
http://d3s.mff.cuni.cz

Symbolic Execution, 
Dynamic Analysis

Pavel Parízek



Symbolic execution

Pavel Parízek Symbolic Execution, Dynamic Analysis 2



Key concepts

Pavel Parízek Symbolic Execution, Dynamic Analysis 3

Symbolic values used for program variables
v: x+2, x: i0+i1–3, y: 2*i1

Program inputs: variable names

Other variables: functions over symbolic inputs

Path condition (PaC)
Set of constraints over symbolic input values that 
hold in the current program state



Example program

Pavel Parízek Symbolic Execution, Dynamic Analysis 4

input: x,y

1: u = x - y;

2: if (x > 1)

3:   u = u + x;

4: if (y > x)

5:   u = y – x;

6: assert (u >= 0);



Symbolic execution and program verification

Pavel Parízek Symbolic Execution, Dynamic Analysis 5

Symbolic program state
Symbolic values of program variables

Path condition (PaC)

Program counter (PC)

Symbolic state = a set of concrete states

Symbolic execution tree = state space
Tree of symbolic program states

Transitions labeled with the PC



Symbolic execution and program verification

Pavel Parízek Symbolic Execution, Dynamic Analysis 6

Path condition updated at each branching point 
in the program code

Different constraints added for each branch

Example: if-else with a boolean condition C
Formula  C added for the if branch

Formula  not C added for the else branch

State space traversal
Satisfiability of PaC checked in each symbolic state

PaC == false ➔ symbolic state not reachable
Verification tool backtracks and explores different branches



Symbolic execution: possible applications

Pavel Parízek Symbolic Execution, Dynamic Analysis 7

Do you have some ideas ?



Symbolic execution: possible applications

Pavel Parízek Symbolic Execution, Dynamic Analysis 8

Automatically generating test inputs
From path conditions in symbolic program states

Find inputs that trigger a specific error

Systematic testing of open systems
Examples: isolated procedures, components

Programs with unspecified concrete inputs

Checking programs with inputs from unbounded 
domains (integers, floats, strings)



Symbolic execution: limitations

Pavel Parízek Symbolic Execution, Dynamic Analysis 9

What are the limitations ?



Symbolic execution: limitations

Pavel Parízek Symbolic Execution, Dynamic Analysis 10

Handling loops with many iterations

Stateless exploration (no state matching)

Undecidable and complex path conditions

State explosion (too many paths)

Concurrent accesses from multiple threads



Loops with many iterations

Pavel Parízek Symbolic Execution, Dynamic Analysis 11

x = input();

i = 1000;

while (true) {

if (x > i) ...

i--;

...

}



Loops: practical approach

Pavel Parízek Symbolic Execution, Dynamic Analysis 12

Unrolling loops to a specific depth

Limited number of loop iterations explored

Exploring data structures up to a given 
bounded size



Concolic execution

Pavel Parízek Symbolic Execution, Dynamic Analysis 13



Concolic execution

Pavel Parízek Symbolic Execution, Dynamic Analysis 14

How it works

Performs concrete execution on random inputs

Tracks symbolic values of program variables

Gathers constraints forming a path condition 
along the single executed path

concrete + symbolic = concolic



Concolic execution: applications

Pavel Parízek Symbolic Execution, Dynamic Analysis 15

Dynamic test generation

Path condition for the single explored path defines 
corresponding test inputs

Negating constraints (clauses) for branching points

Find test inputs that drive program execution along 
different paths (control-flow)



Fuzz testing: looking for security bugs

Pavel Parízek Symbolic Execution, Dynamic Analysis 16

Executing the software on various input data
random, corner cases, extremes

Uses variants of concolic execution to generate inputs

Goal: “break” the software visibly
program crashes, wrong output to file/display
unexpected interaction with OS (environment)

Selected tools and infrastructure
AFL (American Fuzzy Loop, https://github.com/google/AFL)
OSS-Fuzz (https://github.com/google/oss-fuzz)

Resources (literature)
Fuzzing: Hack, Art, and Science. Comm. of the ACM, 63(2), Feb 2020

https://cacm.acm.org/research/fuzzing/

https://github.com/google/AFL
https://github.com/google/oss-fuzz
https://cacm.acm.org/research/fuzzing/


KLEE: Symbolic Virtual Machine

Pavel Parízek Symbolic Execution, Dynamic Analysis 17

Symbolic execution tool for system code
Used to detected many real bugs in Linux/Unix core 
system utilities (ls, chmod, ...)
Models interaction with complex environment (files, 
networking, unix syscalls)
Highly optimized (performance, scalability)

Built upon the LLVM compiler infrastructure

Web: http://klee.github.io/
Further information (recommended)

http://llvm.org/pubs/2008-12-OSDI-KLEE.pdf

http://klee.github.io/
http://llvm.org/pubs/2008-12-OSDI-KLEE.pdf


PEX: White-box unit testing for .NET

Pavel Parízek Symbolic Execution, Dynamic Analysis 18

Dynamic test generation (concolic execution)
Generates unit tests with high code coverage

Availability
Visual Studio 2010 Power Tools, command-line

Web sites
https://www.microsoft.com/en-us/research/project/pex-and-moles-isolation-
and-white-box-unit-testing-for-net/

Live demo: Code Digger
Visual Studio 2012 extension based on Pex

IntelliTest extension for Visual Studio 2015
https://learn.microsoft.com/en-us/visualstudio/releasenotes/vs2015-rtm-vs#intellitest

https://www.microsoft.com/en-us/research/project/pex-and-moles-isolation-and-white-box-unit-testing-for-net/
https://learn.microsoft.com/en-us/visualstudio/releasenotes/vs2015-rtm-vs#intellitest


SAGE: Scalable Automated Guided Execution

Pavel Parízek Symbolic Execution, Dynamic Analysis 19

Automated whitebox fuzz testing for security
Systematic dynamic generation of unit tests

How it works
concolic execution + solving negated conditions to infer 
new test inputs

Main author: Patrice Godefroid
https://patricegodefroid.github.io/

Further information (selected papers)
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf
https://patricegodefroid.github.io/public_psfiles/icse2013.pdf

https://patricegodefroid.github.io/
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf
https://patricegodefroid.github.io/public_psfiles/icse2013.pdf


Symbiotic

Pavel Parízek Symbolic Execution, Dynamic Analysis 20

Software verifier for programs in C

Techniques: symbolic execution, static analysis, 
program slicing, ...

Winner of SV-COMP 2022

Further information and source code

http://staticafi.github.io/symbiotic/

https://github.com/staticafi/symbiotic

http://staticafi.github.io/symbiotic/
https://github.com/staticafi/symbiotic


Other tools

Pavel Parízek Symbolic Execution, Dynamic Analysis 21

JDart: dynamic symbolic execution for Java

https://github.com/psycopaths/jdart

https://www.diffblue.com/try-cover

Automatically generating unit tests for Java code

https://github.com/psycopaths/jdart
https://www.diffblue.com/try-cover


Dynamic analysis

Pavel Parízek Symbolic Execution, Dynamic Analysis 22



Dynamic analysis

Pavel Parízek Symbolic Execution, Dynamic Analysis 23

Goal: analyze behavior of the program based 
on concrete execution of a single path

Input: binary executable

Q: How can we get the data about one path?



Collecting information about single path

Pavel Parízek Symbolic Execution, Dynamic Analysis 24

Instrumentation
Target: binary executable, source code

Runtime monitoring
manual inspection of huge log files

Custom libraries

Events
field accesses on shared heap objects

locking (acquisition, release, attempts)

procedure calls (e.g., user-defined list)



Benefits

Pavel Parízek Symbolic Execution, Dynamic Analysis 25

Precision

Complete information about program state

Recording only events that really happen

Tool support

Errors: deadlocks, race conditions, atomicity

Languages: Java, C/C++, C#



Limitations

Pavel Parízek Symbolic Execution, Dynamic Analysis 26

Coverage

Single execution path

Few related paths

Overhead

Compared with plain concrete execution

Range: 50 % - 1000 % (!)

Possible remedy: sampling



Selected tools (part 1)

Pavel Parízek Symbolic Execution, Dynamic Analysis 27

Pin
Runtime binary instrumentation platform for Linux (32-bit x86, 
64-bit x86, ARM)
Custom tools written in C/C++ using rich Pin API
Important features: 

efficient dynamic compilation (JIT)
process attaching, transparency

Valgrind
Heavyweight dynamic binary instrumentation framework again 
for Linux (x86, PPC)
Tools: memory checker, thread checkers, some profilers

RoadRunner
Dynamic analysis framework for Java programs



Selected tools (part 2)

Pavel Parízek Symbolic Execution, Dynamic Analysis 28

ANaConDA
Supports creating dynamic analysis of multi-
threaded C/C++ programs

http://www.fit.vutbr.cz/research/groups/verifit/to
ols/anaconda/

SharpDetect
Dynamic analysis tool for C#/.NET programs

https://github.com/acizmarik/sharpdetect
A. Čižmárik and P. Parízek. SharpDetect: Dynamic Analysis 
Framework for C#/.NET Programs. RV 2020

http://www.fit.vutbr.cz/research/groups/verifit/tools/anaconda/
https://github.com/acizmarik/sharpdetect


Applications

Pavel Parízek Symbolic Execution, Dynamic Analysis 29

Detecting bugs of all kinds

Concolic execution

Adding new symbolic constraints into PaC

Discovering likely invariants

Predicting race conditions



Predicting data race conditions

Pavel Parízek Symbolic Execution, Dynamic Analysis 30

Algorithm

1) Run dynamic analysis tool to record events about 
one particular execution trace

2) Check the given trace for data race conditions

3) If we find some errors, then stop immediately

4) Generate feasible interleavings of events from the 
given single trace

5) Check each generated interleaving for data races

6) Report all detected possible races to the user



Predicting data race conditions

Pavel Parízek Symbolic Execution, Dynamic Analysis 31

Q: How can we generate feasible interleavings ?



Generating feasible interleavings

Pavel Parízek Symbolic Execution, Dynamic Analysis 32

All possible interleavings of events from 
different threads

Use the happens-before order between 
synchronization events

Conflicting field accesses not ordered ➔ interleave



Discovering likely invariants

Pavel Parízek Symbolic Execution, Dynamic Analysis 33

Algorithm

Run the dynamic analysis tool several times (on 
selected inputs, test suite) to get a set of traces

Find properties over variables and data structures 
that hold for all/most traces in the set

Drop all inferred properties that do not satisfy 
additional tests (e.g., statistical relevance)

What remains are the likely invariants

Q: Looks good but there is a small catch



Discovering likely invariants

Pavel Parízek Symbolic Execution, Dynamic Analysis 34

Limitations
Precision depends on the test suite quality (inputs)

Cannot guarantee soundness and completeness

Benefits
It is actually useful: checking implicit assumptions 
about program behavior, rediscovering formal 
specifications, documentation, etc

Tool support: Daikon
Predefined templates instantiated with variables

http://plse.cs.washington.edu/daikon/

http://plse.cs.washington.edu/daikon/


Further reading

Pavel Parízek Symbolic Execution, Dynamic Analysis 35

C.S. Pasareanu and W. Visser. A Survey of New Trends in Symbolic Execution for Software Testing 
and Analysis. STTT, 11(4), 2009

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random Testing. PLDI 2005

C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation of High-Coverage 
Tests for Complex Systems Programs. OSDI 2008

P. Godefroid, M. Levin, and D. Molnar. Automated Whitebox Fuzz Testing. NDSS 2008

E. Bounimova, P. Godefroid, and D. Molnar. Billions and Billions of Constraints: Whitebox Fuzz 
Testing in Production. ICSE 2013

N. Tillmann, J. de Halleux, and T. Xie. Transferring an Automated Test Generation Tool to Practice: 
from Pex to Fakes and Code Digger. ASE 2014

N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dynamic Binary 
Instrumentation. PLDI 2007

C. Wang, R. Limaye, M. Ganai, and A. Gupta. Trace-Based Symbolic Analysis for Atomicity 
Violations. TACAS 2010

M.D. Ernst, J.H. Perkins, P.J. Guo, S. McCamant, C. Pacheco, M.S. Tschantz, and C. Xiao. The Daikon 
System for Dynamic Detection of Likely Invariants. Sci. Comput. Program., 69(1-3), 2007


