
http://d3s.mff.cuni.cz

CEGAR

Pavel Parízek



Tools

Pavel Parízek CEGAR 2

Connect to some Linux machine
using WSL or SSH

Download
http://d3s.mff.cuni.cz/files/teaching/nswi132/files/cegar.tgz

Package contains Linux binaries of
BOPPO

Model checker for boolean programs

SATABS v1.9
CEGAR + SAT

BLAST v2.5
Lazy abstraction

Examples
Some taken from tutorials created by authors of respective tools

http://d3s.mff.cuni.cz/files/teaching/nswi132/files/cegar.tgz


SATABS

Pavel Parízek CEGAR 3

Verification tool for C and C++ programs
Based on CEGAR
Uses a SAT solver

Key features
Variables represented as bit vectors (binary level)
Computer arithmetic (overflow, bit operators, ...)

Developed at ETH Zurich & Carnegie Mellon Uni

http://www.cprover.org/satabs/

Source code and binaries freely available
Platforms: Windows, Linux, Mac OS

http://www.cprover.org/satabs/


SATABS: example 1

Pavel Parízek CEGAR 4

Set environment variables
. ./cegar-cfg.sh

Make all binaries executable
chmod u+x <file>

Run SATABS
cd examples/ex01
satabs --modelchecker boppo main.c

Tasks
Change the program in order to 1) violate the assertion 
and 2) force SATABS to make more iterations



SATABS: example 2

Pavel Parízek CEGAR 5

Subject: a dummy Linux 2.0 device driver

Running
cd examples/ex02
satabs --modelchecker boppo spec.c driver.c

Tasks
Inspect the source code and header files
Fill in the missing parts of the testing harness

See the TODO mark in the file spec.c
open has to be called (with success) before read
release has to be called before exiting

Use SATABS to verify the program (or to find bugs)
Hint

Use nondet_uint() with __CPROVER_assume()



BLAST

Pavel Parízek CEGAR 6

Key feature: lazy predicate abstraction

Developed at UC Berkeley & EPFL (Lausanne)

https://www.sosy-lab.org/~dbeyer/Blast/index-epfl.php

Obsoleted by CPAchecker

Many advanced features and optimizations

https://www.sosy-lab.org/~dbeyer/Blast/index-epfl.php


BLAST: example 3

Pavel Parízek CEGAR 7

Make necessary binaries executable
pblast.opt, spec.opt, csisat, Simplify

How to run BLAST
cd examples/ex03

gcc -E -I . tut1.c > tut1.i

pblast.opt -main foo tut1.i

Tasks
Correct the program and verify using BLAST



BLAST: example 4

Pavel Parízek CEGAR 8

BLAST property specification language

lock.spc
Defines correct locking & unlocking

How to run BLAST with custom property
spec.opt lock.spc tut2.c
pblast.opt instrumented.c

Tasks
Look at the instrumented code
Try to find and correct the bug



BLAST: example 5

Pavel Parízek CEGAR 9

Simple file wrapper for reading lines

reader.{c,h} – file wrapper

error_handling.h – macros

main.c – very simple test case

Tasks

Define your own property that captures locking & 
unlocking discipline (hint: reuse ex04)

Find all property violations and fix the program



BLAST & SATABS

Pavel Parízek CEGAR 10

Try to run BLAST and SATABS on your own 
programs in C/C++

Insert some assertions to your code (if necessary)



CPAchecker

Pavel Parízek CEGAR 11

Modern successor of BLAST
Still under development

Input: programs in C

Advantages
Highly configurable

abstraction, merging data from control-flow paths

More user- friendly

Web: https://cpachecker.sosy-lab.org/

https://cpachecker.sosy-lab.org/

