Deductive methods
If you want to know more ...

- Decision Procedures and Verification (NAIL094)
 - Lecturer: Petr Kučera, KTIIML

Basic terminology (reminder)

- Logic formula
 - syntax, semantics

- Propositional logic

- First-order logic
 - Predicates
 - Quantifiers

- Assignment
 - Partial assignment

- Satisfiability

- Validity (tautology)
Relation between satisfiability and validity

\[\varphi \text{ is valid} \quad \rightarrow \quad \varphi \text{ is satisfiable} \]

\[\varphi \text{ is valid} \quad \leftrightarrow \quad \neg \varphi \text{ is unsatisfiable} \]

\[\varphi \text{ is satisfiable} \quad \leftrightarrow \quad \neg \varphi \text{ is not valid} \]
Normal forms

- Negation normal form (NNF)
 - syntax: !, |, & and variables
 - Negation only for variables
 - Example: \((a | (b & !c)) & (!d)\)

- Conjunctive normal form (CNF)
 - NNF as a conjunction of disjunctions
 - Example: \((a | b | !c) & (!d) & (e | !f)\)

- Disjunctive normal form (DNF)
 - NNF as a disjunction of conjunctions
 - Example: \((a & b & !c) | (!d) | (e & !f)\)
Getting the normal forms

- De Morgan’s law
- Distributive law

Q: Is there a problem with conversion?
Getting the normal forms

- Transformation into an equivalent formula in CNF or DNF

- Problem: exponential blow-up of the size

- Remedy: creating **equisatisfiable** formula
Equisatisfiability

- Equisatisfiable formulas ϕ, ψ
 - both satisfiable or both unsatisfiable

Examples

- ϕ: $!(a \rightarrow b)$
 ψ: $a \& !b$
- ϕ: $a \mid b$
 ψ: $(a \mid n) \& (!n \mid b)$
- ϕ: $a \& b \& !c$
 ψ: true
- ϕ: $!a \leftrightarrow b$
 ψ: false
Equisatisfiability

- Equisatisfiable formulas ϕ, ψ
 - both satisfiable or both unsatisfiable

Examples

- ϕ: $\neg (a \rightarrow b)$
- ψ: $a \& \neg b$
 - EQ, ES

- ϕ: $a \mid b$
- ψ: $(a \mid n) \& (\neg n \mid b)$
 - ES

- ϕ: $a \& b \& \neg c$
- ψ: true
 - ES

- ϕ: $\neg a \leftrightarrow b$
- ψ: false
 - -
• Tseitin’s encoding
 ▪ Widely used algorithm for transforming a given propositional formula ϕ into an equisatisfiable formula ϕ' in CNF with linear growth only

• Practice: various optimizations applied
SAT solving
SAT solving

• Goal
 ■ Decide whether a given propositional formula ϕ in CNF is satisfiable

• Possible answers
 ■ Satisfiable + assignment (values, model)
 ■ Unsatisfiable + core (subset of clauses)

• Satisfiable formula $\phi \iff$ there exists a partial assignment satisfying all clauses in ϕ
SAT solving

• Naive brute force solution
 ▪ Trying all possible assignments
 • Systematic traversal of a binary tree

• DPLL (Davis-Putnam-Loveland-Logemann)
 ▪ Motivation: partial assignment can imply values of other variables in the given formula
 ▪ Example: from (!a | b), \(v = \{ a \rightarrow 1 \} \) we get \(\{ b \rightarrow 1 \} \)
 ▪ Approach: iterative deduction
 • Inferring value of a particular variable
 ▪ Basic algorithm used in modern SAT solvers (with many additional optimizations) ➔ DPLL-based SAT solving
SAT solving: optimizations

- Adding learned clauses (implied)
- Non-chronological backtracking
- Choice of the branching variable
 - Various heuristics on the best choice exist

- Restarts
 - When it takes too long, restart the solver and use other “seeds” for heuristic functions
SAT solving

- Problem size: 10K – 1M variables
 - Typical input formulas have structure
- Worse for random instances
- Hard instances exist (of course)
- Tools are getting better all the time
 - Reason: industry demand, annual competitions
 - http://www.satcompetition.org/

- Other approaches
 - Stochastic search (random walk)
 - Quickly finds solution for satisfiable instances
 - Ordered binary decision diagrams
Propositional logic: semantic \models X proof

• Semantic domain \models
 - Goal: find satisfying assignment for φ

• We know that: $\models \varphi \iff \vdash \varphi$

• Proof domain \vdash
 - Goal: derive the proof
 - axioms, inference rules
Resolution

• Input: CNF formula ϕ (a set of clauses)

• Goal: derive empty clause ($false$)

• Iterative process
 ▪ Choose two suitable clauses from the set
 • Requirement: they must have complementary literals r, $!r$
 ▪ Apply resolution step on these clauses
 $$(p_1 \mid \ldots \mid p_N \mid r), (q_1 \mid \ldots \mid q_N \mid !r) \Rightarrow (p_1 \mid \ldots \mid p_N \mid q_1 \mid \ldots \mid q_N)$$
 ▪ Add the newly derived clause into the set
 ▪ Repeat until we derive $false$ (or fail/stop)
Resolution

• Equivalent statements
 1) CNF formula \(\phi \) is unsatisfiable
 2) We can derive empty clause using resolution on the clauses from \(\phi \)

• Resolution used in practice
 ▪ Checking validity of a first-order logic formula
 ▪ Proof-by-contradiction
 • Add negation of the conjecture into the set
SAT looks very good, but we need more
- For program verification, full theorem proving, ...

- First-order logic (predicate logic)
- Interesting theories
 - Linear integer arithmetic (\mathbb{N}, \mathbb{Z})
 - Data structures (arrays, bit vectors)
Decision procedure
Decision procedure

• Algorithm that
 - Always terminates
 - Outputs: YES/NO

• Decision procedure for a particular theory T
 - Always terminates and provides a correct answer for every formula of T
 - Goal: checking validity of logic formulas
Interesting theories

- Equality logic
 - With uninterpreted functions
- Linear arithmetic
 - Integer
 - Rational
- Difference logic
- Arrays
- Bit vectors
- Strings
 - including regular expressions
Equality logic

• Syntax
 - Atomic formulas
 \(\text{term} = \text{term} \mid \text{true} \mid \text{false} \)
 - Terms
 \(\text{variable} \mid \text{constant} \)

• Deciding validity of an equality logic formula is NP-complete problem
• Polynomial algorithm exists for the conjunctive fragment (uses only & and \(\exists \))
Equality logic with uninterpreted functions

- **Syntax**
 - Atomic formulas
 - \(\text{term} = \text{term} \mid \text{predicate}(\text{term, ..., term}) \mid \text{true} \mid \text{false} \)
 - Terms
 - \(\text{variable} \mid \text{constant} \mid \text{function}(\text{term, ..., term}) \)

- **Semantics**
 - No implicit meaning of functions and predicates
 - \(a_1 = b_1 \ & \ ... \ & a_N = b_N \to f(a_1,\ldots,a_N) = f(b_1,\ldots,b_N) \)

- **Decision procedure**
 - Transform into an equisatisfiable formula in equality logic
Equality logic with uninterpreted functions

- Purpose: abstraction
 - Full formula \Rightarrow function semantics defined using axioms
 - Uninterpreted symbols \Rightarrow just equality between arguments
 - $\models \phi^{\text{EUF}} \rightarrow \models \phi$

- False answers possible
 - Example: $\text{add}(1,2) \neq \text{add}(2,1)$ in EUF

- Formula with UF easier to decide than the “full” formula
Linear arithmetic

- **Syntax**
 - Atomic formulas
 \[
 \text{term} = \text{term} \mid \text{term} < \text{term} \mid \text{term} \leq \text{term} \mid \text{true} \mid \text{false}
 \]
 - Terms
 \[
 \text{variable} \mid \text{constant} \mid \text{constant variable} \mid \text{term} + \text{term}
 \]
- **Example:** \((3x + 2y \leq 5z) \& (2x - 2y = 0)\)
- **Arithmetic without multiplication** ➔ Presburger arithmetic
- **Decision procedure**
 - General case (full theory): \(2^{2^{O(n)}}\)
 - Conjunctive fragment over \(\mathbb{Q}\)
 - Linear programming: Simplex method (EXP), Ellipsoid method (P)
 - Conjunctive fragment over \(\mathbb{Z}\)
 - Integer linear programming (NP-complete)
Difference logic

- **Syntax**
 - Atomic formulas

 \[\text{variable} - \text{variable} < \text{constant} | \]

 \[\text{variable} - \text{variable} \leq \text{constant} | \]

 \[\text{true} | \text{false} \]
 - Operators: \(!, &, \leftarrow, \leftrightarrow\)

- **Example:** \((x - y < 3) \& (y - z \leq -4) \& (z - x \leq 1)\)

- **Decision procedure**
 - Conjunctive fragment polynomial for \(\mathbb{Q}\) and \(\mathbb{Z}\)
Data structures

- Array theory
 - Function symbols
 - \texttt{select}(a, i) \ // \text{read, } a[i]
 - \texttt{store}(a, i, e) \ // \text{update, } a[i] = e
 - Axiom \textbf{read-over-write}
 - \texttt{select}(\texttt{store}(a, i, e), i) = e

- Bit vectors
 - Motivation: precise computer arithmetic (overflows, ...)
 - Reasoning about individual bits in a finite vector (array)
 - Syntax: operators bitwise-\text{AND}, bitwise-\text{OR}, bitwise-\text{XOR}
 - Decision procedure
 - Typically flattened into a large instance of SAT
 - Many clever optimizations (encoding)
Strings and regular expressions

- Reasoning about word equations
 - Example: \(a \cdot u = b \cdot v \)

- Supported operations
 - substring (membership)
 - concatenation \((u \cdot v)\)
 - queries about length
 - basic regular operators \((+, \ast)\)

- Tools: Norn, Z3-str, S3, Sloth
Combining theories

• Goal
 - Formulas that combine multiple theories
 - Example: linear arithmetic + arrays

• Decision procedures
 - Combined under specific constraints

• Nelson-Oppen method
Decision procedures: summary

- Decision procedures
 - Typically work for conjunctive fragments of the respective theories

- But we still need more
 - Formulas with arbitrary boolean structure and interesting theories (linear arithmetic, arrays)
Satisfiability Modulo Theory (SMT)
Satisfiability Modulo Theory (SMT)

- **Goal**
 - Decide satisfiability of a quantifier-free formula that involves constructs of specific theories

- **Idea**
 - Using combination of a SAT solver and a decision procedure (DP) for a conjunctive fragment of the respective theory
Approaches to SMT

- Naive use of a SAT solver
 1. Extract boolean skeleton of the given formula ϕ
 2. Run the SAT solver on the boolean skeleton
 a) **unsatisfiable** \Rightarrow the input formula is unsatisfiable
 b) **satisfiable** \Rightarrow we get a satisfying assignment ν
 3. Run the DP on the formula derived from the satisfying assignment ν
 a) **satisfiable** \Rightarrow the input formula is satisfiable
 b) **unsatisfiable** \Rightarrow add the blocking clause for ν to the boolean skeleton and continue with the step 2
Approaches to SMT

- DPLL(T)-based SMT solving
 - Eagerness: DPLL asks DP for partial assignments during traversal
 - Benefit: earlier conflict discovery
 - Updating the set of clauses given to DP on-the-fly
 - iteration (add), backtracking (remove)
- Theory-based learning
 - DP can identify clauses valid/invalid in the given theory T
SMT solving in practice

- Available SMT solvers
 - Z3, CVC4, Yices, MathSAT 5, OpenSMT, ...

- SMT-LIB v2
 - Defines common input format
 - Big library of SMT problems
 - https://smtlib.cs.uiowa.edu/

- SMT-COMP
 - Competition of SMT solvers
 - https://smt-comp.github.io/2022/
Current state
- Good performance
- Highly automated
- Many applications

Drawbacks
- Restricted to specific theories and domains (\mathbb{Q}, \mathbb{Z})
- Very limited support for quantifiers (mostly \exists)
- Much less powerful than full theorem proving
Theorem proving

• Input
 ▪ Theory T: set of axioms
 ▪ General formula \(\phi \) in predicate logic

• Goal
 ▪ Decide validity of the formula \(\phi \) in T
 • Semantic domain: show unsatisfiable negation
 • Proof domain: prove \(\phi \) from the axioms of T

• Very powerful

• Interactive
 ▪ Partially automated

• Tools: PVS, Isabelle/HOL
Deductive methods: closing remarks

• Approaches
 - DPLL-based SAT solving
 - Decision procedures
 - DPLL(T)-based SMT solving

• Formulas
 - Propositional logic (boolean)
 - Predicate logic with theories
 - Equality with uninterpreted functions
 - Linear arithmetic (difference logic)
 - Data structures (arrays, bit vectors)

• Applications in program verification
Bounded model checking
Bounded model checking

- Goal: Exploring traces with bounded length
 - Options: fixed integer value K, iteratively increasing
 - Still remember preemption bounding for threads?

- Approach
 - Encoding bounded program state space and properties into a logic formula ϕ
 - Find property violations by checking satisfiability of ϕ

- Challenge
 - Encoding program behavior into the formula ϕ
Program state space

- Program $P = (S, T, INIT)$
 - S is a set of program states
 - Predicates about values of program variables
 - Program counter (PC)
 - $INIT \subseteq S$ is a set of initial states
 - $T \subseteq S \times S$ is a transition relation

- Single transition
 - Updates program counter and some variables
 - Relating old and new values (x, x', pc, pc')
 - Example: $x = 2, x' = x + 1, pc = 5, pc' = pc + 1$
Transition relation

\[(pc = 1) \land (x' = x + 2y) \land (pc' = pc + 1)\]
\[\lor\]
\[(pc = 2) \land (x' = 0) \land (pc' = pc + 6)\]
\[\lor\]
\[
\begin{array}{ccc}
\ldots & \ldots & \ldots \\
\end{array}
\]
\[\lor\]
\[(pc = N) \land (x' = x - y + 5) \land (pc' = pc + 1)\]
Traces with bounded length

- Transition relation unfolded at most K times
 - Fresh copies of program variables \((x, x', \ldots, x^{(K)})\) used for each unfolding of the transition relation

- Example
 - \textit{INIT}: \(x = 0, \ pc = 1\)
 - \(T(K): (\)
 \[\]
 \((pc = 1) \land (x' = x + 2y) \land (pc' = pc + 1)) \lor
 ...
 ...
 ...
 \((pc^{(K-1)} = 1) \land (x^{(K)} = x^{(K-1)} + 2y^{(K-1)}) \land (pc^{(K)} = pc^{(K-1)} + 1)) \lor
 ...
 ...
 ...\]

- Specific consequences
 - Bounded number of loop iterations (unrolling)
Encoding program behavior in logic

- Large formula

\[INIT(s_0) \land (\land_{i=0..k-1} T(s_i, s_{i+1})) \land (\lor_{i=0..k} \neg p(s_i)) \]

- Represents all possible executions of the program with the length bounded by K
BMC: verification procedure

1) Derive formula representing the state space

2) Run the SAT/SMT solver on the formula in CNF

3) Interpret verification results
 - Satisfying assignment \Rightarrow we get a counterexample with the length $\leq K$
 - Unsatisfiable formula \Rightarrow no property violations in program executions of the length $\leq K$
BMC: technical challenges

• Encoding program in a mainstream language into a logic formula
 ▪ heap, allocation, pointers, threads, synchronization

• Example: dynamic heap
 ▪ Use predicate logic with array theory (*select, store*)
 ▪ Array element access \(a[i]\)
 ▪ Separate variables for the element \(a[i]\) and the index \(i\)
 ▪ Pointer access \((p)\)
 ▪ Separate variables for dereference \(p\) and the pointer \(p\)
 ▪ Transitions defined properly
Further reading
