Deductive Methods, Bounded Model Checking

http://d3s.mff.cuni.cz

Pavel Parízek

Department of Distributed and Dependable Systems

FACULTY OF MATHEMATICS AND PHYSICS
Charles University
Deductive methods
If you want to know more ...

- Decision Procedures and Verification (NAIL094)
 - Lecturer: Petr Kučera, KTIML

Basic terminology (reminder)

- Logic formula
 - syntax, semantics

- Propositional logic
- First-order logic
 - Predicates
 - Quantifiers

- Assignment
 - Partial assignment
- Satisfiability
- Validity (tautology)
Relation between satisfiability and validity

\[
\begin{align*}
\varphi \text{ is valid} & \rightarrow \ \varphi \text{ is satisfiable} \\
\varphi \text{ is valid} & \iff \neg\varphi \text{ is unsatisfiable} \\
\varphi \text{ is satisfiable} & \iff \neg\varphi \text{ is not valid}
\end{align*}
\]
Normal forms

- Negation normal form (NNF)
 - syntax: !, |, & and variables
 - Negation only for variables
 - Example: \((a \mid (b \& !c)) \& (!d)\)

- Conjunctive normal form (CNF)
 - NNF as a conjunction of disjunctions
 - Example: \((a \mid b \mid !c) \& (!d) \& (e \mid !f)\)

- Disjunctive normal form (DNF)
 - NNF as a disjunction of conjunctions
 - Example: \((a \& b \& !c) \mid (!d) \mid (e \& !f)\)
Getting the normal forms

- De Morgan’s law
- Distributive law

Q: Is there a problem with conversion?
Getting the normal forms

- Transformation into an equivalent formula in CNF or DNF

- Problem: exponential blow-up of the size

- Remedy: creating **equisatisfiable** formula
Equisatisfiability

- Equisatisfiable formulas ϕ, ψ
 - both satisfiable or both unsatisfiable

Examples

- ϕ: $!(a \to b)$
 ψ: $a \& !b$

- ϕ: $a \mid b$
 ψ: $(a \mid n) \& (!n \mid b)$

- ϕ: $a \& b \& !c$
 ψ: $true$

- ϕ: $!a \leftrightarrow b$
 ψ: $false$
Equisatisfiability

- Equisatisfiable formulas ϕ, ψ
 - both satisfiable or both unsatisfiable

Examples

ϕ: $!(a \rightarrow b)$
ψ: $a \& !b$

ϕ: $a \mid b$
ψ: $(a \mid n) \& (!n \mid b)$

ϕ: $a \& b \& !c$
ψ: true

ϕ: $!a \leftrightarrow b$
ψ: false

EQ, ES

ES

ES

--
Equisatisfiability

- Tseitin’s encoding
 - Widely used algorithm for transforming a given propositional formula ϕ into an equisatisfiable formula ϕ' in CNF with linear growth only

- Practice: various optimizations applied
SAT solving

- **Goal**
 - Decide whether a given propositional formula ϕ in CNF is satisfiable

- **Possible answers**
 - Satisfiable + assignment (values, model)
 - Unsatisfiable + core (subset of clauses)

- Satisfiable formula $\phi \iff$ there exists a partial assignment satisfying all clauses in ϕ
SAT solving

• Naive brute force solution
 ▪ Trying all possible assignments
 • Systematic traversal of a binary tree

• DPLL (Davis-Putnam-Loveland-Logemann)
 ▪ Motivation: partial assignment can imply values of other variables in the given formula
 ▪ Example: from \(\neg a \lor b \), \(v = \{ a \to 1 \} \) we get \(\{ b \to 1 \} \)
 ▪ Approach: iterative deduction
 • Inferring value of a particular variable
 ▪ Basic algorithm used in modern SAT solvers (with many additional optimizations) ➔ DPLL-based SAT solving
SAT solving: optimizations

- Adding learned clauses (implied)
- Non-chronological backtracking
- Choice of the branching variable
 - Various heuristics on the best choice exist
- Restarts
 - When it takes too long, restart the solver and use other “seeds” for heuristic functions
SAT solving

- Problem size: 10K – 1M variables
 - Typical input formulas have structure
- Worse for random instances
- Hard instances exist (of course)
- Tools are getting better all the time
 - Reason: industry demand, annual competitions
 - http://www.satcompetition.org/

Other approaches
- Stochastic search (random walk)
 - Quickly finds solution for satisfiable instances
- Ordered binary decision diagrams
Propositional logic: semantic \equiv proof

- Semantic domain \models
 - Goal: find satisfying assignment for φ

- We know that: $\models \varphi \iff \vdash \varphi$

- Proof domain \vdash
 - Goal: derive the proof
 - axioms, inference rules
Resolution

- **Input:** CNF formula \(\phi \) (a set of clauses)
- **Goal:** derive empty clause (false)

Iterative process
- Choose two suitable clauses from the set
 - Requirement: they must have complementary literals \(r, \neg r \)
- Apply resolution step on these clauses
 \[
 (p_1 \lor \cdots \lor p_N \lor r), (q_1 \lor \cdots \lor q_N \lor \neg r) \Rightarrow (p_1 \lor \cdots \lor p_N \lor q_1 \lor \cdots \lor q_N)
 \]
- Add the newly derived clause into the set
- Repeat until we derive false (or fail/stop)
Resolution

- Equivalent statements
 1) CNF formula ϕ is unsatisfiable
 2) We can derive empty clause using resolution on the clauses from ϕ

- Resolution used in practice
 - Checking validity of a first-order logic formula
 - Proof-by-contradiction
 - Add negation of the conjecture into the set
SAT solving and propositional logic

- SAT looks very good, **but we need more**
 - For program verification, full theorem proving, ...

- First-order logic (predicate logic)
- Interesting theories
 - Linear integer arithmetic (\mathbb{N}, \mathbb{Z})
 - Data structures (arrays, bit vectors)
Decision procedure
Decision procedure

- Algorithm that
 - Always terminates
 - Outputs: YES/NO

- Decision procedure for a particular theory T
 - Always terminates and provides a correct answer for every formula of T
 - Goal: checking validity of logic formulas
Interesting theories

- Equality logic
 - With uninterpreted functions
- Linear arithmetic
 - Integer
 - Rational
- Difference logic
- Arrays
- Bit vectors
- Strings
 - including regular expressions
Equality logic

- Syntax
 - Atomic formulas
 \[\text{term} = \text{term} \mid \text{true} \mid \text{false} \]
 - Terms
 \[\text{variable} \mid \text{constant} \]

- Deciding validity of an equality logic formula is NP-complete problem
- Polynomial algorithm exists for the conjunctive fragment (uses only \& and \(\exists \))
Equality logic with uninterpreted functions

• Syntax
 ◦ Atomic formulas
 \(\text{term} = \text{term} \mid \text{predicate}(\text{term}, \ldots, \text{term}) \mid \text{true} \mid \text{false} \)
 ◦ Terms
 \(\text{variable} \mid \text{constant} \mid \text{function}(\text{term}, \ldots, \text{term}) \)

• Semantics
 ◦ No implicit meaning of functions and predicates
 ◦ \(a_1 = b_1 \& \ldots \& a_N = b_N \rightarrow f(a_1,\ldots,a_N) = f(b_1,\ldots,b_N) \)

• Decision procedure
 ◦ Transform into an equisatisfiable formula in equality logic
Equality logic with uninterpreted functions

- **Purpose:** abstraction
 - Full formula \(\rightarrow\) function semantics defined using axioms
 - Uninterpreted symbols \(\rightarrow\) just equality between arguments
 - \(\models \phi^{\text{EUF}} \rightarrow \models \phi\)

- **False answers possible**
 - Example: \(\text{add}(1,2) \neq \text{add}(2,1)\) in EUF

- **Formula with UF easier to decide than the “full” formula**
Linear arithmetic

- Syntax
 - Atomic formulas
 \[\text{term} = \text{term} \mid \text{term} < \text{term} \mid \text{term} \leq \text{term} \mid \text{true} \mid \text{false}\]
 - Terms
 \[\text{variable} \mid \text{constant} \mid \text{constant variable} \mid \text{term} + \text{term}\]

- Example: \((3x + 2y \leq 5z) \& (2x - 2y = 0)\)

- Arithmetic without multiplication \(\Rightarrow\) Presburger arithmetic

- Decision procedure
 - General case (full theory): \(2^{2^{O(n)}}\)
 - Conjunctive fragment over \(\mathbb{Q}\)
 - Linear programming: Simplex method (EXP), Ellipsoid method (P)
 - Conjunctive fragment over \(\mathbb{Z}\)
 - Integer linear programming (NP-complete)
Difference logic

- Syntax
 - Atomic formulas
 - \(variable - variable < constant \) | \(variable - variable \leq constant \) | true | false
 - Operators: \(!, \&, \leftarrow, \leftrightarrow\)

- Example: \((x - y < 3) \& (y - z \leq -4) \& (z - x \leq 1)\)

- Decision procedure
 - Conjunctive fragment polynomial for \(\mathbb{Q}\) and \(\mathbb{Z}\)
Data structures

- Array theory
 - Function symbols
 \[\text{select}(a,i) \quad // \quad \text{read, } a[i]\]
 \[\text{store}(a,i,e) \quad // \quad \text{update, } a[i] = e\]
 - Axiom \text{read-over-write}
 \[\text{select}(\text{store}(a,i,e),i) = e\]

- Bit vectors
 - Motivation: precise computer arithmetic (overflows, ...)
 - Reasoning about individual bits in a finite vector (array)
 - Syntax: operators bitwise-AND, bitwise-OR, bitwise-XOR
 - Decision procedure
 - Typically flattened into a large instance of SAT
 - Many clever optimizations (encoding)
Strings and regular expressions

• Reasoning about word equations
 ▪ Example: \(a \cdot u = b \cdot v \)

• Supported operations
 ▪ substring (membership)
 ▪ concatenation \((u \cdot v)\)
 ▪ queries about length
 ▪ basic regular operators \((+, *)\)

• Tools: Norn, Z3-str, S3, Sloth
Combining theories

• Goal
 - Formulas that combine multiple theories
 - Example: linear arithmetic + arrays

• Decision procedures
 - Combined under specific constraints

• Nelson-Oppen method
Decision procedures: summary

- Decision procedures
 - Typically work for conjunctive fragments of the respective theories

- But we still need more
 - Formulas with arbitrary boolean structure and interesting theories (linear arithmetic, arrays)
Satisfiability Modulo Theory (SMT)
Satisfiability Modulo Theory (SMT)

- **Goal**
 - Decide satisfiability of a quantifier-free formula that involves constructs of specific theories

- **Idea**
 - Using combination of a SAT solver and a decision procedure (DP) for a conjunctive fragment of the respective theory
Naive use of a SAT solver

1. Extract boolean skeleton of the given formula ϕ
2. Run the SAT solver on the boolean skeleton
 a) unsatisfiable \Rightarrow the input formula is unsatisfiable
 b) satisfiable \Rightarrow we get a satisfying assignment ν
3. Run the DP on the formula derived from the satisfying assignment ν
 a) satisfiable \Rightarrow the input formula is satisfiable
 b) unsatisfiable \Rightarrow add the blocking clause for ν to the boolean skeleton and continue with the step 2
Approaches to SMT

- **DPLL(T)-based SMT solving**
 - **Eagerness**: DPLL asks DP for partial assignments during traversal
 - Benefit: earlier conflict discovery
 - **Updating the set of clauses given to DP on-the-fly**
 - iteration (add), backtracking (remove)
- **Theory-based learning**
 - DP can identify clauses valid/invalid in the given theory T
SMT solving in practice

- Available SMT solvers
 - Z3, CVC4, Yices, MathSAT 5, OpenSMT, ...

- SMT-LIB v2
 - Defines common input format
 - Big library of SMT problems
 - https://smtlib.cs.uiowa.edu/

- SMT-COMP
 - Competition of SMT solvers
 - https://smt-comp.github.io/2022/
SMT solving in practice

• Current state
 ▪ Good performance
 ▪ Highly automated
 ▪ Many applications

• Drawbacks
 ▪ Restricted to specific theories and domains (\mathbb{Q}, \mathbb{Z})
 ▪ Very limited support for quantifiers (mostly \exists)
 ▪ Much less powerful than full theorem proving
Theorem proving

- **Input**
 - Theory T: set of axioms
 - General formula ϕ in predicate logic

- **Goal**
 - Decide validity of the formula ϕ in T
 - Semantic domain: show unsatisfiable negation
 - Proof domain: prove ϕ from the axioms of T

- **Very powerful**
- **Interactive**
 - Partially automated

- **Tools:** PVS, Isabelle/HOL
Deductive methods: closing remarks

- Approaches
 - DPLL-based SAT solving
 - Decision procedures
 - DPLL(T)-based SMT solving

- Formulas
 - Propositional logic (boolean)
 - Predicate logic with theories
 - Equality with uninterpreted functions
 - Linear arithmetic (difference logic)
 - Data structures (arrays, bit vectors)

- Applications in program verification
Bounded model checking
Bounded model checking

- Goal: Exploring traces with bounded length
 - Options: fixed integer value K, iteratively increasing
 - Still remember preemption bounding for threads?

- Approach
 - Encoding bounded program state space and properties into a logic formula ϕ
 - Find property violations by checking satisfiability of ϕ

- Challenge
 - Encoding program behavior into the formula ϕ
Program state space

- Program $P = (S, T, INIT)$
 - S is a set of program states
 - Predicates about values of program variables
 - Program counter (PC)
 - $INIT \subseteq S$ is a set of initial states
 - $T \subseteq S \times S$ is a transition relation

- Single transition
 - Updates program counter and some variables
 - Relating old and new values (x, x', pc, pc')
 - Example: $x = 2$, $x' = x + 1$, $pc = 5$, $pc' = pc + 1$
Transition relation

\[(pc = 1) \land (x' = x + 2y) \land (pc' = pc + 1)\]
\[\lor\]
\[(pc = 2) \land (x' = 0) \land (pc' = pc + 6)\]
\[\lor\]
\[\ldots \ldots \ldots \ldots \]
\[\lor\]
\[(pc = N) \land (x' = x - y + 5) \land (pc' = pc + 1)\]
Traces with bounded length

- Transition relation unfolded at most K times
 - Fresh copies of program variables ($x, x', ..., x^{(K)}$) used for each unfolding of the transition relation

- Example
 - $INIT$: $x = 0$, $pc = 1$
 - $T(K)$:

 \[
 ((pc = 1) \land (x' = x + 2y) \land (pc' = pc + 1)) \lor \\
 \ldots \ldots \ldots \ldots \\
 ((pc^{(K-1)} = 1) \land (x^{(K)} = x^{(K-1)} + 2y^{(K-1)}) \land (pc^{(K)} = pc^{(K-1)} + 1)) \lor \\
 \ldots \ldots \ldots \ldots
 \]

- Specific consequences
 - Bounded number of loop iterations (unrolling)
Large formula

\[INIT(s_0) \land (\land_{i=0..k-1} T(s_i, s_{i+1})) \land (\lor_{i=0..k} \neg p(s_i)) \]

Represents all possible executions of the program with the length bounded by K
1) Derive formula representing the state space

2) Run the SAT/SMT solver on the formula in CNF

3) Interpret verification results
 - Satisfying assignment ➔ we get a counterexample with the length ≤ K
 - Unsatisfiable formula ➔ no property violations in program executions of the length ≤ K
BMC: technical challenges

- Encoding program in a mainstream language into a logic formula
 - heap, allocation, pointers, threads, synchronization

- Example: dynamic heap
 - Use predicate logic with array theory (*select, store*)
 - Array element access \(a[i] \)
 - Separate variables for the element \(a[i] \) and the index \(i \)
 - Pointer access \((*p) \)
 - Separate variables for dereference \(*p \) and the pointer \(p \)
 - Transitions defined properly
Further reading
