Deductive Methods, Bounded Model Checking

Pavel Parízek

http://d3s.mff.cuni.cz

Department of Distributed and Dependable Systems

FACULTY OF MATHEMATICS AND PHYSICS
Charles University
Deductive methods
If you want to know more ...

- Decision Procedures and Verification (NAIL094)
 - Lecturer: Petr Kučera, KTIML

Basic terminology (reminder)

- Logic formula
 - syntax, semantics

- Propositional logic

- First-order logic
 - Predicates
 - Quantifiers

- Assignment
 - Partial assignment

- Satisfiability

- Validity (tautology)
Relation between satisfiability and validity

\(\varphi \text{ is valid} \rightarrow \varphi \text{ is satisfiable} \)

\(\varphi \text{ is valid} \iff !\varphi \text{ is unsatisfiable} \)

\(\varphi \text{ is satisfiable} \iff !\varphi \text{ is not valid} \)
Normal forms

- Negation normal form (NNF)
 - syntax: !, |, & and variables
 - Negation only for variables
 - Example: \((a | (b & !c)) & (!d)\)

- Conjunctive normal form (CNF)
 - NNF as a conjunction of disjunctions
 - Example: \((a | b | !c) & (!d) & (e | !f)\)

- Disjunctive normal form (DNF)
 - NNF as a disjunction of conjunctions
 - Example: \((a & b & !c) | (!d) | (e & !f)\)
Getting the normal forms

- De Morgan’s law
- Distributive law

Q: Is there a problem with conversion?
Getting the normal forms

- Transformation into an equivalent formula in CNF or DNF

- Problem: exponential blow-up of the size

- Remedy: creating **equisatisfiable** formula
Equisatisfiability

- Equisatisfiable formulas ϕ, ψ
 - both satisfiable or both unsatisfiable

Examples

- ϕ: $!(a \rightarrow b)$ ψ: $a \& !b$
- ϕ: $a \mid b$ ψ: $(a \mid n) \& (!n \mid b)$
- ϕ: $a \& b \& !c$ ψ: true
- ϕ: $!a \leftrightarrow b$ ψ: false
Equisatisfiability

- Equisatisfiable formulas ϕ, ψ
 - both satisfiable or both unsatisfiable

- Examples

 ϕ: $!(a \rightarrow b)$
 ψ: $a \land !b$
 EQ, ES

 ϕ: $a \parallel b$
 ψ: $(a \parallel n) \land (!n \parallel b)$
 ES

 ϕ: $a \land b \land !c$
 ψ: true
 ES

 ϕ: $!a \leftrightarrow b$
 ψ: false
 –
Equisatisfiability

- Tseitin’s encoding
 - Widely used algorithm for transforming a given propositional formula ϕ into an equisatisfiable formula ϕ' in CNF with linear growth only

- Practice: various optimizations applied
SAT solving
Goal
- Decide whether a given propositional formula ϕ in CNF is satisfiable

Possible answers
- Satisfiable + assignment (values, model)
- Unsatisfiable + core (subset of clauses)

Satisfiable formula $\phi \iff$ there exists a partial assignment satisfying all clauses in ϕ
• Naive brute force solution
 ▪ Trying all possible assignments
 • Systematic traversal of a binary tree

• DPLL (Davis-Putnam-Loveland-Logemann)
 ▪ Motivation: partial assignment can imply values of other variables in the given formula
 ▪ Example: from \(!a \mid b\), \(v = \{ a \rightarrow 1 \}\) we get \(\{ b \rightarrow 1 \}\)
 ▪ Approach: iterative deduction
 • Inferring value of a particular variable
 ▪ Basic algorithm used in modern SAT solvers (with many additional optimizations) \(\Rightarrow\) DPLL-based SAT solving
SAT solving: optimizations

- Adding learned clauses (implied)
- Non-chronological backtracking
- Choice of the branching variable
 - Various heuristics on the best choice exist

- Restarts
 - When it takes too long, restart the solver and use other “seeds” for heuristic functions
SAT solving

- Problem size: 10K – 1M variables
 - Typical input formulas have structure
- Worse for random instances
- Hard instances exist (of course)
- Tools are getting better all the time
 - Reason: industry demand, annual competitions
 - http://www.satcompetition.org/

- Other approaches
 - Stochastic search (random walk)
 - Quickly finds solution for satisfiable instances
 - Ordered binary decision diagrams
Propositional logic: semantic \(\equiv \) proof

- Semantic domain \(\models \)
 - Goal: find satisfying assignment for \(\varphi \)

- We know that: \(\models \varphi \iff \vdash \varphi \)

- Proof domain \(\vdash \)
 - Goal: derive the proof
 - axioms, inference rules
Resolution

• Input: CNF formula ϕ (a set of clauses)

• Goal: derive empty clause ($false$)

• Iterative process

 ▪ Choose two suitable clauses from the set

 • Requirement: they must have complementary literals r, $!r$

 ▪ Apply resolution step on these clauses

 \[(p_1 | ... | p_N | r), (q_1 | ... | q_N | !r) \Rightarrow (p_1 | ... | p_N | q_1 | ... | q_N)\]

 ▪ Add the newly derived clause into the set

 ▪ Repeat until we derive $false$ (or fail/stop)
Resolution

• Equivalent statements
 1) CNF formula ϕ is unsatisfiable
 2) We can derive empty clause using resolution on the clauses from ϕ

• Resolution used in practice
 • Checking validity of a first-order logic formula
 • Proof-by-contradiction
 • Add negation of the conjecture into the set
SAT solving and propositional logic

• SAT looks very good, but we need more
 ▪ For program verification, full theorem proving, ...

• First-order logic (predicate logic)

• Interesting theories
 ▪ Linear integer arithmetic (ℕ, ℤ)
 ▪ Data structures (arrays, bit vectors)
Decision procedure
Decision procedure

• Algorithm that
 ▪ Always terminates
 ▪ Outputs: YES/NO

• Decision procedure for a particular theory T
 ▪ Always terminates and provides a correct answer for every formula of T
 ▪ Goal: checking validity of logic formulas
Interesting theories

- Equality logic
 - With uninterpreted functions
- Linear arithmetic
 - Integer
 - Rational
- Difference logic
- Arrays
- Bit vectors
- Strings
 - including regular expressions
Equality logic

- Syntax
 - Atomic formulas
 \[\text{term} = \text{term} \mid \text{true} \mid \text{false} \]
 - Terms
 \[\text{variable} \mid \text{constant} \]

- Deciding validity of an equality logic formula is NP-complete problem
- Polynomial algorithm exists for the conjunctive fragment (uses only $\&$ and \exists)
Equality logic with uninterpreted functions

- **Syntax**
 - Atomic formulas

 \[
 \text{term} = \text{term} \mid \text{predicate(}\text{term}, \ldots, \text{term}) \mid \text{true} \mid \text{false}
 \]
 - Terms

 \[
 \text{variable} \mid \text{constant} \mid \text{function(}\text{term}, \ldots, \text{term})
 \]

- **Semantics**
 - No implicit meaning of functions and predicates
 - \(a_1 = b_1 \& \ldots \& a_N = b_N \rightarrow f(a_1,\ldots,a_N) = f(b_1,\ldots,b_N) \)

- **Decision procedure**
 - Transform into an equisatisfiable formula in equality logic
Equality logic with uninterpreted functions

- Purpose: abstraction
 - Full formula \Rightarrow function semantics defined using axioms
 - Uninterpreted symbols \Rightarrow just equality between arguments
 - $\models \phi^{\text{EUF}} \Rightarrow \models \phi$

- False answers possible
 - Example: $\text{add}(1,2) \neq \text{add}(2,1)$ in EUF

- Formula with UF easier to decide than the “full” formula
Linear arithmetic

- Syntax
 - Atomic formulas
 \[\text{term} = \text{term} \mid \text{term} < \text{term} \mid \text{term} \leq \text{term} \mid \text{true} \mid \text{false} \]
 - Terms
 \[\text{variable} \mid \text{constant} \mid \text{constant variable} \mid \text{term} + \text{term} \]

- Example: \((3x + 2y \leq 5z) \& (2x - 2y = 0)\)

- Arithmetic without multiplication \(\Rightarrow\) Presburger arithmetic

- Decision procedure
 - General case (full theory): \(2^{2^{O(n)}}\)
 - Conjunctive fragment over \(\mathbb{Q}\)
 - Linear programming: Simplex method (EXP), Ellipsoid method (P)
 - Conjunctive fragment over \(\mathbb{Z}\)
 - Integer linear programming (NP-complete)
Difference logic

- **Syntax**
 - Atomic formulas

 \[
 \text{variable} - \text{variable} < \text{constant} \mid
 \text{variable} - \text{variable} \leq \text{constant} \mid
 \text{true} \mid \text{false}
 \]
 - Operators: \(!, \&, \leftarrow, \leftrightarrow\)

- **Example:** \((x - y < 3) \& (y - z \leq -4) \& (z - x \leq 1)\)

- **Decision procedure**
 - Conjunctive fragment polynomial for \(\mathbb{Q}\) and \(\mathbb{Z}\)
Data structures

- Array theory
 - Function symbols

 \[
 \textit{select}(a, i) \quad \text{// read, } a[i] \\
 \textit{store}(a, i, e) \quad \text{// update, } a[i] = e
 \]
 - Axiom \textit{read-over-write}

 \[
 \textit{select}(\textit{store}(a, i, e), i) = e
 \]

- Bit vectors
 - Motivation: precise computer arithmetic (overflows, \ldots)
 - Reasoning about individual bits in a finite vector (array)
 - Syntax: operators \textit{bitwise-AND}, \textit{bitwise-OR}, \textit{bitwise-XOR}
 - Decision procedure
 - Typically flattened into a large instance of SAT
 - Many clever optimizations (encoding)
Strings and regular expressions

- Reasoning about word equations
 - Example: $a \cdot u = b \cdot v$

- Supported operations
 - substring (membership)
 - concatenation ($u \cdot v$)
 - queries about length
 - basic regular operators (+, *)

- Tools: Norn, Z3-str, S3, Sloth
Combining theories

• Goal
 ▪ Formulas that combine multiple theories
 ▪ Example: linear arithmetic + arrays

• Decision procedures
 ▪ Combined under specific constraints

• Nelson-Oppen method
Decision procedures: summary

- Decision procedures
 - Typically work for conjunctive fragments of the respective theories

- But we still need more
 - Formulas with arbitrary boolean structure and interesting theories (linear arithmetic, arrays)
Satisfiability Modulo Theory (SMT)
Satisfiability Modulo Theory (SMT)

• Goal
 - Decide satisfiability of a quantifier-free formula that involves constructs of specific theories

• Idea
 - Using combination of a SAT solver and a decision procedure (DP) for a conjunctive fragment of the respective theory
Approaches to SMT

- Naive use of a SAT solver

1. Extract boolean skeleton of the given formula ϕ
2. Run the SAT solver on the boolean skeleton
 a) unsatisfiable \Rightarrow the input formula is unsatisfiable
 b) satisfiable \Rightarrow we get a satisfying assignment ν
3. Run the DP on the formula derived from the satisfying assignment ν
 a) satisfiable \Rightarrow the input formula is satisfiable
 b) unsatisfiable \Rightarrow add the blocking clause for ν to the boolean skeleton and continue with the step 2
Approaches to SMT

- DPLL(T)-based SMT solving
 - Eagerness: DPLL asks DP for partial assignments during traversal
 - Benefit: earlier conflict discovery
 - Updating the set of clauses given to DP on-the-fly
 - iteration (add), backtracking (remove)
- Theory-based learning
 - DP can identify clauses valid/invalid in the given theory T
Available SMT solvers
- Z3, CVC4, Yices, MathSAT 5, OpenSMT, ...

SMT-LIB v2
- Defines common input format
- Big library of SMT problems
- https://smtlib.cs.uiowa.edu/

SMT-COMP
- Competition of SMT solvers
- https://smt-comp.github.io/2022/
SMT solving in practice

- Current state
 - Good performance
 - Highly automated
 - Many applications

- Drawbacks
 - Restricted to specific theories and domains (\(\mathbb{Q}, \mathbb{Z}\))
 - Very limited support for quantifiers (mostly \(\exists\))
 - Much less powerful than full theorem proving
Theorem proving

• Input
 - Theory T: set of axioms
 - General formula ϕ in predicate logic

• Goal
 - Decide validity of the formula ϕ in T
 - Semantic domain: show unsatisfiable negation
 - Proof domain: prove ϕ from the axioms of T

• Very powerful
• Interactive
 - Partially automated

• Tools: PVS, Isabelle/HOL
Deductive methods: closing remarks

- **Approaches**
 - DPLL-based SAT solving
 - Decision procedures
 - DPLL(T)-based SMT solving

- **Formulas**
 - Propositional logic (boolean)
 - Predicate logic with theories
 - Equality with uninterpreted functions
 - Linear arithmetic (difference logic)
 - Data structures (arrays, bit vectors)

- **Applications in program verification**
Bounded model checking
Bounded model checking

- **Goal:** Exploring traces with bounded length
 - Options: fixed integer value K, iteratively increasing
 - Still remember preemption bounding for threads?

- **Approach**
 - Encoding bounded program state space and properties into a logic formula ϕ
 - Find property violations by checking satisfiability of ϕ

- **Challenge**
 - Encoding program behavior into the formula ϕ
Program state space

- Program \(P = (S, T, INIT) \)
 - \(S \) is a set of program states
 - Predicates about values of program variables
 - Program counter (PC)
 - \(INIT \subseteq S \) is a set of initial states
 - \(T \subseteq S \times S \) is a transition relation

- Single transition
 - Updates program counter and some variables
 - Relating old and new values \((x, x', pc, pc')\)
 - Example: \(x = 2, x' = x + 1, pc = 5, pc' = pc + 1 \)
Transition relation

\[(pc = 1) \land (x' = x + 2y) \land (pc' = pc + 1)\]
\[\lor\]
\[(pc = 2) \land (x' = 0) \land (pc' = pc + 6)\]
\[\lor\]
\[\ldots \quad \ldots \quad \ldots\]
\[\lor\]
\[(pc = N) \land (x' = x - y + 5) \land (pc' = pc + 1)\]
Traces with bounded length

- Transition relation unfolded at most K times
 - Fresh copies of program variables \((x, x', ..., x^{(K)})\) used for each unfolding of the transition relation

- Example
 - \(INIT: x = 0, pc = 1\)
 - \(T(K): (\)

 \[
 ((pc = 1) \land (x' = x + 2y) \land (pc' = pc + 1)) \lor

 \ldots \quad \ldots \quad \ldots

 ((pc^{(K-1)} = 1) \land (x^{(K)} = x^{(K-1)} + 2y^{(K-1)}) \land (pc^{(K)} = pc^{(K-1)} + 1)) \lor

 \ldots \quad \ldots \quad \ldots

)

 - Specific consequences
 - Bounded number of loop iterations (unrolling)
Large formula

\[\text{INIT}(s_0) \land (\land_{i=0..k-1} T(s_i, s_{i+1})) \land (\lor_{i=0..k} \neg p(s_i)) \]

Represents all possible executions of the program with the length bounded by K
1) Derive formula representing the state space

2) Run the SAT/SMT solver on the formula in CNF

3) Interpret verification results
 - Satisfying assignment \(\Rightarrow\) we get a counterexample with the length \(\leq K\)
 - Unsatisfiable formula \(\Rightarrow\) no property violations in program executions of the length \(\leq K\)
BMC: technical challenges

- Encoding program in a mainstream language into a logic formula
 - heap, allocation, pointers, threads, synchronization

- Example: dynamic heap
 - Use predicate logic with array theory (*select, store*)
 - Array element access $a[i]$
 - Separate variables for the element $a[i]$ and the index i
 - Pointer access $(\star p)$
 - Separate variables for dereference $\star p$ and the pointer p
 - Transitions defined properly
Further reading
