

I flavor of imperative language: assignment, loop, conditional, . . .
I special constructs for non-deterministic choice

either { A } or { B } with x ∈ S { A }

Concurrency: indicate grain of atomicity

I statements may be labeled req: try[self] := TRUE;

I statements between two labels are executed atomically

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 60 / 100

PlusCal: Elements of an Algorithm Language

Language for modeling algorithms, not programming

High-level abstractions, precise semantics

I use TLA+ expressions for modeling data
I simple translation of PlusCal to TLA+ specification

Familiar control structure + non-determinism

I flavor of imperative language: assignment, loop, conditional, . . .
I special constructs for non-deterministic choice

either { A } or { B } with x ∈ S { A }

Concurrency: indicate grain of atomicity

I statements may be labeled req: try[self] := TRUE;

I statements between two labels are executed atomically

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 60 / 100

PlusCal: Elements of an Algorithm Language

Language for modeling algorithms, not programming

High-level abstractions, precise semantics

I use TLA+ expressions for modeling data
I simple translation of PlusCal to TLA+ specification

Familiar control structure + non-determinism

I flavor of imperative language: assignment, loop, conditional, . . .
I special constructs for non-deterministic choice

either { A } or { B } with x ∈ S { A }

Concurrency: indicate grain of atomicity

I statements may be labeled req: try[self] := TRUE;

I statements between two labels are executed atomically

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 60 / 100

Example: Alternating-Bit Protocol in PlusCal

MODULE AlternatingBit
EXTENDS Naturals, Sequences

PlusCal algorithm embedded
within TLA+ module

CONSTANT Data
noData ∆

= CHOOSE x : x /∈ Data
(****
--algorithm AlternatingBit {

variables sndC = 〈〉, ackC = 〈〉;

global variable declarations

process (send = “sender”)
. . .

process (rcv = “receiver”)

three parallel processes —
code to be filled in

. . .
process (err = “error”)

. . .
}
****)
* BEGIN TRANSLATION

PlusCal translator generates
TLA+ specification here

* END TRANSLATION

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 61 / 100

Example: Alternating-Bit Protocol in PlusCal

MODULE AlternatingBit
EXTENDS Naturals, Sequences

PlusCal algorithm embedded
within TLA+ module

CONSTANT Data
noData ∆

= CHOOSE x : x /∈ Data
(****
--algorithm AlternatingBit {

variables sndC = 〈〉, ackC = 〈〉;

global variable declarations

process (send = “sender”)
. . .

process (rcv = “receiver”)

three parallel processes —
code to be filled in

. . .
process (err = “error”)

. . .
}
****)
* BEGIN TRANSLATION

PlusCal translator generates
TLA+ specification here

* END TRANSLATION

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 61 / 100

Example: Alternating-Bit Protocol in PlusCal

MODULE AlternatingBit
EXTENDS Naturals, Sequences

PlusCal algorithm embedded
within TLA+ module

CONSTANT Data
noData ∆

= CHOOSE x : x /∈ Data
(****
--algorithm AlternatingBit {

variables sndC = 〈〉, ackC = 〈〉; global variable declarations

process (send = “sender”)
. . .

process (rcv = “receiver”)

three parallel processes —
code to be filled in

. . .
process (err = “error”)

. . .
}
****)
* BEGIN TRANSLATION

PlusCal translator generates
TLA+ specification here

* END TRANSLATION

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 61 / 100

Example: Alternating-Bit Protocol in PlusCal

MODULE AlternatingBit
EXTENDS Naturals, Sequences

PlusCal algorithm embedded
within TLA+ module

CONSTANT Data
noData ∆

= CHOOSE x : x /∈ Data
(****
--algorithm AlternatingBit {

variables sndC = 〈〉, ackC = 〈〉; global variable declarations

process (send = “sender”)
. . .

process (rcv = “receiver”) three parallel processes —
code to be filled in. . .

process (err = “error”)
. . .

}
****)
* BEGIN TRANSLATION

PlusCal translator generates
TLA+ specification here

* END TRANSLATION

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 61 / 100

Example: Alternating-Bit Protocol in PlusCal

MODULE AlternatingBit
EXTENDS Naturals, Sequences

PlusCal algorithm embedded
within TLA+ module

CONSTANT Data
noData ∆

= CHOOSE x : x /∈ Data
(****
--algorithm AlternatingBit {

variables sndC = 〈〉, ackC = 〈〉; global variable declarations

process (send = “sender”)
. . .

process (rcv = “receiver”) three parallel processes —
code to be filled in. . .

process (err = “error”)
. . .

}
****)
* BEGIN TRANSLATION PlusCal translator generates

TLA+ specification here* END TRANSLATION

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 61 / 100

PlusCal Code of Sender Process

process (send = “sender”)
variables sending = noData, sBit = 0, lastAck = 0; {

initialize local variables

s0: while (TRUE) {
with (d ∈ Data) { sending := d; sBit := 1− sBit };

prepare new data

s1: while (lastAck 6= sBit) {
either {

while not acknowledged,
either (re)send data or
receive acknowledgement

sndC := Append(sndC, 〈sending, sBit〉);
} or {

await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);

} } }
} * end process send

Familiar “look and feel” of imperative code

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 62 / 100

PlusCal Code of Sender Process

process (send = “sender”)
variables sending = noData, sBit = 0, lastAck = 0; { initialize local variables

s0: while (TRUE) {
with (d ∈ Data) { sending := d; sBit := 1− sBit };

prepare new data

s1: while (lastAck 6= sBit) {
either {

while not acknowledged,
either (re)send data or
receive acknowledgement

sndC := Append(sndC, 〈sending, sBit〉);
} or {

await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);

} } }
} * end process send

Familiar “look and feel” of imperative code

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 62 / 100

PlusCal Code of Sender Process

process (send = “sender”)
variables sending = noData, sBit = 0, lastAck = 0; { initialize local variables

s0: while (TRUE) {
with (d ∈ Data) { sending := d; sBit := 1− sBit }; prepare new data

s1: while (lastAck 6= sBit) {
either {

while not acknowledged,
either (re)send data or
receive acknowledgement

sndC := Append(sndC, 〈sending, sBit〉);
} or {

await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);

} } }
} * end process send

Familiar “look and feel” of imperative code

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 62 / 100

PlusCal Code of Sender Process

process (send = “sender”)
variables sending = noData, sBit = 0, lastAck = 0; { initialize local variables

s0: while (TRUE) {
with (d ∈ Data) { sending := d; sBit := 1− sBit }; prepare new data

s1: while (lastAck 6= sBit) {
either {

while not acknowledged,
either (re)send data or
receive acknowledgement

sndC := Append(sndC, 〈sending, sBit〉);
} or {

await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);

} } }
} * end process send

Familiar “look and feel” of imperative code

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 62 / 100

PlusCal Code of Sender Process

process (send = “sender”)
variables sending = noData, sBit = 0, lastAck = 0; { initialize local variables

s0: while (TRUE) {
with (d ∈ Data) { sending := d; sBit := 1− sBit }; prepare new data

s1: while (lastAck 6= sBit) {
either {

while not acknowledged,
either (re)send data or
receive acknowledgement

sndC := Append(sndC, 〈sending, sBit〉);
} or {

await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);

} } }
} * end process send

Familiar “look and feel” of imperative code

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 62 / 100

PlusCal Code of Other Processes

process (rcv = “receiver”)
variables rcvd = noData, rBit = 0; {

r0: while (TRUE) {
r1: await (Len(sndC) > 0);

with (d = Head(sndC)[1], b = Head(sndC)[2]) {

receive data item and
send acknowledgement

sndC := Tail(sndC); ackC := Append(ackC, b);
if (b 6= rBit) { rcvd := d; rBit := b; }

record new data item

} }
} * end process rcv

process (err = “error”) {
e0: while (TRUE) {

either {
await (Len(sndC) > 0); sndC := Tail(sndC);

drop message from
the data or the acknow-
ledgement channel

} or {
await (Len(ackC) > 0); ackC := Tail(ackC);

} }
} * end process err

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 63 / 100

PlusCal Code of Other Processes

process (rcv = “receiver”)
variables rcvd = noData, rBit = 0; {

r0: while (TRUE) {
r1: await (Len(sndC) > 0);

with (d = Head(sndC)[1], b = Head(sndC)[2]) { receive data item and
send acknowledgement

sndC := Tail(sndC); ackC := Append(ackC, b);
if (b 6= rBit) { rcvd := d; rBit := b; } record new data item

} }
} * end process rcv

process (err = “error”) {
e0: while (TRUE) {

either {
await (Len(sndC) > 0); sndC := Tail(sndC);

drop message from
the data or the acknow-
ledgement channel

} or {
await (Len(ackC) > 0); ackC := Tail(ackC);

} }
} * end process err

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 63 / 100

PlusCal Code of Other Processes

process (rcv = “receiver”)
variables rcvd = noData, rBit = 0; {

r0: while (TRUE) {
r1: await (Len(sndC) > 0);

with (d = Head(sndC)[1], b = Head(sndC)[2]) { receive data item and
send acknowledgement

sndC := Tail(sndC); ackC := Append(ackC, b);
if (b 6= rBit) { rcvd := d; rBit := b; } record new data item

} }
} * end process rcv

process (err = “error”) {
e0: while (TRUE) {

either {
await (Len(sndC) > 0); sndC := Tail(sndC); drop message from

the data or the acknow-
ledgement channel} or {

await (Len(ackC) > 0); ackC := Tail(ackC);
} }

} * end process err

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 63 / 100

Translation to TLA+: System State

TLA+ variables

I variables corresponding to those declared in PlusCal algorithm

I “program counter” stores current point of program execution

VARIABLES sndC, ackC, pc, sending, sBit, lastAck, rcvd, rBit

ProcSet ∆
= {“sender”} ∪ {“receiver”} ∪ {“error”}

Init ∆
=

∧ sndC = 〈〉 ∧ ackC = 〈〉
∧ sending = noData∧ sBit = 0∧ lastAck = 0
∧ rcvd = noData∧ rBit = 0
∧ pc = [self ∈ ProcSet 7→ CASE self = “sender”→ “s0”

2 self = “receiver”→ “r0”
2 self = “error”→ “e0”]

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 64 / 100

Translation to TLA+: Transitions

s1 ∆
=

s1: while (lastAck 6= sBit) {
either {

sndC := Append(sndC, 〈sending, sBit〉);
} or {

await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);

} }

∧ pc[“sender”] = “s1”
∧ IF lastAck 6= sBit

THEN ∧ ∨ ∧ sndC′ = Append(sndC, 〈sending, sBit〉)
∧ UNCHANGED 〈ackC, lastAck〉
∨ ∧ Len(ackC) > 0
∧ lastAck′ = Head(ackC)
∧ ackC′ = Tail(ackC)
∧ sndC′ = sndC

∧ pc′ = [pc EXCEPT ![“sender”] = “s1”]
ELSE ∧ pc′ = [pc EXCEPT ![“sender”] = “s0”]

∧ UNCHANGED 〈sndC, ackC, lastAck〉
∧ UNCHANGED 〈sending, sBit, rcvd, rBit〉

Fairly direct translation from PlusCal block to TLA+ action

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 65 / 100

Translation to TLA+: Transitions

s1 ∆
=

s1: while (lastAck 6= sBit) {
either {

sndC := Append(sndC, 〈sending, sBit〉);
} or {

await (Len(ackC) > 0);
lastAck := Head(ackC); ackC := Tail(ackC);

} }∧ pc[“sender”] = “s1”
∧ IF lastAck 6= sBit

THEN ∧ ∨ ∧ sndC′ = Append(sndC, 〈sending, sBit〉)
∧ UNCHANGED 〈ackC, lastAck〉
∨ ∧ Len(ackC) > 0
∧ lastAck′ = Head(ackC)
∧ ackC′ = Tail(ackC)
∧ sndC′ = sndC

∧ pc′ = [pc EXCEPT ![“sender”] = “s1”]
ELSE ∧ pc′ = [pc EXCEPT ![“sender”] = “s0”]

∧ UNCHANGED 〈sndC, ackC, lastAck〉
∧ UNCHANGED 〈sending, sBit, rcvd, rBit〉

Fairly direct translation from PlusCal block to TLA+ action
Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 65 / 100

Translation to TLA+: Tying It All Together

Define the transition relation of the algorithm

I transition relation of process: disjunction of individual transitions
I overall next-state relation: disjunction of processes
I generalizes to multiple instances of same process type

send ∆
= s0∨ s1 rcv ∆

= r0∨ r1 err ∆
= e0

Next ∆
= send∨ rcv∨ err

Define the overall TLA+ specification

Spec ∆
= Init∧2[Next]vars

Extension: fairness conditions per process or label

fair process (send = “sender”) Spec ∆
= . . . ∧WFvars(send)

s1:+ while (lastAck 6= sBit) . . . Spec ∆
= . . . ∧ SFvars(s1)

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 66 / 100

Translation to TLA+: Tying It All Together

Define the transition relation of the algorithm

I transition relation of process: disjunction of individual transitions
I overall next-state relation: disjunction of processes
I generalizes to multiple instances of same process type

send ∆
= s0∨ s1 rcv ∆

= r0∨ r1 err ∆
= e0

Next ∆
= send∨ rcv∨ err

Define the overall TLA+ specification

Spec ∆
= Init∧2[Next]vars

Extension: fairness conditions per process or label

fair process (send = “sender”) Spec ∆
= . . . ∧WFvars(send)

s1:+ while (lastAck 6= sBit) . . . Spec ∆
= . . . ∧ SFvars(s1)

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 66 / 100

Translation to TLA+: Tying It All Together

Define the transition relation of the algorithm

I transition relation of process: disjunction of individual transitions
I overall next-state relation: disjunction of processes
I generalizes to multiple instances of same process type

send ∆
= s0∨ s1 rcv ∆

= r0∨ r1 err ∆
= e0

Next ∆
= send∨ rcv∨ err

Define the overall TLA+ specification

Spec ∆
= Init∧2[Next]vars

Extension: fairness conditions per process or label

fair process (send = “sender”) Spec ∆
= . . . ∧WFvars(send)

s1:+ while (lastAck 6= sBit) . . . Spec ∆
= . . . ∧ SFvars(s1)

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 66 / 100

PlusCal: Summing Up

A gateway drug for programmers (C. Newcombe, Amazon)

I retain familiar look and feel of pseudo-code
I high level of abstraction due to TLA+ expression language
I simple translation to TLA+ fixes formal semantics
I standard TLA+ tool set provides verification capabilities

Simplicity of translation induces some limitations

I single level of processes unnatural for some distributed systems
I translation imposes rules on placement of labels
I properties must be written in TLA+

Algorithm language: pseudo-code with formal semantics

Stephan Merz (INRIA Nancy) TLA+ Tutorial Twente, September 2014 67 / 100

	Distributed Commitment
	The Two-Phase Commitment Protocol
	Liveness Properties
	More On [+]Expressions
	Model Checking Large Specifications
	Summing Up
	Case Study: Distributed Computation Of A Spanning Tree

