Deductive Methods, Bounded Model Checking

http://d3s.mff.cuni.cz

Pavel Parízek
Deductive methods
If you want to know more ...

- Decision Procedures and Verification (NAIL094)
 - Lecturer: Petr Kučera, KTIML

Basic terminology (reminder)

- Logic formula
 - syntax, semantics

- Propositional logic

- First-order logic
 - Predicates
 - Quantifiers

- Assignment
 - Partial assignment

- Satisfiability

- Validity (tautology)
Relation between satisfiability and validity

\(\varphi \) is valid \(\rightarrow \) \(\varphi \) is satisfiable

\(\varphi \) is valid \(\iff \) \(\neg \varphi \) is unsatisfiable

\(\varphi \) is satisfiable \(\iff \) \(\neg \varphi \) is not valid
Normal forms

- **Negation normal form (NNF)**
 - syntax: !, |, & and variables
 - Negation only for variables
 - Example: \((a \mid (b \& !c)) \& (!d)\)

- **Conjunctive normal form (CNF)**
 - NNF as a conjunction of disjunctions
 - Example: \((a \mid b \mid !c) \& (!d) \& (e \mid !f)\)

- **Disjunctive normal form (DNF)**
 - NNF as a disjunction of conjunctions
 - Example: \((a \& b \& !c) \mid (!d) \mid (e \& !f)\)
Getting the normal forms

- De Morgan’s law
- Distributive law

Q: Is there a problem with conversion?
Getting the normal forms

- Transformation into an equivalent formula in CNF or DNF

- Problem: exponential blow-up of the size

- Remedy: creating **equisatisfiable** formula
Equisatisfiability

- Equisatisfiable formulas ϕ, ψ
 - both satisfiable or both unsatisfiable

Examples

- ϕ: $\neg(a \rightarrow b)$ ψ: $a \land \neg b$
- ϕ: $a \lor b$ ψ: $(a \lor n) \land (\neg n \lor b)$
- ϕ: $a \land b \land \neg c$ ψ: true
- ϕ: $\neg a \iff b$ ψ: false
Equisatisfiability

- Equisatisfiable formulas ϕ, ψ
 - both satisfiable or both unsatisfiable

Examples

ϕ: $!(a \rightarrow b)$ ψ: $a \& !b$ EQ, ES

ϕ: $a \mid b$ ψ: $(a \mid n) \& (!n \mid b)$ ES

ϕ: $a \& b \& !c$ ψ: $true$ ES

ϕ: $!a \leftrightarrow b$ ψ: false –
Equisatisfiability

• Tseitin’s encoding
 - Widely used algorithm for transforming a given propositional formula ϕ into an equisatisfiable formula ϕ' in CNF with linear growth only

• Practice: various optimizations applied
SAT solving
Goal
- Decide whether a given propositional formula ϕ in CNF is satisfiable

Possible answers
- Satisfiable + assignment (values, model)
- Unsatisfiable + core (subset of clauses)

Satisfiable formula $\phi \iff$ there exists a partial assignment satisfying all clauses in ϕ
SAT solving

- Naive brute force solution
 - Trying all possible assignments
 - Systematic traversal of a binary tree

- DPLL (Davis-Putnam-Loveland-Logemann)
 - Motivation: partial assignment can imply values of other variables in the given formula
 - Example: from \(!a \mid b\), \(v = \{ a \rightarrow 1 \} \) we get \(\{ b \rightarrow 1 \} \)
 - Approach: iterative deduction
 - Inferring value of a particular variable
 - Basic algorithm used in modern SAT solvers (with many additional optimizations) \(\Rightarrow\) DPLL-based SAT solving
SAT solving: optimizations

- Adding learned clauses (implied)
- Non-chronological backtracking
- Choice of the branching variable
 - Various heuristics on the best choice exist

- Restarts
 - When it takes too long, restart the solver and use other “seeds” for heuristic functions
SAT solving

- Problem size: 10K – 1M variables
 - Typical input formulas have structure
- Worse for random instances
- Hard instances exist (of course)
- Tools are getting better all the time
 - Reason: industry demand, annual competitions
 - http://www.satcompetition.org/

- Other approaches
 - Stochastic search (random walk)
 - Quickly finds solution for satisfiable instances
 - Ordered binary decision diagrams
Semantic domain \models
- Goal: find satisfying assignment for φ

We know that: $\models \varphi \iff \vdash \varphi$

Proof domain \vdash
- Goal: derive the proof
- axioms, inference rules
Resolution

- Input: CNF formula ϕ (a set of clauses)
- Goal: derive empty clause ($false$)

Iterative process
- Choose two suitable clauses from the set
 - Requirement: they must have complementary literals r, $!r$
- Apply resolution step on these clauses
 $$(p_1 \lor ... \lor p_N \lor r), (q_1 \lor ... \lor q_N \lor !r) \Rightarrow (p_1 \lor ... \lor p_N \lor q_1 \lor ... \lor q_N)$$
- Add the newly derived clause into the set
- Repeat until we derive $false$ (or fail/stop)
Resolution

- Equivalent statements
 1) CNF formula ϕ is unsatisfiable
 2) We can derive empty clause using resolution on the clauses from ϕ

- Resolution used in practice
 - Checking validity of a first-order logic formula
 - Proof-by-contradiction
 - Add negation of the conjecture into the set
SAT looking good, but we need more
- For program verification, full theorem proving, ...

- First-order logic (predicate logic)
- Interesting theories
 - Linear integer arithmetic (\mathbb{N}, \mathbb{Z})
 - Data structures (arrays, bit vectors)
Decision procedure
Decision procedure

- Algorithm that
 - Always terminates
 - Outputs: YES/NO

- Decision procedure for a particular theory T
 - Always terminates and provides a correct answer for every formula of T
 - Goal: checking validity of logic formulas
Interesting theories

- Equality logic
 - With uninterpreted functions
- Linear arithmetic
 - Integer
 - Rational
- Difference logic
- Arrays
- Bit vectors
- Strings
 - including regular expressions
Equality logic

- Syntax
 - Atomic formulas
 \[\text{term} = \text{term} \mid \text{true} \mid \text{false} \]
 - Terms
 \[\text{variable} \mid \text{constant} \]

- Deciding validity of an equality logic formula is NP-complete problem
- Polynomial algorithm exists for the conjunctive fragment (uses only \& and \(\exists \))
Equality logic with uninterpreted functions

- **Syntax**
 - Atomic formulas
 - \(\text{term} = \text{term} \mid \text{predicate(term, \ldots, term)} \mid \text{true} \mid \text{false} \)
 - Terms
 - \(\text{variable} \mid \text{constant} \mid \text{function(term, \ldots, term)} \)

- **Semantics**
 - No implicit meaning of functions and predicates
 - \(a_1 = b_1 \land \ldots \land a_N = b_N \rightarrow f(a_1, \ldots, a_N) = f(b_1, \ldots, b_N) \)

- **Decision procedure**
 - Transform into an equisatisfiable formula in equality logic
Purpose: abstraction
- Full formula \Rightarrow function semantics defined using axioms
- Uninterpreted symbols \Rightarrow just equality between arguments
- $\models \phi^{\text{EUF}} \Rightarrow \models \phi$

False answers possible
- Example: $\text{add}(1,2) \neq \text{add}(2,1)$ in EUF

Formula with UF easier to decide than the “full” formula
Linear arithmetic

- **Syntax**
 - Atomic formulas

 \[
 \text{term} = \text{term} \mid \text{term} < \text{term} \mid \text{term} \leq \text{term} \mid \text{true} \mid \text{false}
 \]
 - Terms

 \[
 \text{variable} \mid \text{constant} \mid \text{constant variable} \mid \text{term} + \text{term}
 \]

- Example: \((3x + 2y \leq 5z) \& (2x - 2y = 0)\)

- Arithmetic without multiplication ➔ Presburger arithmetic

- Decision procedure
 - General case (full theory): \(2^{2O(n)}\)
 - Conjunctive fragment over \(\mathbb{Q}\)
 - Linear programming: Simplex method (EXP), Ellipsoid method (P)
 - Conjunctive fragment over \(\mathbb{Z}\)
 - Integer linear programming (NP-complete)
Difference logic

- Syntax
 - Atomic formulas

 \[
 \text{variable} - \text{variable} < \text{constant} | \\
 \text{variable} - \text{variable} \leq \text{constant} | \\
 \text{true} | \text{false}
 \]
 - Operators: !, &, ←, ↔

- Example: \((x - y < 3) \& (y - z \leq -4) \& (z - x \leq 1)\)

- Decision procedure
 - Conjunctive fragment polynomial for \(\mathbb{Q}\) and \(\mathbb{Z}\)
Data structures

- Array theory
 - Function symbols
 \[\text{select}(a,i) \quad // \quad \text{read}, \ a[i] \]
 \[\text{store}(a,i,e) \quad // \quad \text{update}, \ a[i] = e \]
 - Axiom read-over-write
 \[\text{select} (\text{store}(a,i,e),i) = e \]

- Bit vectors
 - Motivation: precise computer arithmetic (overflows, ...)
 - Reasoning about individual bits in a finite vector (array)
 - Syntax: operators bitwise-AND, bitwise-OR, bitwise-XOR
 - Decision procedure
 - Typically flattened into a large instance of SAT
 - Many clever optimizations (encoding)
Strings and regular expressions

• Reasoning about word equations
 ▪ Example: \(a \cdot u = b \cdot v \)

• Supported operations
 ▪ substring (membership)
 ▪ concatenation \((u \cdot v)\)
 ▪ queries about length
 ▪ basic regular operators \((+, *, \dagger)\)

• Tools: Norn, Z3-str, S3, Sloth
Combining theories

• Goal
 - Formulas that combine multiple theories
 - Example: linear arithmetic + arrays

• Decision procedures
 - Combined under specific constraints

• Nelson-Oppen method
Decision procedures: summary

- Decision procedures
 - Typically work for conjunctive fragments of the respective theories

- But we still need more
 - Formulas with arbitrary boolean structure and interesting theories (linear arithmetic, arrays)
Satisfiability Modulo Theory (SMT)
Satisfiability Modulo Theory (SMT)

• Goal
 - Decide satisfiability of a quantifier-free formula that involves constructs of specific theories

• Idea
 - Using combination of a SAT solver and a decision procedure (DP) for a conjunctive fragment of the respective theory
Approaches to SMT

- Naive use of a SAT solver

 1. Extract boolean skeleton of the given formula ϕ
 2. Run the SAT solver on the boolean skeleton
 a) unsatisfiable \Rightarrow the input formula is unsatisfiable
 b) satisfiable \Rightarrow we get a satisfying assignment v
 3. Run the DP on the formula derived from the satisfying assignment v
 a) satisfiable \Rightarrow the input formula is satisfiable
 b) unsatisfiable \Rightarrow add the blocking clause for v to the boolean skeleton and continue with the step 2
Approaches to SMT

- **DPLL(T)-based SMT solving**
 - Eagerness: DPLL asks DP for partial assignments during traversal
 - Benefit: earlier conflict discovery
 - Updating the set of clauses given to DP on-the-fly
 - iteration (add), backtracking (remove)
- **Theory-based learning**
 - DP can identify clauses valid/invalid in the given theory T
Available SMT solvers
- Z3, CVC4, Yices, MathSAT 5, OpenSMT, ...

SMT-LIB v2
- Defines common input format
- Big library of SMT problems
 - https://smtlib.cs.uiowa.edu/

SMT-COMP
- Competition of SMT solvers
 - https://smt-comp.github.io/2022/
SMT solving in practice

Current state
- Good performance
- Highly automated
- Many applications

Drawbacks
- Restricted to specific theories and domains (\mathbb{Q}, \mathbb{Z})
- Very limited support for quantifiers (mostly \exists)
- Much less powerful than full theorem proving
Theorem proving

- **Input**
 - Theory T: set of axioms
 - General formula ϕ in predicate logic

- **Goal**
 - Decide validity of the formula ϕ in T
 - Semantic domain: show unsatisfiable negation
 - Proof domain: prove ϕ from the axioms of T

- Very powerful
- Interactive
 - Partially automated

- **Tools:** PVS, Isabelle/HOL
Deductive methods: closing remarks

- **Approaches**
 - DPLL-based SAT solving
 - Decision procedures
 - DPLL(T)-based SMT solving

- **Formulas**
 - Propositional logic (boolean)
 - Predicate logic with theories
 - Equality with uninterpreted functions
 - Linear arithmetic (difference logic)
 - Data structures (arrays, bit vectors)

- **Applications in program verification**
Bounded model checking
Goal: Exploring traces with bounded length
- Options: fixed integer value K, iteratively increasing
- Still remember preemption bounding for threads?

Approach
- Encoding bounded program state space and properties into a logic formula ϕ
- Find property violations by checking satisfiability of ϕ

Challenge
- Encoding program behavior into the formula ϕ
Program state space

- Program $P = (S, T, INIT)$
 - S is a set of program states
 - Predicates about values of program variables
 - Program counter (PC)
 - $INIT \subseteq S$ is a set of initial states
 - $T \subseteq S \times S$ is a transition relation

- Single transition
 - Updates program counter and some variables
 - Relating old and new values (x, x', pc, pc')
 - Example: $x = 2$, $x' = x + 1$, $pc = 5$, $pc' = pc + 1$
Transition relation

\[\begin{align*}
(p_c = 1) & \land (x' = x + 2y) \land (p_c' = p_c + 1) \\
\lor \\
(p_c = 2) & \land (x' = 0) \land (p_c' = p_c + 6) \\
\lor \\
\vdots & \\
\lor \\
(p_c = N) & \land (x' = x - y + 5) \land (p_c' = p_c + 1)
\end{align*}\]
Traces with bounded length

- Transition relation unfolded at most K times
 - Fresh copies of program variables \((x, x', \ldots, x^{(K)})\) used for each unfolding of the transition relation

- Example
 - \(INIT\): \(x = 0, pc = 1\)
 - \(T(K)\):
 \[
 \begin{align*}
 ((pc = 1) \land (x' = x + 2y) \land (pc' = pc + 1)) \lor \\
 & \ldots \ldots \ldots \\
 & ((pc^{(K-1)} = 1) \land (x^{(K)} = x^{(K-1)} + 2y^{(K-1)}) \land (pc^{(K)} = pc^{(K-1)} + 1)) \lor \\
 & \ldots \ldots \ldots \\
 \end{align*}
 \]

- Specific consequences
 - Bounded number of loop iterations (unrolling)
Encoding program behavior in logic

- Large formula

\[INIT(s_0) \land (\land_{i=0..k-1} T(s_i, s_{i+1})) \land (\lor_{i=0..k} \neg p(s_i)) \]

- Represents all possible executions of the program with the length bounded by \(K \)
1) Derive formula representing the state space

2) Run the SAT/SMT solver on the formula in CNF

3) Interpret verification results
 - Satisfying assignment \Rightarrow we get a counterexample with the length $\leq K$
 - Unsatisfiable formula \Rightarrow no property violations in program executions of the length $\leq K$
BMC: technical challenges

- Encoding program in a mainstream language into a logic formula
 - heap, allocation, pointers, threads, synchronization

- Example: dynamic heap
 - Use predicate logic with array theory (*select, store*)
 - Array element access \(a[i] \)
 - Separate variables for the element \(a[i] \) and the index \(i \)
 - Pointer access \((*p) \)
 - Separate variables for dereference \(*p \) and the pointer \(p \)
 - Transitions defined properly
Further reading
