CEGAR

http://d3s.mff.cuni.cz

e e Pavel Parizek

Dependable

FACULTY
OF MATHEMATICS

AND PHYSICS
Charles University




Tools

® (Connect to some Linux machine
= using WSL or SSH

* Download
= http://d3s.mff.cuni.cz/files/teaching/nswil32/files/cegar.tgz

* Package contains Linux binaries of

= BOPPO
®* Model checker for boolean programs

= SATABS v1.9
° CEGAR + SAT

= BLAST v2.5

® Lazy abstraction

= Examples
® Some taken from tutorials created by authors of respective tools

Pavel Parizek CEGAR 2


http://d3s.mff.cuni.cz/files/teaching/nswi132/files/cegar.tgz

SATABS

* Verification tool for C and C++ programs
= Based on CEGAR
= Uses a SAT solver

* Key features
= Variables represented as bit vectors (binary level)
= Computer arithmetic (overflow, bit operators, ...)

®* Developed at ETH Zurich & Carnegie Mellon Uni

e http://www.cprover.org/satabs/

® Source code and binaries freely available
= Platforms: Windows, Linux, Mac OS

Pavel Parizek CEGAR 3


http://www.cprover.org/satabs/

SATABS: example 1

®* Set environment variables
./cegar-cfg.sh
°* Make all binaries executable
chmod u+x <file>

®* Run SATABS
cd examples/ex01
satabs --modelchecker boppo main.c

® Tasks

" Change the program in order to 1) violate the assertion
and 2) force SATABS to make more iterations

Pavel Parizek CEGAR 4



SATABS: example 2

® Subject: a dummy Linux 2.0 device driver

® Running
= cd examples/ex02
= satabs --modelchecker boppo spec.c driver.c

® Tasks
= |nspect the source code and header files

= Fill in the missing parts of the testing harness

* See the TODO mark in the file spec.c

* open has to be called (with success) before read

°* release hasto be called before exiting
= Use SATABS to verify the program (or to find bugs)
= Hint

°* Use nondet uint() with CPROVER assume()

Pavel Parizek CEGAR 5



BLAST

* Key feature: lazy predicate abstraction

°* Developed at UC Berkeley & EPFL (Lausanne)

¢ https://www.sosy-lab.org/~dbeyer/Blast/index-epfl.php

°* Obsoleted by CPAchecker

= Many advanced features and optimizations

Pavel Parizek CEGAR 6


https://www.sosy-lab.org/~dbeyer/Blast/index-epfl.php

BLAST: example 3

* Make necessary binaries executable
= pblast.opt, spec.opt, csisat, Simplify

® How to run BLAST
cd examples/ex03
gcc -E -I . tutl.c > tutl.i
pblast.opt -main foo tutl.il

* Tasks
= Correct the program and verify using BLAST

Pavel Parizek CEGAR 7



BLAST: example 4

®* BLAST property specification language

°* lock.spc
= Defines correct locking & unlocking

* How to run BLAST with custom property
spec.opt lock.spc tut2.c
pblast.opt instrumented.c

®* Tasks
" Look at the instrumented code
= Try to find and correct the bug

Pavel Parizek CEGAR 8



BLAST: example 5

* Simple file wrapper for reading lines
= reader.{c,h} —file wrapper
= error_handling.h — macros
= main.c —very simple test case

®* Tasks

= Define your own property that captures locking &
unlocking discipline (hint: reuse ex04)

= Find all property violations and fix the program

Pavel Parizek CEGAR 9



BLAST & SATABS

°* Try to run BLAST and SATABS on your own
programs in C/C++

= |[nsert some assertions to your code (if necessary)

Pavel Parizek CEGAR 10



CPAchecker

® Modern successor of BLAST
= Still under development

® |nput: programs in C

®* Advantages
= Highly configurable
® abstraction, merging data from control-flow paths
= More user- friendly

e \Web: https://cpachecker.sosy-lab.org/

Pavel Parizek CEGAR 11


https://cpachecker.sosy-lab.org/

