
http://d3s.mff.cuni.cz

Concurrency Errors

Pavel Parízek



Basic taxonomy of concurrency bugs

Pavel Parízek Concurrency Errors 2

Data race condition (unsynchronized access)

Deadlock caused by incorrectly nested locking

Deadlock caused by missed notification (early)

Atomicity violation (inconsistent data values)

Ordering violation (method calls in two threads)

Spurious wake-up (forgotten condition check)



Data race condition

Pavel Parízek Concurrency Errors 3

Producer.run() {

while (true) {

synchronized (buf) {

buf.add(...);

}

count++;

}

}

Consumer.run() {

while (true) {

if (count > 0) {

synchronized (buf) {

... = buf.get(0);

}

}

--count;

}

}

public static List buf;

main() {

(new Producer()).start();

(new Consumer()).start();

}



Deadlock caused by incorrectly nested locks

Pavel Parízek Concurrency Errors 4

Producer.run() {

while (true) {

synchronized (coord) {

synchronized (buf) {

buf.add(...);

}

count++;

}

}

}

Consumer.run() {

while (true) {

synchronized (buf) {

synchronized (coord) {

... = buf.get(0);

}

--count;

}

}

}

public static List buf;

main() {

(new Producer()).start();

(new Consumer()).start();

}



Deadlock caused by missed notification

Pavel Parízek Concurrency Errors 5

Subject.run() {

...

synchronized (events) {

events.add(...);

events.notify();

}

...

}

Observer.run() {

...

synchronized (events) {

events.wait();

... = events.get(0);

}

...

}

public static List events = ...

main() {

(new Subject()).start();

(new Observer()).start();

}



Atomicity violation

Pavel Parízek Concurrency Errors 6

Reader.run() {

...

synchronized (db) {

x = db.value1;

}

synchronized (db) {

y = db.value2;

}

...

}

Writer.run() {

...

synchronized (db) {

db.value1 = 10;

db.value2 = 20;

}

...

}

Database db = ...

main() {

(new Reader(db)).start();

(new Writer(db)).start();

}



Ordering violation

Pavel Parízek Concurrency Errors 7

Server.run() {

...

startInit();

for (Worker w : workers) {

w.start();

}

finishInit();

...

}

Worker.run() {

while (true) {

waitForRequest();

openDatabase();

executeDBQuery();

processResults();

sendResponse();

}

}



Spurious wake-up

Pavel Parízek Concurrency Errors 8

Producer.run() {

synchronized (buf) {

while (count >= MAX) {

buf.wait();

}

buf.add(...);

count++;

buf.notify();

}

}

Consumer.run() {

synchronized (buf) {

if (count == 0) {

buf.wait();

}

... = buf.get(0);

--count;

buf.notify();

}

}

public static List buf;

main() {

(new Producer()).start();

(new Consumer()).start();

(new Consumer()).start();

}



Detecting concurrency bugs

Pavel Parízek Concurrency Errors 9



Detecting concurrency bugs

Pavel Parízek Concurrency Errors 10

Basic approach
Exhaustive state space traversal with non-deterministic 
thread choices by a model checker (JPF)

Selected variants of state space traversal
Using custom runtime to control thread scheduling and 
synchronization operations
Bounding the number of thread preemptions
Optimizations (e.g., preemption sealing)

➔ Systematic Concurrency Testing (SCT)

Other approaches
Computing the lock-set analysis
Happens-before relation (order)



Exhaustive state space traversal with thread choices (JPF)

Pavel Parízek Concurrency Errors 11

Single root node

Initial program state

Thread choices

State matching

Backtracking

T1

T2T1

T1



Using custom runtime

Pavel Parízek Concurrency Errors 12

Controls thread scheduler in the operating system

Custom library for synchronization primitives

source code instrumentation, dynamic linking

Tracking execution of statements accessing the 
global state (heap objects, locks)

source code instrumentation, dynamic monitoring

Q: is there any problem with this approach ?



Executing program with different schedules

Pavel Parízek Concurrency Errors 13

Restart program execution many times

Each time with a different thread interleaving

Keep track of explored thread schedules

Stateless traversal

no set of visited states, no state matching



Bounded number of preemptions

Pavel Parízek Concurrency Errors 14

Motivation: errors triggered with few thread 
preemptions (2-5) and few threads (2)

General principle: small scope hypothesis

Limit the number of thread preemptions

Systematic exploration within the given bound

Common alternative name: context bounding

Q: can we do even better (improve coverage) ?



Bounded number of preemptions

Pavel Parízek Concurrency Errors 15

Motivation: errors triggered with few thread 
preemptions (2-5) and few threads (2)

General principle: small scope hypothesis

Limit the number of thread preemptions

Systematic exploration within the given bound

Common alternative name: context bounding

A: iteratively increasing the context bound



Bounded number of preemptions

Pavel Parízek Concurrency Errors 16

Method limitations

Ignores concurrency errors triggered by more 
context switches (preemptions)

Checks program behavior only for a single input

Remedy: symbolic execution

Theoretical complexity: NP-complete



Preemption sealing

Pavel Parízek Concurrency Errors 17

Disable thread choices in

System libraries (e.g., core and collections)

Already explored state space fragments

Method tested during previous runs of the checker

Code triggering already known concurrency bugs



CHESS: Systematic Concurrency Testing

Pavel Parízek Concurrency Errors 18

Main features
Custom runtime with scheduler
Stateless traversal with fairness
Iterative context-bounding

Supported platforms
C#, C/C++, Win32, .NET
Probably just 32-bit CPU

Further information & source code
https://www.microsoft.com/en-us/research/project/chess-find-
and-reproduce-heisenbugs-in-concurrent-programs

https://www.microsoft.com/en-us/research/project/chess-find-and-reproduce-heisenbugs-in-concurrent-programs


COYOTE: Concurrency Unit Testing

Pavel Parízek Detecting Concurrency Errors 19

Main features
Unit tests written in C# running multiple threads

Exploration strategies over possible interleavings

Debugging: reproduces errors, visualizing traces

Target platform
Recent .NET frameworks on Windows/Linux

Further information and source code (binaries)
https://www.microsoft.com/en-us/research/project/coyote/

https://microsoft.github.io/coyote/

https://www.microsoft.com/en-us/research/project/coyote/
https://microsoft.github.io/coyote/


Context bounding done another way

Pavel Parízek Concurrency Errors 20

Transforming concurrent programs to 
sequential programs

Approach: source-to-source translation

Q: how this can be done ?



Context bounding done another way

Pavel Parízek Concurrency Errors 21

Transforming concurrent programs to sequential 
programs

Approach: source-to-source translation

Model checking the sequential program

Thread preemption
non-deterministic data choice

jump to another code location

set up execution context (stack)

Program state: cross-product of local variables of 
all threads and global variables



Lock-set analysis

Pavel Parízek Concurrency Errors 22

Find the set of locks held at each access to a 
shared global variable

Check whether accesses to shared variables 
follow a consistent locking discipline

Two concurrent accesses to a global variable
Empty intersection of lock sets ➔ data race

Every access to a shared variable protected by 
the same lock

Thread using a different lock than before ➔ data race



Happens-before ordering (relation)

Pavel Parízek Concurrency Errors 23

Relationships between synchronization events

causal, temporal, execution flow

Partial happens-before ordering

Example 1: wait – notify

Example 2: lock release – lock acquire

Ordering between field accesses ➔ no data race



Defining correctness of concurrent programs

Pavel Parízek Concurrency Errors 24



Correctness conditions

Pavel Parízek Concurrency Errors 25

Example: LinkedList

Operations: add(o), get(i), remove(i), size()

Data race freedom

Serializability (atomicity)

No overlap between concurrent actions

Linearizability



Linearizability

Pavel Parízek Concurrency Errors 26

Concurrent history H
Operation: invoke, result

Partial order: e1 <H e2 if res(e1) precedes inv(e2)

Linearizable concurrent history H
Exists serial witness that respects partial order and 
every operation has the same result value as in H

Set of concurrent operations
Every possible concurrent history is linearizable with 
respect to a sequential specification



Verifying linearizability

Pavel Parízek Concurrency Errors 27

Linearization points

Operations must appear to take their effect at 
some instant between the call and return

State space traversal

Phase 1: find all possible sequential histories

Phase 2: explore concurrent histories

Identify corresponding serial witness for each

More complicated algorithmic techniques



Relaxed memory models

Pavel Parízek Concurrency Errors 28



Relaxed memory models

Pavel Parízek Concurrency Errors 29

Defines valid program transformations

System: compiler, virtual machine, hardware

Motivation: optimizing performance

Possible transformations

Reordering write accesses to a shared variable in a 
given thread

Delaying propagation of the new value of a global 
variable to other threads (shared memory)



Relaxed memory models

Pavel Parízek Concurrency Errors 30

Sequential consistency

Data race free models

Case study: Java Memory Model

Case study: C++11 Memory Model

Various extensions: C++14/17/20



Sequential consistency

Pavel Parízek Concurrency Errors 31

Memory accesses execute one at a given time

Total order of memory accesses (read, write)

Reads observe the most recent written value

Each thread must respect the program order

Order defined by the source code (developer)



Java Memory Model

Pavel Parízek Concurrency Errors 32

Data race free programs behave correctly
Guaranteed sequentially consistent semantics

Program with data races ➔ up to the developer
Model provides only weak guarantees

Memory barriers
Boundaries of synchronized blocks
Accessing volatile variables

Defined formally using the happens-before ordering
Very complex (many rules): lot of research papers about it

Used since J2SE 5.0



Hardware memory models

Pavel Parízek Detecting Concurrency Errors 33

Total Store Order (TSO)
Delaying writes (stores) relative to subsequent reads 
(loads) on the same processor
CPU architecture: x86

Partial Store Order (PSO)
Additionally, delaying stores relative to other stores (to 
different memory locations) on the same processor

Partial Store Load Order (PSLO)
Additionally, permits reordering loads to execute before 
previous loads and stores on the same processor



Relaxed memory models: verification support

Pavel Parízek Concurrency Errors 34

Java PathRelaxer

CHESS: limited

COYOTE: not sure

Some tools for checking program behavior on 
hardware memory models (especially TSO)



Data races

Pavel Parízek Concurrency Errors 35

Benign

Optimizing performance on multi-core CPUs

Exploiting properties of the memory model

Very hard to get the implementation right

Case study: java.util.concurrent

Erroneous

Missing thread synchronization by a developer mistake

Some people call for a “total ban” on data races



ABA problem

Pavel Parízek Detecting Concurrency Errors 36

Q: can you tell me what it means ?



ABA problem

Pavel Parízek Detecting Concurrency Errors 37

Idea: same value but something changed

Typical for lock-free data structures



Further reading

Pavel Parízek Detecting Concurrency Errors 38

M. Musuvathi and S. Qadeer. Iterative Context Bounding for Systematic Testing of Multithreaded 
Programs. PLDI 2007

M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P.A. Nainar, and I. Neamtiu. Finding and Reproducing 
Heisenbugs in Concurrent Programs. OSDI 2008

P. Deligiannis, A. Senthilnathan, F. Nayyar, C. Lovett, and A. Lal. Industrial-Strength Controlled 
Concurrency Testing for C# Programs with COYOTE. TACAS 2023

S. Qadeer and D. Wu. KISS: Keep it Simple and Sequential. PLDI 2004

N. Ghafari, A. Hu, and Z. Rakamaric. Context-Bounded Translations for Concurrent Software: An 
Empirical Evaluation. SPIN 2010

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A Dynamic Data Race 
Detector for Multithreaded Programs. ACM Transactions on Computer Systems, 15(4), 1997

S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-Up: A Complete and Automatic 
Linearizability Checker. PLDI 2010

J. Manson, W. Pugh, and S.V. Adve. The Java Memory Model. POPL 2005


