
PlusCal / TLA+: An Annotated Cheat Sheet

Stephan Merz
stephan.merz@loria.fr

Abstract

This document is intended to summarize the main constructs that a user of
PlusCal and TLA+ who is using the Toolbox and TLC is likely to encounter.
It does not replace the available introductory material about TLA+ and is also
not meant as a reference manual. Feedback to the author is welcome.

1 PlusCal

PlusCal is an algorithmic language that has the “look and feel” of imperative
pseudo-code for describing concurrent algorithms. It has a formal semantics, through
translation to TLA+, and algorithms can be verified using the TLA+ tools. We de-
scribe here the “C syntax” of PlusCal, but there is also a “P syntax” closer to the
Pascal programming language.

A PlusCal algorithm appears inside a comment within a TLA+ module. Its
top-level syntax is as follows.

--algorithm name {
(* declaration of global variables *)
(* operator definitions *)
(* macro definitions *)
(* procedures *)
(* algorithm body or process declarations *)

}

Variable declarations, operator and macro definitions, as well as procedures are
optional. There must either be an algorithm body (for a sequential algorithm) or
process declarations (for a concurrent algorithm).

The PlusCal translator embeds the TLA+ specification corresponding to the
PlusCal algorithm in the module within which the algorithm appears, immediately
following the algorithm. The translation is delimited by the lines

1

* BEGIN TRANSLATION
...
* END TRANSLATION

Users should not touch this area, as it will be overwritten whenever the PlusCal
translator is invoked. However, TLA+ definitions may appear either before the
PlusCal algorithm or after the generated TLA+ specification. In particular, opera-
tors defined before the PlusCal algorithm may be used in the algorithm. Correct-
ness properties are defined below the generated specification because they refer to
the variables declared by the translator.

Variable declarations. Variables are declared as follows, they may (but need
not) be initialized:

variables x, y=0, z \in {1,2,3};
Note that there may be at most one “variables” clause, but that it may declare

any number of variables. This example declares three variables x, y, and z. The
variable x is not initialized, y is initialized to 0, and z may take either 1, 2 or 3 as
initial values. During model checking, TLC will assign x a default value that is
different from all ordinary values and will explore all three initial values for z.

Operator definitions. As in TLA+ (see below), operators represent utility func-
tions for describing the algorithm. The syntax is the same as for TLA+ definitions,
explained below. For example,

define {
Cons(x,s) == << x >> \o s
Front(s) == [i \in 1 .. Len(s)-1 |-> s[i]]

}

declares an operator Cons that prepends an element x to a sequence s and an
operator Front that returns the subsequence of a non-empty sequence without the
last element. Again, there can be a single “define” clause, but it may contain any
number of operator definitions, without any separator symbol.

Macros. A macro represents several PlusCal statements that can be inserted into
an algorithm, and it may have parameters. In contrast to a defined operator, a macro
need not be purely functional but may have side effects. In contrast to a procedure,
it cannot be recursive and may not contain labels or complex statements such as
loops or procedure calls or return statements. Here are two examples:

2

macro send(to, msg) {
network[to] := Append(@, msg)

}
macro rcv(p, var) {
await Len(network[p]) > 0;
var := Head(network[p]);
network[p] := Tail(@)

}

These macros represent send and receive operations in a network represented
by FIFO queues indexed by processes. The first macro appends a message to the
queue of the destination process. The second macro blocks until the queue of
process p contains at least a message, then assigns the first message in the queue to
variable var and removes it from that queue. When using a macro, simply insert an
invocation as a statement in the code, such as send(p, x+1) for sending the value
x+1 to process p.

Procedures. A procedure declaration is similar to that of a macro, but it may
also contain the declaration of local variables.1 The procedure body may contain
arbitrary statements, including procedure calls (even recursive calls).

procedure p(x,y)
variable z=x+1 * procedure-local variable

{
call q(z,y);

l: y := y+1;
return

}

Procedure parameters are treated as variables and may be assigned to. Any
control flow in a procedure should reach a return statement, any result computed
by the procedure should be stored in a variable—possibly a parameter. Procedure
calls are preceded by the keyword call and must be followed by a label.

Since the PlusCal translator introduces a stack for handling procedures, a Plus-
Cal algorithm using procedures must appear in a module EXTENDing the standard
module Sequences.

1These variables may be initialized using the form x = v, but not x ∈ S.

3

Processes. A PlusCal algorithm may declare one or more process templates, each
of which can have several instances. A process template looks as follows:

process (name [= | \in] e)
variables ... * process-local variables

{
(* process body *)

}

The form “name = e” will give rise to one instance of the process whose pro-
cess identity is (the value of expression) e, whereas “name ∈ e” will create one
process instance per element of the set e. When creating several process instances
from different templates, it is important to ensure that all process identities are com-
parable and different: for example, use only integers, only strings or only model
values. Within the process body, the process identity is referred to as self (and
not as name as the syntax might suggest). Processes conceptually execute (asyn-
chronously) in parallel, from the start of execution of the algorithms: PlusCal does
not support dynamically spawning processes during execution.

PlusCal statements. The statements of PlusCal are those expected of a simple
imperative language, with the addition of primitives for synchronization and for
non-deterministic choice that are useful for specifications.

Assignments are written x := e, but PlusCal also supports assignments to
components of an array x[i,j] := e whose translation involves EXCEPT forms
in TLA+. PlusCal also has a statement print e for printing the value of an expres-
sion.2 However, due to the breadth-first state enumeration strategy used by default
in TLC, it may not always be obvious to understand the relationship between out-
puts to the console and actual execution flow.

The conditional statement has the usual form

if (exp) ... else ...

where the “else” branch is optional; compound statements are enclosed in braces.
Similarly, while loops are written

while (exp) ...

Other statements for transferring the flow of control are procedure call and
return (see above), as well as goto l for jumping to label l—see below for a more
detailed explanation of labels in PlusCal.

2Use of this statement requires EXTENDing the standard module TLC.

4

Assertions can be embedded in PlusCal in the form assert e. This statement
has no effect if the predicate e is true and otherwise aborts (producing a counter-
example trace in TLC). There is also skip, which does nothing and is equivalent
to assert TRUE.

The statement await e (which can alternatively be written when e) blocks
execution until the condition is true. This is useful for synchronizing parallel pro-
cesses, for example for blocking message reception until a message has actually
been received.

Finally, PlusCal offers two statements for modeling non-determinism. The first
form,

either * first choice
or * second choice
or * ...

is useful for expressing the choice between a fixed number of alternatives. A use-
ful idiom for restricting this choice is to add await statements to branches: only
those choices whose condition evaluate to TRUE can indeed be executed. (This is
PlusCal’s version of Dijkstra’s guarded commands.)

Second, the form

with (x \in S) ...

allows for choices based on the elements of set S: the variable x acts as a local
variable whose scope is restricted to the body of the with statement. For example,
in a model where communication is not necessarily FIFO, S could be the set of
messages that a process has received, and a with statement could be used to handle
any one of these messages.

Semicolons. Unlike in C and similar languages, PlusCal uses semicolons to sepa-
rate (and not end) statements. In particular, this means that no semicolon is required
before the closing brace of a compound statement (although it is not considered as
a syntax error). However, a semicolon is required after the closing brace if it is
followed by another statement.

Labels. PlusCal statements can be labeled, and the primary purpose of labels is
to indicate the “grain of atomicity” in the execution of parallel processes. The idea
is that a group of statements that appears between two labels is executed without
interruption by any other process. However, the PlusCal translator imposes certain
labeling rules. The most important ones are:

5

• The first statement in the body of a procedure, a process or of the algorithm
body must be labeled.

• A while statement must be labeled.

• Any statement following a call, a return or an if or verb—either— state-
ment that contains a labeled statement must be labeled.

• A macro body and the body of a with statement may not contain labels.

• Any two assignments to the same variable (including to two components of
the same array) must be separated by a label.

The full set of labeling rules is given in the PlusCal manual. The translator prints
information about missing labels, it may also be run with the -label option to
automatically add missing labels.

Specifying Fairness. Fairness conditions require that statements that are “often
enough” enabled must eventually be executed; they are necessary in order to en-
sure that an algorithm satisfies any liveness property. In PlusCal, fairness con-
ditions can be attached to the algorithm, process templates or labels. By writ-
ing fair algorithm, one requires that some statement (for some process) must
eventually be executed if some statement is enabled. This is a weak condition:
in particular, some process may never execute although it is always enabled, if
other processes are also always enabled. Writing fair process ensures that the
process (more precisely, each instance of the process template) will eventually ex-
ecute if it remains enabled. The even stronger condition fair+ process requires
strong fairness for the process, i.e. it will eventually execute if it is infinitely often
enabled—even if it is also infinitely often disabled. For example, a process that
requires a semaphore that is infinitely often free will eventually acquire it under
strong fairness, even in the presence of competing processes.

The overall fairness requirement attached to a process can be modulated for
individual actions (corresponding to a group of statements introduced by a label).
Writing l:- instead of l: suppresses the fairness assumption for the group of state-
ments introduced by label l. For example, in a mutual-exclusion algorithm, one
may not want to assume any fairness condition for the non-critical section. On the
contrary, writing l:+ assumes strong fairness for that group of statements. (This
has no effect for a strongly fair process.) For example, one may in this way require
strong fairness only for acquiring a semaphore within a weakly fair process.

Even finer-grained fairness conditions can be expressed in TLA+, details can
be found in the literature on TLA+.

6

2 TLA+

PlusCal algorithms are translated into the TLA+ specification language, and the
TLA+ tools (in particular the TLA+ Toolbox and the model checker TLC) are used
for verifying properties of algorithms. TLA+ is based on ordinary mathematical set
theory, and it is untyped. In order to effectively use PlusCal, you need to know at
least some TLA+ syntax:

• all expressions that appear in PlusCal algorithms are written in TLA+, and

• properties to be verified (beyond assertions inserted into PlusCal code) are
also written in TLA+.

TLA+ has ASCII syntax but can be pretty-printed from the Toolbox, using standard
mathematical notation. We show the pretty-printed versions as well as the ASCII
source below.

2.1 Overall structure

Modules and declarations. TLA+ specifications are structured in modules. A
TLA+ module begins with a header line

---------- MODULE Name ----------
(at least four ‘-’ signs) and ends with a bottom line

=================================
(at least four ‘=’ signs). A module may import the contents of other modules
by EXTENDing them, which is basically equivalent to copying the content of the
extended module into the extending module. It may also create INSTANCEs of other
modules whose (constant or variable) parameters are instantiated by expressions of
the instantiating module. This is useful for example when showing that a lower-
level specification refines (or implements) a higher-level one.

Modules usually declare constant or variable parameters,3 for example

CONSTANTS Node, Edge
VARIABLES leader network

for declaring constant sets representing the nodes and edges of a graph and two
variables used in a leader-election algorithm. (When the algorithm is written in
PlusCal, the variable declaration is generated by the PlusCal translator.)

3The values of constant parameters remain fixed throughout any execution of the algorithm.
TLA+ variables are analogous to program variables and assume different values at different states
of the execution.

7

Since TLA+ is untyped, these declarations do not indicate the types of constants
or variables. (Semantically, all TLA+ values are sets.) However, a specification
may contain assumptions on the constant parameters such as

ASSUME Edge⊆ Node×Node

and these assumptions are checked by TLC. Properties of variables are expressed
using formulas, typically invariants or temporal logic properties.

Operator definitions. The bulk of a TLA+ module consists in operator defini-
tions. Operators represent subformulas of the overall specification, including use-
ful operations on data as well as initial conditions and possible transitions of algo-
rithms. Again, when using PlusCal, most definitions are generated by the PlusCal
translator. However, a PlusCal algorithm may use operators defined in the TLA+

module (or in some extended module), and correctness properties of a PlusCal al-
gorithm are usually specified in the part of the TLA+ module below the generated
TLA+ translation.

An operator definition has the form4

op(p1, . . . , pn)
∆

= e

where p1, . . . , pn are parameters of the definition and e is a TLA+ expression that
represents the body of the definition and does not contain op. Each parameter pi is
either an identifier or of the form f (, . . . ,). The latter case represents an operator
parameter, and the number of underscores indicates the arity of the operator, i.e.
the number of arguments that it expects. For example,

Apply(f (),x) ∆

= f (x)

takes a unary operator parameter f and an ordinary parameter x.
TLA+ enforces the general rule that a name that already exists in the current

context may not be reused. The above definition of Apply would therefore be illegal
in a context where f or x have already been introduced as constant or variable
parameters or as operator names. However, the scope of a parameter symbol is
limited to the definition in which it appears, and it is therefore legal to reuse x as a
parameter name in a subsequent definition.

Recursive operators. For the special case of a function definition, one may write

f [x ∈ S] ∆

= e

4The symbol ∆

= is written == in ASCII.

8

in order to define a function with domain S that maps every x ∈ S to the expression
e (which may contain x). In this case, e may contain the symbol f . For example,
one may write

fact[n ∈ Nat] ∆

= IF n = 0 THEN 1 ELSE n∗ fact[n−1]

for defining the factorial function over natural numbers. TLA+ also allows for
recursive operator definitions; in this case, the names and arities of recursive oper-
ators have to be declared before the definitions, as in

RECURSIVE Fact()
Fact(n) ∆

= IF n = 0 THEN 1 ELSE n∗Fact(n−1)

which defines a recursive operator (rather than a function) Fact; note in particular
that Fact does not have a domain. Mutually recursive operators may be introduced
by declaring all operator names and arities before their definitions.

Theorems. Finally, TLA+ modules may assert theorems and contain proofs of
these theorems. Proofs are checked by the TLA+ Proof System (TLAPS), an inter-
active proof assistant for TLA+. Theorems are ignored by TLC: instead, properties
to be verified by model checking need to be entered in the TLC pane of the TLA+

Toolbox. We will therefore not describe the syntax of theorems and proofs here.

2.2 Logic

∧, ∨, ⇒, ≡, ¬ /\, \/, =>, <=>, ˜

are the standard operators of propositional logic (conjunction, disjunction,
implication, equivalence, and negation).

=, 6= =, #

denote equality and disequality (the latter may also be written ˜=).

TRUE, FALSE TRUE, FALSE

are the logical constants true and false.

∀x : P(x), ∃x : P(x) \A x : P(x), \E x : P(x)

represent the logical quantifiers “forall” and “exists”. You may not reuse
a variable that is already used in the current scope. In other words, if x has
already been introduced (as a constant, variable, operator or parameter of the
current operator definition) then it is illegal to write ∀x : P(x), but you have
to write ∀y : P(y) for some fresh variable y. There exist “bounded versions”
of the quantifiers restricted to a set S and written as [∀|∃]x ∈ S : P(x), and
these are the only forms that TLC can evaluate.

9

CHOOSE x : P(x) CHOOSE x : P(x)

denotes some arbitrary but fixed value x such that P(x) is true, and some
unspecified fixed value otherwise. Again, there is a bounded version that
restricts the choice of possible values to some set S, and this is the only
form accepted by TLC. In mathematical terminology, this operator is known
as “Hilbert’s ε-operator”. It is important to understand that this represents
deterministic choice: multiple evaluations of the expression will yield the
same result. CHOOSE-expressions are most useful if there is a unique value
satisfying the predicate. For example, the length of a sequence s can be
defined as

CHOOSE n ∈ Nat : DOMAIN s = 1 ..n

Another useful paradigm is extending some set S by a “null value”:5

notAnS ∆

= CHOOSE x : x /∈ S

The set S∪{notAnS} is then similar to an option type in functional program-
ming.

2.3 Sets

{e1, . . . ,en} {e1, ..., en}

denotes the set containing (the values corresponding to) the expressions e1,
. . . , en. In particular, {} is the empty set.

x ∈ S, x /∈ S, S⊆ T x \in S, x \notin S, S \subseteq T

is true if x is an element (or is not an element) of set S, respectively if S is a
subset of T .

∪, ∩, \ \cup (or \union), \cap (or \inter), \

set union, intersection, and difference.

UNION S UNION S

generalized set union: S is expected to be a set of sets, and the result is the
union of these sets. For example, UNION {{1,2},{3,4}} = {1,2,3,4}, and
more generally, UNION {A,B}= A∪B.

5The astute reader will notice that this form cannot be evaluated by TLC. However, the TLA+

Toolbox will substitute a special “model value” for notAnS.

10

SUBSET S SUBSET S

denotes the set of all subsets of S. For example,

SUBSET {1,2}= {{},{1},{2},{1,2}}

{x ∈ S : P(x)} {x \in S : P(x)}

denotes the subset of elements of S for which the predicate P(x) is true.
For example, assuming that isPrime(n) is true for a natural number n if n is
prime then {n ∈ 1 ..100 : isPrime(n)} contains the set of prime numbers in
the interval between 1 and 100.

{e(x) : x ∈ S} {e(x) : x \in S}

denotes the set of values obtained by applying the operator e to all elements
of S. This construction is similar to the map operator from functional pro-
gramming. For example, {2 ∗ n+ 1 : n ∈ 0 ..99} denotes the set of the first
100 odd natural numbers.

Cardinality(S) Cardinality(S)

the number of elements of the finite set S. This operator is defined in the
module FiniteSets, which you must EXTEND in order to use it. That mod-
ule also defines the predicate IsFiniteSet for checking if a set is finite.

2.4 Functions

TLA+ functions are total over their domain. Although every function is a set (just
like any TLA+ value), we don’t know what set the function denotes and we think
of functions as a primitive class of values. (For nerds: in many presentations of
set theory, functions are sets of pairs. This is not enforced in TLA+.) In terms
of programming terminology, functions are analogous to arrays—although their
index set or domain need not be finite—and TLA+ uses array syntax for functions.

[x ∈ S 7→ e(x)] [x \in S |-> e(x)]

denotes the function with domain S that maps every element x of S to e(x).
For example, [n∈Nat 7→ n+1] is the successor function on natural numbers.
This expression is similar to a λ-expression in functional programming.

DOMAIN f DOMAIN f

denotes the domain of the function f . Although TLA+ has no standard nota-
tion for the range of a function f , it can easily be defined as

{ f [x] : x ∈ DOMAIN f}

11

f [x] f[x]

denotes the result of applying the function f to the argument x. This expres-
sion only makes sense if x ∈ DOMAIN f .

[f EXCEPT ![x] = e] [f EXCEPT ![x] = e]

denotes the function that has the same domain as f and acts similarly as f ,
except that it maps the argument x to e. For example, if succ is the succes-
sor function from above, then [succ EXCEPT ![0] = 42] is the function that
maps every natural number to its successor, but that maps 0 to 42. Within
the expression e, one may use the symbol @ in order to refer to f [x]. For
example,

[count EXCEPT ![p] = @+1]

updates function count by incrementing count[p] by 1.

Updating a function at several arguments can be written as

[f EXCEPT ![x] = a, ![y] = b, ![z] = c]

[S→ T] [S -> T]

denotes the set of all functions whose domain is S and such that f [x] ∈ T
holds for all x ∈ S.

For functions that take several arguments, TLA+ adopts the convention that
f [x,y] is shorthand for f [〈x,y〉] and hence f ∈ [X ×Y → Z]. This convention ex-
tends to EXCEPT expressions, so you can write [f EXCEPT ![x,y] = e].

2.5 Records

A TLA+ record is a function from a finite set of fields (represented as strings)
to values. In principle, standard function operations therefore apply to records.
Nevertheless, TLA+ introduces some specific syntax for records.

[fld1 7→ e1, . . . ,fldn 7→ en] [fld1 |-> e1, ..., fldn |-> en]

constructs a record with fields mathit f ldi holding values ei. For example,

[kind 7→ ”request”, sndr 7→ p, clk 7→ 42]

could represent a request message sent by process p with logical clock value
42.

12

r.fld r.fld

selects the value of field fld from record r.

[r EXCEPT !.fld = e] [r EXCEPT !.fld = e]

denotes the record that is similar to r, except that field fld holds value e. (The
indicated field should exist in record r.) An analogous generalization to the
EXCEPT construct for functions allows several record fields to be updated.

2.6 Numbers

You must import the arithmetical operators by EXTENDing one of the standard
modules Naturals or Integers. (TLA+ also has a standard module Reals for
real numbers, but we won’t need it.)

Nat, Int Nat, Int

denote the set of natural numbers (0,1, . . .) and of integers.

i .. j i .. j

an interval of integers, such as -3 .. 5.

+, −, ∗, ÷, mod +, -, *, \div, %

are the standard arithmetical operations (addition, subtraction, multiplica-
tion, integer division and modulus).

2.7 Tuples and sequences

Tuples and sequences are the same mathematical objects, but they are used differ-
ently: whereas a tuple has a fixed number of components, a sequence can be of
varying length. In TLA+, tuples and sequences are represented as functions with
domain 1 ..n, for some natural number n. (In particular, the empty sequence has
domain 1 ..0.) Standard function operations therefore apply, and the i-th element
of a sequence s is obtained as s[i]. The sequence operations must be imported by
EXTENDing the standard module Sequences.

〈e1, . . . ,en〉 <<e1, ..., en>>

denotes the sequence with elements e1, . . . , en, in that order. In particular,
<< >> is the empty sequence.

s◦ t s \o t

denotes the concatenation of the sequences s and t. For example, 〈1,2〉 ◦
〈3,4〉= 〈1,2,3,4〉.

13

Seq(S) Seq(S)

the set of all finite sequences with elements in set S.

S×T S \X T

denotes the set product of S and T , i.e. the set of all pairs 〈s, t〉 with s∈ S and
t ∈ T .

Len(s) Len(s)

denotes the length of sequence s.

Append(s,e) Append(s,e)

adds element e at the end of the sequence s.

Head(s), Tail(s) Head(s), Tail(s)

denote the first element of the sequence s, respectively the rest of the se-
quence with the first element removed. These operators are well-defined
only if the sequence s is non-empty.

SubSeq(s,m,n) SubSeq(s,m,n)

the sequence 〈s[m],s[m+1], . . . ,s[n]〉.

SelectSeq(s,P()) SelectSeq(s, P(_))

denotes the subsequence of elements of sequence s that satisfy predicate P.
For example, if isPrime(n) is true if n is a prime number, then

SelectSeq(〈2,3,4,5,6,7,8〉, isPrime) = 〈2,3,5,7〉

Many more operators on sequences can easily be defined in TLA+. For exam-
ple, the “map” operation on sequences is defined as

Map(s, f ()) ∆

= [i ∈ DOMAIN s 7→ f (s[i])]

Other operations require recursive definitions, such as a “reduce” operation that
applies an operation op to all elements of the sequence s starting from the “null
value” e:

RECURSIVE Reduce(, ,)
Reduce(s,op(,),e) ∆

= IF s = 〈〉 THEN e
ELSE op(Head(s),Reduce(Tail(s),op,e))

Character strings are represented as sequences of characters. How characters
are represented is left unspecified; literal strings are written as "string". How-
ever, TLC handles strings natively and does not support sequence operations ap-
plied to strings.

14

2.8 Miscellaneous constructs

IF P THEN t ELSE e IF P THEN t ELSE e

is a conditional expression. It can be used as a formula if t and e are both
formulas, but also more generally as a term. See the definition of the factorial
function earlier for an example.

CASE p1 → e1 2 p2 → e2 . . .2 OTHER → e
CASE p1 -> e1 [] p2 -> e2 ... [] OTHER -> e

generalizes conditional expressions to more than two branches. It equals
some ei such that pi is true, or e if no guard pi is true (The OTHER branch is
optional.) In case several pi are true, the choice of which branch is evaluated
is fixed but unspecified: make sure that in this case, all corresponding ei

evaluate to the same value.

LET x ∆

= t IN e LET x == t IN e

allows users to introduce local definitions, similar to the standard “let” con-
struct of functional programming languages.

3 Online Resources

• learntla.com: A Web site for helping newcomers learn PlusCal and TLA+.
There is also a published book (“Practical TLA+”) by the same author with
a more complete introduction.

• http://lamport.azurewebsites.net/tla/tla.html: The official TLA+

Web site with lots of reference material.

• http://lamport.azurewebsites.net/video/videos.html: A video course
on TLA+ by Leslie Lamport (does not cover PlusCal, though).

• http://lamport.azurewebsites.net/tla/c-manual.pdf: The PlusCal
manual for the C syntax that is also used in the lectures.

15

